2020-11-21 18:21:47 +08:00
|
|
|
use crate::{RealField, Rotation2, Rotation3, SimdRealField, UnitComplex, UnitQuaternion};
|
|
|
|
|
|
|
|
/// # Interpolation
|
2021-04-11 17:00:38 +08:00
|
|
|
impl<T: SimdRealField> Rotation2<T> {
|
2020-11-21 18:21:47 +08:00
|
|
|
/// Spherical linear interpolation between two rotation matrices.
|
|
|
|
///
|
|
|
|
/// # Examples:
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
/// # use nalgebra::geometry::Rotation2;
|
|
|
|
///
|
|
|
|
/// let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
|
|
|
|
/// let rot2 = Rotation2::new(-std::f32::consts::PI);
|
|
|
|
///
|
|
|
|
/// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
|
|
|
|
///
|
|
|
|
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
2021-06-07 22:34:03 +08:00
|
|
|
#[must_use]
|
2021-04-11 17:00:38 +08:00
|
|
|
pub fn slerp(&self, other: &Self, t: T) -> Self
|
2020-11-21 18:21:47 +08:00
|
|
|
where
|
2021-04-11 17:00:38 +08:00
|
|
|
T::Element: SimdRealField,
|
2020-11-21 18:21:47 +08:00
|
|
|
{
|
|
|
|
let c1 = UnitComplex::from(*self);
|
|
|
|
let c2 = UnitComplex::from(*other);
|
|
|
|
c1.slerp(&c2, t).into()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-04-11 17:00:38 +08:00
|
|
|
impl<T: SimdRealField> Rotation3<T> {
|
2020-11-21 18:21:47 +08:00
|
|
|
/// Spherical linear interpolation between two rotation matrices.
|
|
|
|
///
|
|
|
|
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
|
|
|
|
/// is not well-defined). Use `.try_slerp` instead to avoid the panic.
|
|
|
|
///
|
|
|
|
/// # Examples:
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use nalgebra::geometry::Rotation3;
|
|
|
|
///
|
|
|
|
/// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
|
|
|
|
/// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
|
|
|
|
///
|
|
|
|
/// let q = q1.slerp(&q2, 1.0 / 3.0);
|
|
|
|
///
|
|
|
|
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
2021-06-07 22:34:03 +08:00
|
|
|
#[must_use]
|
2021-04-11 17:00:38 +08:00
|
|
|
pub fn slerp(&self, other: &Self, t: T) -> Self
|
2020-11-21 18:21:47 +08:00
|
|
|
where
|
2021-04-11 17:00:38 +08:00
|
|
|
T: RealField,
|
2020-11-21 18:21:47 +08:00
|
|
|
{
|
|
|
|
let q1 = UnitQuaternion::from(*self);
|
|
|
|
let q2 = UnitQuaternion::from(*other);
|
|
|
|
q1.slerp(&q2, t).into()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the spherical linear interpolation between two rotation matrices or returns `None`
|
|
|
|
/// if both rotations are approximately 180 degrees apart (in which case the interpolation is
|
|
|
|
/// not well-defined).
|
|
|
|
///
|
|
|
|
/// # Arguments
|
|
|
|
/// * `self`: the first rotation to interpolate from.
|
|
|
|
/// * `other`: the second rotation to interpolate toward.
|
|
|
|
/// * `t`: the interpolation parameter. Should be between 0 and 1.
|
|
|
|
/// * `epsilon`: the value below which the sinus of the angle separating both rotations
|
|
|
|
/// must be to return `None`.
|
|
|
|
#[inline]
|
2021-06-07 22:34:03 +08:00
|
|
|
#[must_use]
|
2021-04-11 17:00:38 +08:00
|
|
|
pub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
|
2020-11-21 18:21:47 +08:00
|
|
|
where
|
2021-04-11 17:00:38 +08:00
|
|
|
T: RealField,
|
2020-11-21 18:21:47 +08:00
|
|
|
{
|
|
|
|
let q1 = Rotation3::from(*self);
|
|
|
|
let q2 = Rotation3::from(*other);
|
|
|
|
q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
|
|
|
|
}
|
|
|
|
}
|