nalgebra/tests/unit_complex.rs

172 lines
4.4 KiB
Rust
Raw Permalink Normal View History

2017-02-13 01:17:09 +08:00
#![allow(non_snake_case)]
#[cfg(feature = "arbitrary")]
#[macro_use]
extern crate quickcheck;
#[macro_use]
extern crate approx;
extern crate num_traits as num;
extern crate alga;
extern crate nalgebra as na;
use na::{Unit, UnitComplex, Vector2, Point2, Rotation2};
quickcheck!(
/*
*
* From/to rotation matrix.
*
*/
fn unit_complex_rotation_conversion(c: UnitComplex<f64>) -> bool {
let r = c.to_rotation_matrix();
let cc = UnitComplex::from_rotation_matrix(&r);
let rr = cc.to_rotation_matrix();
relative_eq!(c, cc, epsilon = 1.0e-7) &&
relative_eq!(r, rr, epsilon = 1.0e-7)
}
/*
*
* PointBase/Vector transformation.
*
*/
fn unit_complex_transformation(c: UnitComplex<f64>, v: Vector2<f64>, p: Point2<f64>) -> bool {
let r = c.to_rotation_matrix();
let rv = r * v;
let rp = r * p;
relative_eq!( c * v, rv, epsilon = 1.0e-7) &&
relative_eq!( c * &v, rv, epsilon = 1.0e-7) &&
relative_eq!(&c * v, rv, epsilon = 1.0e-7) &&
relative_eq!(&c * &v, rv, epsilon = 1.0e-7) &&
relative_eq!( c * p, rp, epsilon = 1.0e-7) &&
relative_eq!( c * &p, rp, epsilon = 1.0e-7) &&
relative_eq!(&c * p, rp, epsilon = 1.0e-7) &&
relative_eq!(&c * &p, rp, epsilon = 1.0e-7)
}
/*
*
* Inversion.
*
*/
fn unit_complex_inv(c: UnitComplex<f64>) -> bool {
let iq = c.inverse();
relative_eq!(&iq * &c, UnitComplex::identity(), epsilon = 1.0e-7) &&
relative_eq!( iq * &c, UnitComplex::identity(), epsilon = 1.0e-7) &&
relative_eq!(&iq * c, UnitComplex::identity(), epsilon = 1.0e-7) &&
relative_eq!( iq * c, UnitComplex::identity(), epsilon = 1.0e-7) &&
relative_eq!(&c * &iq, UnitComplex::identity(), epsilon = 1.0e-7) &&
relative_eq!( c * &iq, UnitComplex::identity(), epsilon = 1.0e-7) &&
relative_eq!(&c * iq, UnitComplex::identity(), epsilon = 1.0e-7) &&
relative_eq!( c * iq, UnitComplex::identity(), epsilon = 1.0e-7)
}
/*
*
* Quaterion * Vector == RotationBase * Vector
*
*/
fn unit_complex_mul_vector(c: UnitComplex<f64>, v: Vector2<f64>, p: Point2<f64>) -> bool {
let r = c.to_rotation_matrix();
relative_eq!(c * v, r * v, epsilon = 1.0e-7) &&
relative_eq!(c * p, r * p, epsilon = 1.0e-7)
}
// Test that all operators (incl. all combinations of references) work.
// See the top comment on `geometry/quaternion_ops.rs` for details on which operations are
// supported.
fn all_op_exist(uc: UnitComplex<f64>, v: Vector2<f64>, p: Point2<f64>, r: Rotation2<f64>) -> bool {
let uv = Unit::new_normalize(v);
let ucMuc = uc * uc;
let ucMr = uc * r;
let rMuc = r * uc;
let ucDuc = uc / uc;
let ucDr = uc / r;
let rDuc = r / uc;
let ucMp = uc * p;
let ucMv = uc * v;
let ucMuv = uc * uv;
let mut ucMuc1 = uc;
let mut ucMuc2 = uc;
let mut ucMr1 = uc;
let mut ucMr2 = uc;
let mut ucDuc1 = uc;
let mut ucDuc2 = uc;
let mut ucDr1 = uc;
let mut ucDr2 = uc;
ucMuc1 *= uc;
ucMuc2 *= &uc;
ucMr1 *= r;
ucMr2 *= &r;
ucDuc1 /= uc;
ucDuc2 /= &uc;
ucDr1 /= r;
ucDr2 /= &r;
ucMuc1 == ucMuc &&
ucMuc1 == ucMuc2 &&
ucMr1 == ucMr &&
ucMr1 == ucMr2 &&
ucDuc1 == ucDuc &&
ucDuc1 == ucDuc2 &&
ucDr1 == ucDr &&
ucDr1 == ucDr2 &&
ucMuc == &uc * &uc &&
ucMuc == uc * &uc &&
ucMuc == &uc * uc &&
ucMr == &uc * &r &&
ucMr == uc * &r &&
ucMr == &uc * r &&
rMuc == &r * &uc &&
rMuc == r * &uc &&
rMuc == &r * uc &&
ucDuc == &uc / &uc &&
ucDuc == uc / &uc &&
ucDuc == &uc / uc &&
ucDr == &uc / &r &&
ucDr == uc / &r &&
ucDr == &uc / r &&
rDuc == &r / &uc &&
rDuc == r / &uc &&
rDuc == &r / uc &&
ucMp == &uc * &p &&
ucMp == uc * &p &&
ucMp == &uc * p &&
ucMv == &uc * &v &&
ucMv == uc * &v &&
ucMv == &uc * v &&
ucMuv == &uc * &uv &&
ucMuv == uc * &uv &&
ucMuv == &uc * uv
}
);