nalgebra/tests/core/helper.rs

55 lines
1.6 KiB
Rust
Raw Normal View History

// This module implement several methods to fill some
// missing features of num-complex when it comes to randomness.
use quickcheck::{Arbitrary, Gen};
use rand::distributions::{Standard, Distribution};
use rand::Rng;
use num_complex::Complex;
2019-03-25 18:21:41 +08:00
use na::RealField;
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct RandComplex<N>(pub Complex<N>);
2019-03-25 18:21:41 +08:00
impl<N: Arbitrary + RealField> Arbitrary for RandComplex<N> {
#[inline]
fn arbitrary<G: Gen>(rng: &mut G) -> Self {
let im = Arbitrary::arbitrary(rng);
let re = Arbitrary::arbitrary(rng);
RandComplex(Complex::new(re, im))
}
}
2019-03-25 18:21:41 +08:00
impl<N: RealField> Distribution<RandComplex<N>> for Standard
where
Standard: Distribution<N>,
{
#[inline]
fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> RandComplex<N> {
let re = rng.gen();
let im = rng.gen();
RandComplex(Complex::new(re, im))
}
}
// This is a wrapper similar to RandComplex, but for non-complex.
// This exists only to make generic tests easier to write.
// Generates variates in the range [0, 1). Do we want this? E.g. we could use standard normal samples instead.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct RandScalar<N>(pub N);
impl<N: Arbitrary> Arbitrary for RandScalar<N> {
#[inline]
fn arbitrary<G: Gen>(rng: &mut G) -> Self {
RandScalar(Arbitrary::arbitrary(rng))
}
}
2019-03-25 18:21:41 +08:00
impl<N: RealField> Distribution<RandScalar<N>> for Standard
where
Standard: Distribution<N>,
{
#[inline]
fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> RandScalar<N> {
RandScalar(self.sample(rng))
}
}