nalgebra/nalgebra-lapack/src/cholesky.rs

223 lines
6.5 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use na::allocator::Allocator;
use na::dimension::Dim;
use na::storage::Storage;
use na::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar};
use lapack;
2018-09-24 12:48:42 +08:00
/// The cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
2020-04-06 00:49:48 +08:00
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
2020-04-06 00:49:48 +08:00
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Cholesky<N: Scalar, D: Dim>
2020-04-06 00:49:48 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
2018-02-02 19:26:35 +08:00
{
l: MatrixN<N, D>,
}
impl<N: Scalar + Copy, D: Dim> Copy for Cholesky<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
2020-04-06 00:49:48 +08:00
{
}
impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D>
2020-04-06 00:49:48 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
2018-02-02 19:26:35 +08:00
{
2018-09-24 12:48:42 +08:00
/// Computes the cholesky decomposition of the given symmetric-definite-positive square
/// matrix.
///
/// Only the lower-triangular part of the input matrix is considered.
#[inline]
pub fn new(mut m: MatrixN<N, D>) -> Option<Self> {
// FIXME: check symmetry as well?
2018-02-02 19:26:35 +08:00
assert!(
m.is_square(),
"Unable to compute the cholesky decomposition of a non-square matrix."
);
2018-02-02 19:26:35 +08:00
let uplo = b'L';
let dim = m.nrows() as i32;
let mut info = 0;
N::xpotrf(uplo, dim, m.as_mut_slice(), dim, &mut info);
lapack_check!(info);
Some(Self { l: m })
}
/// Retrieves the lower-triangular factor of the cholesky decomposition.
pub fn unpack(mut self) -> MatrixN<N, D> {
self.l.fill_upper_triangle(Zero::zero(), 1);
self.l
}
/// Retrieves the lower-triangular factor of che cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
/// part are garbage and should be ignored by further computations.
pub fn unpack_dirty(self) -> MatrixN<N, D> {
self.l
}
/// Retrieves the lower-triangular factor of the cholesky decomposition.
pub fn l(&self) -> MatrixN<N, D> {
let mut res = self.l.clone();
res.fill_upper_triangle(Zero::zero(), 1);
res
}
/// Retrieves the lower-triangular factor of the cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
/// part are garbage and should be ignored by further computations.
pub fn l_dirty(&self) -> &MatrixN<N, D> {
&self.l
}
/// Solves the symmetric-definite-positive linear system `self * x = b`, where `x` is the
/// unknown to be determined.
2018-02-02 19:26:35 +08:00
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
{
let mut res = b.clone_owned();
if self.solve_mut(&mut res) {
Some(res)
2018-02-02 19:26:35 +08:00
} else {
None
}
}
/// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is
/// the unknown to be determined.
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
2020-04-06 00:49:48 +08:00
where
DefaultAllocator: Allocator<N, R2, C2>,
{
let dim = self.l.nrows();
2018-02-02 19:26:35 +08:00
assert!(
b.nrows() == dim,
"The number of rows of `b` must be equal to the dimension of the matrix `a`."
);
let nrhs = b.ncols() as i32;
2018-02-02 19:26:35 +08:00
let lda = dim as i32;
let ldb = dim as i32;
let mut info = 0;
2018-02-02 19:26:35 +08:00
N::xpotrs(
b'L',
dim as i32,
nrhs,
self.l.as_slice(),
lda,
b.as_mut_slice(),
ldb,
&mut info,
);
lapack_test!(info)
}
/// Computes the inverse of the decomposed matrix.
pub fn inverse(mut self) -> Option<MatrixN<N, D>> {
let dim = self.l.nrows();
let mut info = 0;
2018-02-02 19:26:35 +08:00
N::xpotri(
b'L',
dim as i32,
self.l.as_mut_slice(),
dim as i32,
&mut info,
);
lapack_check!(info);
// Copy lower triangle to upper triangle.
2018-02-02 19:26:35 +08:00
for i in 0..dim {
for j in i + 1..dim {
2018-12-03 04:00:08 +08:00
unsafe { *self.l.get_unchecked_mut((i, j)) = *self.l.get_unchecked((j, i)) };
}
}
Some(self.l)
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
2018-09-24 12:48:42 +08:00
/// supported by the cholesky decomposition.
pub trait CholeskyScalar: Scalar + Copy {
#[allow(missing_docs)]
fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32);
#[allow(missing_docs)]
2018-02-02 19:26:35 +08:00
fn xpotrs(
uplo: u8,
n: i32,
nrhs: i32,
a: &[Self],
lda: i32,
b: &mut [Self],
ldb: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32);
}
macro_rules! cholesky_scalar_impl(
($N: ty, $xpotrf: path, $xpotrs: path, $xpotri: path) => (
impl CholeskyScalar for $N {
#[inline]
fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) {
unsafe { $xpotrf(uplo, n, a, lda, info) }
}
#[inline]
fn xpotrs(uplo: u8, n: i32, nrhs: i32, a: &[Self], lda: i32,
b: &mut [Self], ldb: i32, info: &mut i32) {
unsafe { $xpotrs(uplo, n, nrhs, a, lda, b, ldb, info) }
}
#[inline]
fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) {
unsafe { $xpotri(uplo, n, a, lda, info) }
}
}
)
);
cholesky_scalar_impl!(f32, lapack::spotrf, lapack::spotrs, lapack::spotri);
cholesky_scalar_impl!(f64, lapack::dpotrf, lapack::dpotrs, lapack::dpotri);
cholesky_scalar_impl!(Complex<f32>, lapack::cpotrf, lapack::cpotrs, lapack::cpotri);
cholesky_scalar_impl!(Complex<f64>, lapack::zpotrf, lapack::zpotrs, lapack::zpotri);