nalgebra/nalgebra-glm/src/gtx/rotate_vector.rs

63 lines
2.4 KiB
Rust
Raw Normal View History

2018-09-23 20:41:56 +08:00
use na::{Real, Rotation3, Unit, UnitComplex};
2018-09-21 01:54:12 +08:00
2018-09-23 20:41:56 +08:00
use aliases::{TVec2, TVec3, TVec4, TMat4};
2018-09-21 04:12:26 +08:00
/// Build the rotation matrix needed to align `normal` and `up`.
2018-09-23 20:41:56 +08:00
pub fn orientation<N: Real>(normal: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
2018-09-21 04:12:26 +08:00
if let Some(r) = Rotation3::rotation_between(normal, up) {
r.to_homogeneous()
} else {
2018-09-23 20:41:56 +08:00
TMat4::identity()
2018-09-21 04:12:26 +08:00
}
2018-09-21 01:54:12 +08:00
}
/// Rotate a two dimensional vector.
2018-09-23 20:41:56 +08:00
pub fn rotate_vec2<N: Real>(v: &TVec2<N>, angle: N) -> TVec2<N> {
2018-09-21 04:12:26 +08:00
UnitComplex::new(angle) * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a three dimensional vector around an axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_vec3<N: Real>(v: &TVec3<N>, angle: N, normal: &TVec3<N>) -> TVec3<N> {
2018-09-21 04:12:26 +08:00
Rotation3::from_axis_angle(&Unit::new_normalize(*normal), angle) * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a thee dimensional vector in homogeneous coordinates around an axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_vec4<N: Real>(v: &TVec4<N>, angle: N, normal: &TVec3<N>) -> TVec4<N> {
2018-09-21 04:12:26 +08:00
Rotation3::from_axis_angle(&Unit::new_normalize(*normal), angle).to_homogeneous() * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a three dimensional vector around the `X` axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_x_vec3<N: Real>(v: &TVec3<N>, angle: N) -> TVec3<N> {
Rotation3::from_axis_angle(&TVec3::x_axis(), angle) * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a three dimensional vector in homogeneous coordinates around the `X` axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_x_vec4<N: Real>(v: &TVec4<N>, angle: N) -> TVec4<N> {
Rotation3::from_axis_angle(&TVec3::x_axis(), angle).to_homogeneous() * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a three dimensional vector around the `Y` axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_y_vec3<N: Real>(v: &TVec3<N>, angle: N) -> TVec3<N> {
Rotation3::from_axis_angle(&TVec3::y_axis(), angle) * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a three dimensional vector in homogeneous coordinates around the `Y` axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_y_vec4<N: Real>(v: &TVec4<N>, angle: N) -> TVec4<N> {
Rotation3::from_axis_angle(&TVec3::y_axis(), angle).to_homogeneous() * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a three dimensional vector around the `Z` axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_z_vec3<N: Real>(v: &TVec3<N>, angle: N) -> TVec3<N> {
Rotation3::from_axis_angle(&TVec3::z_axis(), angle) * v
2018-09-21 01:54:12 +08:00
}
/// Rotate a three dimensional vector in homogeneous coordinates around the `Z` axis.
2018-09-23 20:41:56 +08:00
pub fn rotate_z_vec4<N: Real>(v: &TVec4<N>, angle: N) -> TVec4<N> {
Rotation3::from_axis_angle(&TVec3::z_axis(), angle).to_homogeneous() * v
2018-09-21 01:54:12 +08:00
}
/// Computes a spehical linear interpolation between the vectors `x` and `y` assumed to be normalized.
2018-09-23 20:41:56 +08:00
pub fn slerp<N: Real>(x: &TVec3<N>, y: &TVec3<N>, a: N) -> TVec3<N> {
Unit::new_unchecked(*x).slerp(&Unit::new_unchecked(*y), a).unwrap()
2018-09-21 01:54:12 +08:00
}