nalgebra/src/geometry/point.rs

484 lines
14 KiB
Rust
Raw Normal View History

2018-05-19 21:41:58 +08:00
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::One;
use std::cmp::Ordering;
2018-05-19 21:41:58 +08:00
use std::fmt;
use std::hash;
2018-07-20 21:25:55 +08:00
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize-no-std")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::simd::SimdPartialOrd;
2019-03-23 21:29:07 +08:00
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::iter::{MatrixIter, MatrixIterMut};
use crate::base::{Const, DefaultAllocator, OVector, Scalar};
use std::mem::MaybeUninit;
/// A point in an euclidean space.
///
2021-07-24 10:22:59 +08:00
/// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/docs/user_guide/points_and_transformations)
/// for details on the distinction. The most notable difference that vectors ignore translations.
/// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will
/// transform points by applying a rotation and a translation on them. However, these isometries
/// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of
/// the isometry is ignored).
///
/// # Construction
/// * [From individual components <span style="float:right;">`new`…</span>](#construction-from-individual-components)
/// * [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
/// * [Other construction methods <span style="float:right;">`origin`, `from_slice`, `from_homogeneous`…</span>](#other-construction-methods)
///
/// # Transformation
/// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be
/// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation
/// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation
/// of said transformations for details.
#[repr(C)]
#[derive(Clone)]
pub struct OPoint<T: Scalar, D: DimName>
where
DefaultAllocator: Allocator<T, D>,
{
2017-02-13 01:17:09 +08:00
/// The coordinates of this point, i.e., the shift from the origin.
pub coords: OVector<T, D>,
}
impl<T: Scalar + fmt::Debug, D: DimName> fmt::Debug for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.coords.as_slice().fmt(formatter)
}
}
impl<T: Scalar + hash::Hash, D: DimName> hash::Hash for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<T: Scalar + Copy, D: DimName> Copy for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
OVector<T, D>: Copy,
{
}
2021-02-25 21:19:20 +08:00
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Zeroable for OPoint<T, D>
where
OVector<T, D>: bytemuck::Zeroable,
DefaultAllocator: Allocator<T, D>,
2021-02-25 21:19:20 +08:00
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Pod for OPoint<T, D>
2021-02-25 21:19:20 +08:00
where
2021-04-11 17:00:38 +08:00
T: Copy,
OVector<T, D>: bytemuck::Pod,
DefaultAllocator: Allocator<T, D>,
2021-02-25 21:19:20 +08:00
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Scalar, D: DimName> Serialize for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
<DefaultAllocator as Allocator<T, D>>::Buffer: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
2020-04-06 00:49:48 +08:00
where
S: Serializer,
{
2018-02-02 19:26:35 +08:00
self.coords.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar, D: DimName> Deserialize<'a> for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
<DefaultAllocator as Allocator<T, D>>::Buffer: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
2020-04-06 00:49:48 +08:00
where
Des: Deserializer<'a>,
{
let coords = OVector::<T, D>::deserialize(deserializer)?;
Ok(Self::from(coords))
2018-02-02 19:26:35 +08:00
}
}
#[cfg(feature = "abomonation-serialize")]
impl<T, D: DimName> Abomonation for OPoint<T, D>
2018-02-02 19:26:35 +08:00
where
T: Scalar,
OVector<T, D>: Abomonation,
DefaultAllocator: Allocator<T, D>,
{
2018-07-20 21:25:55 +08:00
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.coords.entomb(writer)
}
2018-07-20 21:25:55 +08:00
fn extent(&self) -> usize {
self.coords.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.coords.exhume(bytes)
}
}
impl<T: Scalar, D: DimName> OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
2020-10-25 18:24:05 +08:00
/// Returns a point containing the result of `f` applied to each of its entries.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let p = Point3::new(1.1, 2.1, 3.1);
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
/// ```
#[inline]
#[must_use]
pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, f: F) -> OPoint<T2, D>
2021-07-17 12:17:56 +08:00
where
DefaultAllocator: Allocator<T2, D>,
{
2020-10-25 18:24:05 +08:00
self.coords.map(f).into()
}
/// Replaces each component of `self` by the result of a closure `f` applied on it.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let mut p = Point2::new(1.0, 2.0);
/// p.apply(|e| *e = *e * 10.0);
2020-10-25 18:24:05 +08:00
/// assert_eq!(p, Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let mut p = Point3::new(1.0, 2.0, 3.0);
/// p.apply(|e| *e = *e * 10.0);
2020-10-25 18:24:05 +08:00
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
/// ```
#[inline]
pub fn apply<F: FnMut(&mut T)>(&mut self, f: F) {
2020-10-25 18:24:05 +08:00
self.coords.apply(f)
}
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
/// end of it.
///
/// This is the same as `.into()`.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
/// let p = Point2::new(10.0, 20.0);
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<D, U1>>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
T: One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
2018-02-02 19:26:35 +08:00
{
// TODO: this is mostly a copy-past from Vector::push.
// But we cant use Vector::push because of the DimAdd bound
// (which we dont use because we use DimNameAdd).
// We should find a way to re-use Vector::push.
let len = self.len();
let mut res = crate::Matrix::uninit(DimNameSum::<D, U1>::name(), Const::<1>);
// This is basically a copy_from except that we warp the copied
// values into MaybeUninit.
res.generic_slice_mut((0, 0), self.coords.shape_generic())
.zip_apply(&self.coords, |out, e| *out = MaybeUninit::new(e));
res[(len, 0)] = MaybeUninit::new(T::one());
// Safety: res has been fully initialized.
unsafe { res.assume_init() }
}
/// Creates a new point with the given coordinates.
2018-10-24 02:47:42 +08:00
#[deprecated(note = "Use Point::from(vector) instead.")]
#[inline]
pub fn from_coordinates(coords: OVector<T, D>) -> Self {
2020-10-11 16:57:26 +08:00
Self { coords }
}
/// The dimension of this point.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.len(), 2);
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.len(), 3);
/// ```
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.coords.len()
}
/// Returns true if the point contains no elements.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert!(!p.is_empty());
/// ```
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// The stride of this point. This is the number of buffer element separating each component of
/// this point.
#[inline]
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
pub fn stride(&self) -> usize {
self.coords.strides().0
}
/// Iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let p = Point3::new(1.0, 2.0, 3.0);
/// let mut it = p.iter().cloned();
///
/// assert_eq!(it.next(), Some(1.0));
/// assert_eq!(it.next(), Some(2.0));
/// assert_eq!(it.next(), Some(3.0));
/// assert_eq!(it.next(), None);
#[inline]
pub fn iter(
&self,
) -> MatrixIter<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
self.coords.iter()
}
/// Gets a reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub unsafe fn get_unchecked(&self, i: usize) -> &T {
self.coords.vget_unchecked(i)
}
/// Mutably iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let mut p = Point3::new(1.0, 2.0, 3.0);
///
/// for e in p.iter_mut() {
/// *e *= 10.0;
/// }
///
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
#[inline]
pub fn iter_mut(
&mut self,
) -> MatrixIterMut<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
self.coords.iter_mut()
}
/// Gets a mutable reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T {
self.coords.vget_unchecked_mut(i)
}
/// Swaps two entries without bound-checking.
#[inline]
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
self.coords.swap_unchecked((i1, 0), (i2, 0))
}
}
impl<T: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for OPoint<T, D>
2018-02-02 19:26:35 +08:00
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
2018-02-02 19:26:35 +08:00
{
2021-04-11 17:00:38 +08:00
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
2021-04-11 17:00:38 +08:00
T::default_epsilon()
}
#[inline]
2018-05-19 21:41:58 +08:00
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.coords.abs_diff_eq(&other.coords, epsilon)
}
2018-05-19 21:41:58 +08:00
}
impl<T: Scalar + RelativeEq, D: DimName> RelativeEq for OPoint<T, D>
2018-05-19 21:41:58 +08:00
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
2018-05-19 21:41:58 +08:00
{
#[inline]
2018-05-19 21:41:58 +08:00
fn default_max_relative() -> Self::Epsilon {
2021-04-11 17:00:38 +08:00
T::default_max_relative()
}
#[inline]
2018-02-02 19:26:35 +08:00
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
2020-04-06 00:49:48 +08:00
) -> bool {
2018-02-02 19:26:35 +08:00
self.coords
.relative_eq(&other.coords, epsilon, max_relative)
}
2018-05-19 21:41:58 +08:00
}
impl<T: Scalar + UlpsEq, D: DimName> UlpsEq for OPoint<T, D>
2018-05-19 21:41:58 +08:00
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
2018-05-19 21:41:58 +08:00
{
#[inline]
fn default_max_ulps() -> u32 {
2021-04-11 17:00:38 +08:00
T::default_max_ulps()
2018-05-19 21:41:58 +08:00
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
}
}
impl<T: Scalar + Eq, D: DimName> Eq for OPoint<T, D> where DefaultAllocator: Allocator<T, D> {}
impl<T: Scalar, D: DimName> PartialEq for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.coords == right.coords
}
}
impl<T: Scalar + PartialOrd, D: DimName> PartialOrd for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.coords.partial_cmp(&other.coords)
}
#[inline]
fn lt(&self, right: &Self) -> bool {
self.coords.lt(&right.coords)
}
#[inline]
fn le(&self, right: &Self) -> bool {
self.coords.le(&right.coords)
}
#[inline]
fn gt(&self, right: &Self) -> bool {
self.coords.gt(&right.coords)
}
#[inline]
fn ge(&self, right: &Self) -> bool {
self.coords.ge(&right.coords)
}
}
/*
* inf/sup
*/
2021-07-17 12:17:56 +08:00
impl<T: Scalar + SimdPartialOrd, D: DimName> OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
/// Computes the infimum (aka. componentwise min) of two points.
#[inline]
#[must_use]
pub fn inf(&self, other: &Self) -> OPoint<T, D> {
self.coords.inf(&other.coords).into()
}
/// Computes the supremum (aka. componentwise max) of two points.
#[inline]
#[must_use]
pub fn sup(&self, other: &Self) -> OPoint<T, D> {
self.coords.sup(&other.coords).into()
}
/// Computes the (infimum, supremum) of two points.
#[inline]
#[must_use]
pub fn inf_sup(&self, other: &Self) -> (OPoint<T, D>, OPoint<T, D>) {
let (inf, sup) = self.coords.inf_sup(&other.coords);
(inf.into(), sup.into())
}
}
/*
*
* Display
*
*/
impl<T: Scalar + fmt::Display, D: DimName> fmt::Display for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
2021-07-26 01:06:14 +08:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2019-03-23 21:29:07 +08:00
write!(f, "{{")?;
let mut it = self.coords.iter();
2019-03-23 21:29:07 +08:00
write!(f, "{}", *it.next().unwrap())?;
for comp in it {
2019-03-23 21:29:07 +08:00
write!(f, ", {}", *comp)?;
}
write!(f, "}}")
}
}