nalgebra/src/linalg/hessenberg.rs

109 lines
3.8 KiB
Rust
Raw Normal View History

use alga::general::Real;
use core::{SquareMatrix, MatrixN, MatrixMN, VectorN, DefaultAllocator};
use dimension::{DimSub, DimDiff, Dynamic, U1};
use storage::Storage;
use allocator::Allocator;
use constraint::{ShapeConstraint, DimEq};
use linalg::householder;
/// The Hessenberg decomposition of a general matrix.
pub struct Hessenberg<N: Real, D: DimSub<U1>>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>> {
hess: MatrixN<N, D>,
subdiag: VectorN<N, DimDiff<D, U1>>
}
impl<N: Real, D: DimSub<U1>> Hessenberg<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> +
Allocator<N, DimDiff<D, U1>> {
/// Computes the Hessenberg decomposition using householder reflections.
pub fn new(hess: MatrixN<N, D>) -> Self {
let mut work = unsafe { MatrixMN::new_uninitialized_generic(hess.data.shape().0, U1) };
Self::new_with_workspace(hess, &mut work)
}
/// Computes the Hessenberg decomposition using householder reflections.
///
/// The workspace containing `D` elements must be provided and may be uninitialized.
pub fn new_with_workspace(mut hess: MatrixN<N, D>, work: &mut VectorN<N, D>) -> Self {
assert!(hess.is_square(), "Cannot compute the hessenberg decomposition of a non-square matrix.");
let dim = hess.data.shape().0;
assert!(dim.value() != 0, "Cannot compute the hessenberg decomposition of an empty matrix.");
assert_eq!(dim.value(), work.len(), "Hessenberg: invalid workspace size.");
let mut subdiag = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
if dim.value() == 0 {
return Hessenberg { hess, subdiag };
}
for ite in 0 .. dim.value() - 1 {
householder::clear_column_unchecked(&mut hess, &mut subdiag[ite], ite, 1, Some(work));
}
Hessenberg { hess, subdiag }
}
/// Retrieves `(q, h)` with `q` the orthogonal matrix of this decomposition and `h` the
/// hessenberg matrix.
#[inline]
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>)
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let q = self.q();
(q, self.unpack_h())
}
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
#[inline]
pub fn unpack_h(mut self) -> MatrixN<N, D>
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let dim = self.hess.nrows();
self.hess.fill_lower_triangle(N::zero(), 2);
self.hess.slice_mut((1, 0), (dim - 1, dim - 1)).set_diagonal(&self.subdiag);
self.hess
}
// FIXME: add a h that moves out of self.
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
///
/// This is less efficient than `.unpack_h()`.
#[inline]
pub fn h(&self) -> MatrixN<N, D>
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let dim = self.hess.nrows();
let mut res = self.hess.clone();
res.fill_lower_triangle(N::zero(), 2);
res.slice_mut((1, 0), (dim - 1, dim - 1)).set_diagonal(&self.subdiag);
res
}
/// Computes the orthogonal matrix `Q` of this decomposition.
pub fn q(&self) -> MatrixN<N, D> {
householder::assemble_q(&self.hess)
}
#[doc(hidden)]
pub fn hess_internal(&self) -> &MatrixN<N, D> {
&self.hess
}
}
impl<N: Real, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> +
Allocator<N, DimDiff<D, U1>> {
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
pub fn hessenberg(self) -> Hessenberg<N, D> {
Hessenberg::new(self.into_owned())
}
}