nalgebra/nalgebra-lapack/src/qr.rs

172 lines
5.9 KiB
Rust
Raw Normal View History

use num_complex::Complex;
use num::Zero;
use ::ComplexHelper;
use na::{Scalar, DefaultAllocator, Matrix, VectorN, MatrixMN};
use na::dimension::{Dim, DimMin, DimMinimum, U1};
use na::storage::Storage;
use na::allocator::Allocator;
use lapack::fortran as interface;
/// The QR decomposition of a general matrix.
pub struct QR<N: Scalar, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>> {
qr: MatrixMN<N, R, C>,
tau: VectorN<N, DimMinimum<R, C>>
}
impl<N: QRScalar + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R, DimMinimum<R, C>> +
Allocator<N, DimMinimum<R, C>, C> +
Allocator<N, DimMinimum<R, C>> {
/// Computes the QR decomposition of the matrix `m`.
pub fn new(mut m: MatrixMN<N, R, C>) -> QR<N, R, C> {
let (nrows, ncols) = m.data.shape();
let mut info = 0;
let mut tau = unsafe { Matrix::new_uninitialized_generic(nrows.min(ncols), U1) };
if nrows.value() == 0 || ncols.value() == 0 {
return QR { qr: m, tau: tau };
}
let lwork = N::xgeqrf_work_size(nrows.value() as i32, ncols.value() as i32,
m.as_mut_slice(), nrows.value() as i32,
tau.as_mut_slice(), &mut info);
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
N::xgeqrf(nrows.value() as i32, ncols.value() as i32, m.as_mut_slice(),
nrows.value() as i32, tau.as_mut_slice(), &mut work, lwork, &mut info);
QR { qr: m, tau: tau }
}
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
#[inline]
pub fn r(&self) -> MatrixMN<N, DimMinimum<R, C>, C> {
let (nrows, ncols) = self.qr.data.shape();
self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle()
}
}
impl<N: QRReal + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R, DimMinimum<R, C>> +
Allocator<N, DimMinimum<R, C>, C> +
Allocator<N, DimMinimum<R, C>> {
/// Retrieves the matrices `(Q, R)` of this decompositions.
pub fn unpack(self) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) {
(self.q(), self.r())
}
/// Computes the orthogonal matrix `Q` of this decomposition.
#[inline]
pub fn q(&self) -> MatrixMN<N, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.qr.data.shape();
let min_nrows_ncols = nrows.min(ncols);
if min_nrows_ncols.value() == 0 {
return MatrixMN::from_element_generic(nrows, min_nrows_ncols, N::zero());
}
let mut q = self.qr.generic_slice((0, 0), (nrows, min_nrows_ncols)).into_owned();
let mut info = 0;
let nrows = nrows.value() as i32;
let lwork = N::xorgqr_work_size(nrows, min_nrows_ncols.value() as i32,
self.tau.len() as i32, q.as_mut_slice(), nrows,
self.tau.as_slice(), &mut info);
let mut work = vec![ N::zero(); lwork as usize ];
N::xorgqr(nrows, min_nrows_ncols.value() as i32, self.tau.len() as i32, q.as_mut_slice(),
nrows, self.tau.as_slice(), &mut work, lwork, &mut info);
q
}
}
/*
*
* Lapack functions dispatch.
*
*/
pub trait QRScalar: Scalar {
fn xgeqrf(m: i32, n: i32, a: &mut [Self], lda: i32, tau: &mut [Self],
work: &mut [Self], lwork: i32, info: &mut i32);
fn xgeqrf_work_size(m: i32, n: i32, a: &mut [Self], lda: i32,
tau: &mut [Self], info: &mut i32) -> i32;
}
pub trait QRReal: QRScalar {
fn xorgqr(m: i32, n: i32, k: i32, a: &mut [Self], lda: i32, tau: &[Self], work: &mut [Self],
lwork: i32, info: &mut i32);
fn xorgqr_work_size(m: i32, n: i32, k: i32, a: &mut [Self], lda: i32,
tau: &[Self], info: &mut i32) -> i32;
}
macro_rules! qr_scalar_impl(
($N: ty, $xgeqrf: path) => (
impl QRScalar for $N {
#[inline]
fn xgeqrf(m: i32, n: i32, a: &mut [Self], lda: i32, tau: &mut [Self],
work: &mut [Self], lwork: i32, info: &mut i32) {
$xgeqrf(m, n, a, lda, tau, work, lwork, info)
}
#[inline]
fn xgeqrf_work_size(m: i32, n: i32, a: &mut [Self], lda: i32, tau: &mut [Self],
info: &mut i32) -> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
$xgeqrf(m, n, a, lda, tau, &mut work, lwork, info);
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
macro_rules! qr_real_impl(
($N: ty, $xorgqr: path) => (
impl QRReal for $N {
#[inline]
fn xorgqr(m: i32, n: i32, k: i32, a: &mut [Self], lda: i32, tau: &[Self],
work: &mut [Self], lwork: i32, info: &mut i32) {
$xorgqr(m, n, k, a, lda, tau, work, lwork, info)
}
#[inline]
fn xorgqr_work_size(m: i32, n: i32, k: i32, a: &mut [Self], lda: i32, tau: &[Self],
info: &mut i32) -> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
$xorgqr(m, n, k, a, lda, tau, &mut work, lwork, info);
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
qr_scalar_impl!(f32, interface::sgeqrf);
qr_scalar_impl!(f64, interface::dgeqrf);
qr_scalar_impl!(Complex<f32>, interface::cgeqrf);
qr_scalar_impl!(Complex<f64>, interface::zgeqrf);
qr_real_impl!(f32, interface::sorgqr);
qr_real_impl!(f64, interface::dorgqr);