nalgebra/nalgebra-lapack/src/svd.rs

291 lines
11 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Serialize};
use num::Signed;
use std::cmp;
use na::allocator::Allocator;
2021-04-12 16:34:44 +08:00
use na::dimension::{Const, Dim, DimMin, DimMinimum, U1};
2021-04-11 17:00:38 +08:00
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
use lapack;
/// The SVD decomposition of a general matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
2021-04-11 17:00:38 +08:00
serde(bound(serialize = "DefaultAllocator: Allocator<T, DimMinimum<R, C>> +
Allocator<T, R, R> +
Allocator<T, C, C>,
OMatrix<T, R>: Serialize,
OMatrix<T, C>: Serialize,
OVector<T, DimMinimum<R, C>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
2021-04-11 17:00:38 +08:00
serde(bound(serialize = "DefaultAllocator: Allocator<T, DimMinimum<R, C>> +
Allocator<T, R, R> +
Allocator<T, C, C>,
OMatrix<T, R>: Deserialize<'de>,
OMatrix<T, C>: Deserialize<'de>,
OVector<T, DimMinimum<R, C>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
2021-04-11 17:00:38 +08:00
pub struct SVD<T: Scalar, R: DimMin<C>, C: Dim>
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R, R> + Allocator<T, DimMinimum<R, C>> + Allocator<T, C, C>,
2018-02-02 19:26:35 +08:00
{
/// The left-singular vectors `U` of this SVD.
2021-04-12 16:34:44 +08:00
pub u: OMatrix<T, R, R>, // TODO: should be OMatrix<T, R, DimMinimum<R, C>>
/// The right-singular vectors `V^t` of this SVD.
2021-04-12 16:34:44 +08:00
pub vt: OMatrix<T, C, C>, // TODO: should be OMatrix<T, DimMinimum<R, C>, C>
/// The singular values of this SVD.
2021-04-11 17:00:38 +08:00
pub singular_values: OVector<T, DimMinimum<R, C>>,
}
2021-04-11 17:00:38 +08:00
impl<T: Scalar + Copy, R: DimMin<C>, C: Dim> Copy for SVD<T, R, C>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, C, C> + Allocator<T, R, R> + Allocator<T, DimMinimum<R, C>>,
OMatrix<T, R, R>: Copy,
OMatrix<T, C, C>: Copy,
OVector<T, DimMinimum<R, C>>: Copy,
2020-04-06 00:49:48 +08:00
{
}
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
/// supported by the Singular Value Decompotition.
pub trait SVDScalar<R: DimMin<C>, C: Dim>: Scalar
2020-04-06 00:49:48 +08:00
where
DefaultAllocator: Allocator<Self, R, R>
2018-02-02 19:26:35 +08:00
+ Allocator<Self, R, C>
+ Allocator<Self, DimMinimum<R, C>>
2020-04-06 00:49:48 +08:00
+ Allocator<Self, C, C>,
2018-02-02 19:26:35 +08:00
{
/// Computes the SVD decomposition of `m`.
2021-04-11 17:00:38 +08:00
fn compute(m: OMatrix<Self, R, C>) -> Option<SVD<Self, R, C>>;
}
2021-04-11 17:00:38 +08:00
impl<T: SVDScalar<R, C>, R: DimMin<C>, C: Dim> SVD<T, R, C>
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R, R>
+ Allocator<T, R, C>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T, C, C>,
2018-02-02 19:26:35 +08:00
{
/// Computes the Singular Value Decomposition of `matrix`.
2021-04-11 17:00:38 +08:00
pub fn new(m: OMatrix<T, R, C>) -> Option<Self> {
T::compute(m)
}
}
macro_rules! svd_impl(
($t: ty, $lapack_func: path) => (
impl<R: Dim, C: Dim> SVDScalar<R, C> for $t
where R: DimMin<C>,
DefaultAllocator: Allocator<$t, R, C> +
Allocator<$t, R, R> +
Allocator<$t, C, C> +
Allocator<$t, DimMinimum<R, C>> {
2021-04-11 17:00:38 +08:00
fn compute(mut m: OMatrix<$t, R, C>) -> Option<SVD<$t, R, C>> {
let (nrows, ncols) = m.shape_generic();
if nrows.value() == 0 || ncols.value() == 0 {
return None;
}
let job = b'A';
let lda = nrows.value() as i32;
2021-08-03 23:39:45 +08:00
let mut u = Matrix::zeros_generic(nrows, nrows);
let mut s = Matrix::zeros_generic(nrows.min(ncols), Const::<1>);
let mut vt = Matrix::zeros_generic(ncols, ncols);
let ldu = nrows.value();
let ldvt = ncols.value();
let mut work = [ 0.0 ];
let mut lwork = -1 as i32;
let mut info = 0;
2021-08-03 23:39:45 +08:00
let mut iwork = vec![0; 8 * cmp::min(nrows.value(), ncols.value())];
unsafe {
$lapack_func(job, nrows.value() as i32, ncols.value() as i32, m.as_mut_slice(),
lda, &mut s.as_mut_slice(), u.as_mut_slice(), ldu as i32, vt.as_mut_slice(),
ldvt as i32, &mut work, lwork, &mut iwork, &mut info);
}
lapack_check!(info);
lwork = work[0] as i32;
2021-08-03 23:39:45 +08:00
let mut work = vec![0.0; lwork as usize];
unsafe {
$lapack_func(job, nrows.value() as i32, ncols.value() as i32, m.as_mut_slice(),
lda, &mut s.as_mut_slice(), u.as_mut_slice(), ldu as i32, vt.as_mut_slice(),
ldvt as i32, &mut work, lwork, &mut iwork, &mut info);
}
lapack_check!(info);
Some(SVD { u: u, singular_values: s, vt: vt })
}
}
impl<R: DimMin<C>, C: Dim> SVD<$t, R, C>
2020-11-15 23:57:49 +08:00
// TODO: All those bounds…
where DefaultAllocator: Allocator<$t, R, C> +
Allocator<$t, C, R> +
Allocator<$t, U1, R> +
Allocator<$t, U1, C> +
Allocator<$t, R, R> +
Allocator<$t, DimMinimum<R, C>> +
Allocator<$t, DimMinimum<R, C>, R> +
Allocator<$t, DimMinimum<R, C>, C> +
Allocator<$t, R, DimMinimum<R, C>> +
Allocator<$t, C, C> {
/// Reconstructs the matrix from its decomposition.
///
/// Useful if some components (e.g. some singular values) of this decomposition have
/// been manually changed by the user.
#[inline]
2021-04-11 17:00:38 +08:00
pub fn recompose(self) -> OMatrix<$t, R, C> {
let nrows = self.u.shape_generic().0;
let ncols = self.vt.shape_generic().1;
let min_nrows_ncols = nrows.min(ncols);
2021-04-11 17:00:38 +08:00
let mut res: OMatrix<_, R, C> = Matrix::zeros_generic(nrows, ncols);
{
2022-11-14 22:21:20 +08:00
let mut sres = res.generic_view_mut((0, 0), (min_nrows_ncols, ncols));
sres.copy_from(&self.vt.rows_generic(0, min_nrows_ncols));
for i in 0 .. min_nrows_ncols.value() {
let eigval = self.singular_values[i];
let mut row = sres.row_mut(i);
row *= eigval;
}
}
self.u * res
}
/// Computes the pseudo-inverse of the decomposed matrix.
///
2017-10-27 12:13:35 +08:00
/// All singular value below epsilon will be set to zero instead of being inverted.
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn pseudo_inverse(&self, epsilon: $t) -> OMatrix<$t, C, R> {
let nrows = self.u.shape_generic().0;
let ncols = self.vt.shape_generic().1;
let min_nrows_ncols = nrows.min(ncols);
2021-04-11 17:00:38 +08:00
let mut res: OMatrix<_, C, R> = Matrix::zeros_generic(ncols, nrows);
{
2022-11-14 22:21:20 +08:00
let mut sres = res.generic_view_mut((0, 0), (min_nrows_ncols, nrows));
self.u.columns_generic(0, min_nrows_ncols).transpose_to(&mut sres);
for i in 0 .. min_nrows_ncols.value() {
let eigval = self.singular_values[i];
let mut row = sres.row_mut(i);
if eigval.abs() > epsilon {
row /= eigval
}
else {
row.fill(0.0);
}
}
}
self.vt.tr_mul(&res)
}
/// The rank of the decomposed matrix.
///
/// This is the number of singular values that are not too small (i.e. greater than
/// the given `epsilon`).
#[inline]
#[must_use]
pub fn rank(&self, epsilon: $t) -> usize {
let mut i = 0;
for e in self.singular_values.as_slice().iter() {
if e.abs() > epsilon {
i += 1;
}
}
i
}
2020-11-15 23:57:49 +08:00
// TODO: add methods to retrieve the null-space and column-space? (Respectively
// corresponding to the zero and non-zero singular values).
}
);
);
/*
macro_rules! svd_complex_impl(
($name: ident, $t: ty, $lapack_func: path) => (
impl SVDScalar for Complex<$t> {
fn compute<R: Dim, C: Dim, S>(mut m: Matrix<$t, R, C, S>) -> Option<SVD<$t, R, C, S::Alloc>>
2021-04-11 17:00:38 +08:00
Option<(OMatrix<Complex<$t>, R, S::Alloc>,
OVector<$t, DimMinimum<R, C>, S::Alloc>,
OMatrix<Complex<$t>, C, S::Alloc>)>
where R: DimMin<C>,
S: ContiguousStorage<Complex<$t>, R, C>,
S::Alloc: OwnedAllocator<Complex<$t>, R, C, S> +
Allocator<Complex<$t>, R, R> +
Allocator<Complex<$t>, C, C> +
Allocator<$t, DimMinimum<R, C>> {
let (nrows, ncols) = m.shape_generic();
if nrows.value() == 0 || ncols.value() == 0 {
return None;
}
let jobu = b'A';
let jobvt = b'A';
let lda = nrows.value() as i32;
let min_nrows_ncols = nrows.min(ncols);
2021-08-03 23:39:45 +08:00
let mut u = Matrix::zeros_generic(nrows, nrows);
let mut s = Matrix::zeros_generic(min_nrows_ncols, U1);
let mut vt = Matrix::zeros_generic(ncols, ncols);
let ldu = nrows.value();
let ldvt = ncols.value();
let mut work = [ Complex::new(0.0, 0.0) ];
let mut lwork = -1 as i32;
let mut rwork = vec![ 0.0; (5 * min_nrows_ncols.value()) ];
let mut info = 0;
$lapack_func(jobu, jobvt, nrows.value() as i32, ncols.value() as i32, m.as_mut_slice(),
lda, s.as_mut_slice(), u.as_mut_slice(), ldu as i32, vt.as_mut_slice(),
ldvt as i32, &mut work, lwork, &mut rwork, &mut info);
lapack_check!(info);
lwork = work[0].re as i32;
let mut work = vec![Complex::new(0.0, 0.0); lwork as usize];
$lapack_func(jobu, jobvt, nrows.value() as i32, ncols.value() as i32, m.as_mut_slice(),
lda, s.as_mut_slice(), u.as_mut_slice(), ldu as i32, vt.as_mut_slice(),
ldvt as i32, &mut work, lwork, &mut rwork, &mut info);
lapack_check!(info);
Some((u, s, vt))
}
);
);
*/
svd_impl!(f32, lapack::sgesdd);
svd_impl!(f64, lapack::dgesdd);
// svd_complex_impl!(lapack_svd_complex_f32, f32, lapack::cgesvd);
// svd_complex_impl!(lapack_svd_complex_f64, f64, lapack::zgesvd);