nalgebra/src/geometry/quaternion_ops.rs

697 lines
19 KiB
Rust
Raw Normal View History

/*
* This file provides:
* ===================
*
*
* (Quaternion)
*
* Index<usize>
* IndexMut<usize>
* Quaternion × Quaternion
* Quaternion + Quaternion
* Quaternion - Quaternion
* -Quaternion
* Quaternion × Scalar
* Quaternion ÷ Scalar
* Scalar × Quaternion
*
* (Unit Quaternion)
* UnitQuaternion × UnitQuaternion
* UnitQuaternion × Rotation -> UnitQuaternion
* Rotation × UnitQuaternion -> UnitQuaternion
*
* UnitQuaternion ÷ UnitQuaternion
* UnitQuaternion ÷ Rotation -> UnitQuaternion
* Rotation ÷ UnitQuaternion -> UnitQuaternion
*
*
* UnitQuaternion × Point
* UnitQuaternion × Vector
* UnitQuaternion × Unit<Vector>
*
* NOTE: -UnitQuaternion is already provided by `Unit<T>`.
*
*
* (Assignment Operators)
*
* Quaternion ×= Scalar
* Quaternion ×= Quaternion
* Quaternion += Quaternion
* Quaternion -= Quaternion
*
* UnitQuaternion ×= UnitQuaternion
* UnitQuaternion ×= Rotation
*
* UnitQuaternion ÷= UnitQuaternion
* UnitQuaternion ÷= Rotation
*
* FIXME: Rotation ×= UnitQuaternion
* FIXME: Rotation ÷= UnitQuaternion
*
*/
2018-02-02 19:26:35 +08:00
use std::ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub,
SubAssign};
use alga::general::Real;
use base::{DefaultAllocator, Unit, Vector, Vector3};
use base::storage::Storage;
use base::allocator::Allocator;
use base::dimension::{U1, U3, U4};
2018-02-02 19:26:35 +08:00
use geometry::{Point3, Quaternion, Rotation, UnitQuaternion};
impl<N: Real> Index<usize> for Quaternion<N> {
type Output = N;
#[inline]
fn index(&self, i: usize) -> &N {
&self.coords[i]
}
}
impl<N: Real> IndexMut<usize> for Quaternion<N> {
#[inline]
fn index_mut(&mut self, i: usize) -> &mut N {
&mut self.coords[i]
}
}
macro_rules! quaternion_op_impl(
($Op: ident, $op: ident;
($LhsRDim: ident, $LhsCDim: ident), ($RhsRDim: ident, $RhsCDim: ident)
$(for $Storage: ident: $StoragesBound: ident $(<$($BoundParam: ty),*>)*),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty $(=> $VDimA: ty, $VDimB: ty)*;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N: Real $(, $Storage: $StoragesBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
where DefaultAllocator: Allocator<N, $LhsRDim, $LhsCDim> +
Allocator<N, $RhsRDim, $RhsCDim> {
type Output = $Result;
#[inline]
fn $op($lhs, $rhs: $Rhs) -> Self::Output {
$action
}
}
}
);
// Quaternion + Quaternion
quaternion_op_impl!(
Add, add;
(U4, U1), (U4, U1);
self: &'a Quaternion<N>, rhs: &'b Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(&self.coords + &rhs.coords);
'a, 'b);
quaternion_op_impl!(
Add, add;
(U4, U1), (U4, U1);
self: &'a Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(&self.coords + rhs.coords);
'a);
quaternion_op_impl!(
Add, add;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: &'b Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(self.coords + &rhs.coords);
'b);
quaternion_op_impl!(
Add, add;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(self.coords + rhs.coords);
);
// Quaternion - Quaternion
quaternion_op_impl!(
Sub, sub;
(U4, U1), (U4, U1);
self: &'a Quaternion<N>, rhs: &'b Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(&self.coords - &rhs.coords);
'a, 'b);
quaternion_op_impl!(
Sub, sub;
(U4, U1), (U4, U1);
self: &'a Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(&self.coords - rhs.coords);
'a);
quaternion_op_impl!(
Sub, sub;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: &'b Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(self.coords - &rhs.coords);
'b);
quaternion_op_impl!(
Sub, sub;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from_vector(self.coords - rhs.coords);
);
// Quaternion × Quaternion
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: &'a Quaternion<N>, rhs: &'b Quaternion<N>, Output = Quaternion<N>;
Quaternion::new(
self[3] * rhs[3] - self[0] * rhs[0] - self[1] * rhs[1] - self[2] * rhs[2],
self[3] * rhs[0] + self[0] * rhs[3] + self[1] * rhs[2] - self[2] * rhs[1],
self[3] * rhs[1] - self[0] * rhs[2] + self[1] * rhs[3] + self[2] * rhs[0],
self[3] * rhs[2] + self[0] * rhs[1] - self[1] * rhs[0] + self[2] * rhs[3]);
'a, 'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: &'a Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
self * &rhs;
'a);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: &'b Quaternion<N>, Output = Quaternion<N>;
&self * rhs;
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
&self * &rhs;
);
// UnitQuaternion × UnitQuaternion
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: &'a UnitQuaternion<N>, rhs: &'b UnitQuaternion<N>, Output = UnitQuaternion<N>;
UnitQuaternion::new_unchecked(self.quaternion() * rhs.quaternion());
'a, 'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: &'a UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
self * &rhs;
'a);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: &'b UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self * rhs;
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self * &rhs;
);
// UnitQuaternion ÷ UnitQuaternion
quaternion_op_impl!(
Div, div;
(U4, U1), (U4, U1);
self: &'a UnitQuaternion<N>, rhs: &'b UnitQuaternion<N>, Output = UnitQuaternion<N>;
self * rhs.inverse();
'a, 'b);
quaternion_op_impl!(
Div, div;
(U4, U1), (U4, U1);
self: &'a UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
self / &rhs;
'a);
quaternion_op_impl!(
Div, div;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: &'b UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self / rhs;
'b);
quaternion_op_impl!(
Div, div;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self / &rhs;
);
// UnitQuaternion × Rotation
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U3);
self: &'a UnitQuaternion<N>, rhs: &'b Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
// FIXME: can we avoid the conversion from a rotation matrix?
self * UnitQuaternion::<N>::from_rotation_matrix(rhs);
'a, 'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U3);
self: &'a UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self * UnitQuaternion::<N>::from_rotation_matrix(&rhs);
'a);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: &'b Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self * UnitQuaternion::<N>::from_rotation_matrix(rhs);
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self * UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
// UnitQuaternion ÷ Rotation
quaternion_op_impl!(
Div, div;
(U4, U1), (U3, U3);
self: &'a UnitQuaternion<N>, rhs: &'b Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
// FIXME: can we avoid the conversion to a rotation matrix?
self / UnitQuaternion::<N>::from_rotation_matrix(rhs);
'a, 'b);
quaternion_op_impl!(
Div, div;
(U4, U1), (U3, U3);
self: &'a UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self / UnitQuaternion::<N>::from_rotation_matrix(&rhs);
'a);
quaternion_op_impl!(
Div, div;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: &'b Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self / UnitQuaternion::<N>::from_rotation_matrix(rhs);
'b);
quaternion_op_impl!(
Div, div;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self / UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
// Rotation × UnitQuaternion
quaternion_op_impl!(
Mul, mul;
(U3, U3), (U4, U1);
self: &'a Rotation<N, U3>, rhs: &'b UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
// FIXME: can we avoid the conversion from a rotation matrix?
UnitQuaternion::<N>::from_rotation_matrix(self) * rhs;
'a, 'b);
quaternion_op_impl!(
Mul, mul;
(U3, U3), (U4, U1);
self: &'a Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(self) * rhs;
'a);
quaternion_op_impl!(
Mul, mul;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: &'b UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) * rhs;
'b);
quaternion_op_impl!(
Mul, mul;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) * rhs;
);
// Rotation ÷ UnitQuaternion
quaternion_op_impl!(
Div, div;
(U3, U3), (U4, U1);
self: &'a Rotation<N, U3>, rhs: &'b UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
// FIXME: can we avoid the conversion from a rotation matrix?
UnitQuaternion::<N>::from_rotation_matrix(self) / rhs;
'a, 'b);
quaternion_op_impl!(
Div, div;
(U3, U3), (U4, U1);
self: &'a Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(self) / rhs;
'a);
quaternion_op_impl!(
Div, div;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: &'b UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) / rhs;
'b);
quaternion_op_impl!(
Div, div;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) / rhs;
);
// UnitQuaternion × Vector
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: &'a UnitQuaternion<N>, rhs: &'b Vector<N, U3, SB>,
Output = Vector3<N> => U3, U4;
{
let two: N = ::convert(2.0f64);
let t = self.as_ref().vector().cross(rhs) * two;
let cross = self.as_ref().vector().cross(&t);
t * self.as_ref().scalar() + cross + rhs
};
'a, 'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: &'a UnitQuaternion<N>, rhs: Vector<N, U3, SB>,
Output = Vector3<N> => U3, U4;
self * &rhs;
'a);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: &'b Vector<N, U3, SB>,
Output = Vector3<N> => U3, U4;
&self * rhs;
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Vector<N, U3, SB>,
Output = Vector3<N> => U3, U4;
&self * &rhs;
);
// UnitQuaternion × Point
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1);
self: &'a UnitQuaternion<N>, rhs: &'b Point3<N>,
Output = Point3<N> => U3, U4;
Point3::from_coordinates(self * &rhs.coords);
'a, 'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1);
self: &'a UnitQuaternion<N>, rhs: Point3<N>,
Output = Point3<N> => U3, U4;
Point3::from_coordinates(self * rhs.coords);
'a);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1);
self: UnitQuaternion<N>, rhs: &'b Point3<N>,
Output = Point3<N> => U3, U4;
Point3::from_coordinates(self * &rhs.coords);
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1);
self: UnitQuaternion<N>, rhs: Point3<N>,
Output = Point3<N> => U3, U4;
Point3::from_coordinates(self * rhs.coords);
);
// UnitQuaternion × Unit<Vector>
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: &'a UnitQuaternion<N>, rhs: &'b Unit<Vector<N, U3, SB>>,
Output = Unit<Vector3<N>> => U3, U4;
Unit::new_unchecked(self * rhs.as_ref());
'a, 'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: &'a UnitQuaternion<N>, rhs: Unit<Vector<N, U3, SB>>,
Output = Unit<Vector3<N>> => U3, U4;
Unit::new_unchecked(self * rhs.unwrap());
'a);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: &'b Unit<Vector<N, U3, SB>>,
Output = Unit<Vector3<N>> => U3, U4;
Unit::new_unchecked(self * rhs.as_ref());
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Unit<Vector<N, U3, SB>>,
Output = Unit<Vector3<N>> => U3, U4;
Unit::new_unchecked(self * rhs.unwrap());
);
macro_rules! scalar_op_impl(
($($Op: ident, $op: ident, $OpAssign: ident, $op_assign: ident);* $(;)*) => {$(
impl<N: Real> $Op<N> for Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
fn $op(self, n: N) -> Self::Output {
Quaternion::from_vector(self.coords.$op(n))
}
}
impl<'a, N: Real> $Op<N> for &'a Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
fn $op(self, n: N) -> Self::Output {
Quaternion::from_vector((&self.coords).$op(n))
}
}
impl<N: Real> $OpAssign<N> for Quaternion<N> {
#[inline]
fn $op_assign(&mut self, n: N) {
self.coords.$op_assign(n)
}
}
)*}
);
scalar_op_impl!(
Mul, mul, MulAssign, mul_assign;
Div, div, DivAssign, div_assign;
);
macro_rules! left_scalar_mul_impl(
($($T: ty),* $(,)*) => {$(
impl Mul<Quaternion<$T>> for $T {
type Output = Quaternion<$T>;
#[inline]
fn mul(self, right: Quaternion<$T>) -> Self::Output {
Quaternion::from_vector(self * right.coords)
}
}
impl<'b> Mul<&'b Quaternion<$T>> for $T {
type Output = Quaternion<$T>;
#[inline]
fn mul(self, right: &'b Quaternion<$T>) -> Self::Output {
Quaternion::from_vector(self * &right.coords)
}
}
)*}
);
left_scalar_mul_impl!(f32, f64);
impl<N: Real> Neg for Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
fn neg(self) -> Self::Output {
Quaternion::from_vector(-self.coords)
}
}
impl<'a, N: Real> Neg for &'a Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
fn neg(self) -> Self::Output {
Quaternion::from_vector(-&self.coords)
}
}
macro_rules! quaternion_op_impl(
($OpAssign: ident, $op_assign: ident;
($LhsRDim: ident, $LhsCDim: ident), ($RhsRDim: ident, $RhsCDim: ident);
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty $(=> $VDimA: ty, $VDimB: ty)*;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N: Real> $OpAssign<$Rhs> for $Lhs
where DefaultAllocator: Allocator<N, $LhsRDim, $LhsCDim> +
Allocator<N, $RhsRDim, $RhsCDim> {
#[inline]
fn $op_assign(&mut $lhs, $rhs: $Rhs) {
$action
}
}
}
);
// Quaternion += Quaternion
quaternion_op_impl!(
AddAssign, add_assign;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: &'b Quaternion<N>;
self.coords += &rhs.coords;
'b);
quaternion_op_impl!(
AddAssign, add_assign;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>;
self.coords += rhs.coords; );
// Quaternion -= Quaternion
quaternion_op_impl!(
SubAssign, sub_assign;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: &'b Quaternion<N>;
self.coords -= &rhs.coords;
'b);
quaternion_op_impl!(
SubAssign, sub_assign;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>;
self.coords -= rhs.coords; );
// Quaternion ×= Quaternion
quaternion_op_impl!(
MulAssign, mul_assign;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: &'b Quaternion<N>;
{
let res = &*self * rhs;
// FIXME: will this be optimized away?
self.coords.copy_from(&res.coords);
};
'b);
quaternion_op_impl!(
MulAssign, mul_assign;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>;
*self *= &rhs; );
// UnitQuaternion ×= UnitQuaternion
quaternion_op_impl!(
MulAssign, mul_assign;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: &'b UnitQuaternion<N>;
{
let res = &*self * rhs;
self.as_mut_unchecked().coords.copy_from(&res.as_ref().coords);
};
'b);
quaternion_op_impl!(
MulAssign, mul_assign;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>;
*self *= &rhs; );
// UnitQuaternion ÷= UnitQuaternion
quaternion_op_impl!(
DivAssign, div_assign;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: &'b UnitQuaternion<N>;
{
let res = &*self / rhs;
self.as_mut_unchecked().coords.copy_from(&res.as_ref().coords);
};
'b);
quaternion_op_impl!(
DivAssign, div_assign;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>;
*self /= &rhs; );
// UnitQuaternion ×= Rotation
quaternion_op_impl!(
MulAssign, mul_assign;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: &'b Rotation<N, U3> => U3, U3;
{
let res = &*self * rhs;
self.as_mut_unchecked().coords.copy_from(&res.as_ref().coords);
};
'b);
quaternion_op_impl!(
MulAssign, mul_assign;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3> => U3, U3;
*self *= &rhs; );
// UnitQuaternion ÷= Rotation
quaternion_op_impl!(
DivAssign, div_assign;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: &'b Rotation<N, U3> => U3, U3;
{
let res = &*self / rhs;
self.as_mut_unchecked().coords.copy_from(&res.as_ref().coords);
};
'b);
quaternion_op_impl!(
DivAssign, div_assign;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3> => U3, U3;
*self /= &rhs; );