2017-02-13 01:17:09 +08:00
|
|
|
extern crate alga;
|
|
|
|
extern crate nalgebra as na;
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
use na::{Scalar, Vector3};
|
2020-03-21 19:16:46 +08:00
|
|
|
use simba::scalar::{RealField, RingCommutative};
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2019-12-17 07:09:14 +08:00
|
|
|
fn print_vector<N: Scalar>(m: &Vector3<N>) {
|
2018-02-02 19:26:35 +08:00
|
|
|
println!("{:?}", m)
|
2017-02-13 01:17:09 +08:00
|
|
|
}
|
|
|
|
|
2019-12-17 07:09:14 +08:00
|
|
|
fn print_squared_norm<N: Scalar + RingCommutative>(v: &Vector3<N>) {
|
2018-02-02 19:26:35 +08:00
|
|
|
// NOTE: alternatively, nalgebra already defines `v.squared_norm()`.
|
|
|
|
let sqnorm = v.dot(v);
|
|
|
|
println!("{:?}", sqnorm);
|
2017-02-13 01:17:09 +08:00
|
|
|
}
|
|
|
|
|
2019-03-25 18:21:41 +08:00
|
|
|
fn print_norm<N: RealField>(v: &Vector3<N>) {
|
2018-02-02 19:26:35 +08:00
|
|
|
// NOTE: alternatively, nalgebra already defines `v.norm()`.
|
|
|
|
let norm = v.dot(v).sqrt();
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2019-03-25 18:21:41 +08:00
|
|
|
// The RealField bound implies that N is Display so we can
|
2018-02-02 19:26:35 +08:00
|
|
|
// use "{}" instead of "{:?}" for the format string.
|
|
|
|
println!("{}", norm)
|
2017-02-13 01:17:09 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
fn main() {
|
2018-02-02 19:26:35 +08:00
|
|
|
let v1 = Vector3::new(1, 2, 3);
|
|
|
|
let v2 = Vector3::new(1.0, 2.0, 3.0);
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
print_vector(&v1);
|
|
|
|
print_squared_norm(&v1);
|
|
|
|
print_norm(&v2);
|
2017-02-13 01:17:09 +08:00
|
|
|
}
|