nalgebra/src/core/properties.rs

108 lines
3.3 KiB
Rust
Raw Normal View History

// Matrix properties checks.
use num::{Zero, One};
use approx::ApproxEq;
use alga::general::{ClosedAdd, ClosedMul, ClosedSub, Field};
use core::{Scalar, Matrix, SquareMatrix};
use core::dimension::Dim;
use core::storage::Storage;
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Indicates if this is a square matrix.
#[inline]
pub fn is_square(&self) -> bool {
let shape = self.shape();
shape.0 == shape.1
}
}
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
// FIXME: ApproxEq prevents us from using those methods on integer matrices…
where N: ApproxEq,
N::Epsilon: Copy {
/// Indicated if this is the identity matrix within a relative error of `eps`.
///
/// If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates `(i, i)`
/// for i from `0` to `min(R, C)`) are equal one; and that all other elements are zero.
#[inline]
pub fn is_identity(&self, eps: N::Epsilon) -> bool
where N: Zero + One {
let (nrows, ncols) = self.shape();
let d;
if nrows > ncols {
d = ncols;
for i in d .. nrows {
for j in 0 .. ncols {
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
return false;
}
}
}
}
else { // nrows <= ncols
d = nrows;
for i in 0 .. nrows {
for j in d .. ncols {
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
return false;
}
}
}
}
// Off-diagonal elements of the sub-square matrix.
for i in 1 .. d {
for j in 0 .. i {
// FIXME: use unsafe indexing.
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) ||
!relative_eq!(self[(j, i)], N::zero(), epsilon = eps) {
return false;
}
}
}
// Diagonal elements of the sub-square matrix.
for i in 0 .. d {
if !relative_eq!(self[(i, i)], N::one(), epsilon = eps) {
return false;
}
}
true
}
}
impl<N: Scalar + ApproxEq, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where N: Zero + One + ClosedAdd + ClosedMul,
N::Epsilon: Copy {
/// Checks that this matrix is orthogonal, i.e., that it is square and `M × Mᵀ = Id`.
///
/// In this definition `Id` is approximately equal to the identity matrix with a relative error
/// equal to `eps`.
#[inline]
pub fn is_orthogonal(&self, eps: N::Epsilon) -> bool {
self.is_square() && (self.tr_mul(self)).is_identity(eps)
}
/// Checks that this matrix is orthogonal and has a determinant equal to 1.
#[inline]
pub fn is_special_orthogonal(&self, eps: N::Epsilon) -> bool
where N: ClosedSub + PartialOrd {
self.is_orthogonal(eps) && self.determinant() > N::zero()
}
/// Returns `true` if this matrix is invertible.
#[inline]
pub fn is_invertible(&self) -> bool
where N: Field {
// FIXME: improve this?
self.clone_owned().try_inverse().is_some()
}
}