nalgebra/src/geometry/transform.rs

337 lines
11 KiB
Rust
Raw Normal View History

use std::any::Any;
use std::fmt::Debug;
use std::marker::PhantomData;
use approx::ApproxEq;
#[cfg(feature = "serde-serialize")]
use serde::{Serialize, Serializer, Deserialize, Deserializer};
use alga::general::Field;
use core::{Scalar, SquareMatrix, OwnedSquareMatrix};
use core::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use core::storage::{Storage, StorageMut};
use core::allocator::Allocator;
/// Trait implemented by phantom types identifying the projective transformation type.
///
/// NOTE: this trait is not intended to be implementable outside of the `nalgebra` crate.
pub trait TCategory: Any + Debug + Copy + PartialEq + Send {
2017-02-13 01:17:09 +08:00
/// Indicates whether a `Transform` with the category `Self` has a bottom-row different from
/// `0 0 .. 1`.
#[inline]
fn has_normalizer() -> bool {
true
}
/// Checks that the given matrix is a valid homogeneous representation of an element of the
/// category `Self`.
fn check_homogeneous_invariants<N, D, S>(mat: &SquareMatrix<N, D, S>) -> bool
where N: Scalar + Field + ApproxEq,
D: DimName,
S: Storage<N, D, D>,
N::Epsilon: Copy;
}
2017-02-13 01:17:09 +08:00
/// Traits that gives the `Transform` category that is compatible with the result of the
/// multiplication of transformations with categories `Self` and `Other`.
pub trait TCategoryMul<Other: TCategory>: TCategory {
2017-02-13 01:17:09 +08:00
/// The transform category that results from the multiplication of a `Transform<Self>` to a
/// `Transform<Other>`. This is usually equal to `Self` or `Other`, whichever is the most
/// general category.
type Representative: TCategory;
}
2017-02-13 01:17:09 +08:00
/// Indicates that `Self` is a more general `Transform` category than `Other`.
pub trait SuperTCategoryOf<Other: TCategory>: TCategory { }
2017-02-13 01:17:09 +08:00
/// Indicates that `Self` is a more specific `Transform` category than `Other`.
///
/// Automatically implemented based on `SuperTCategoryOf`.
pub trait SubTCategoryOf<Other: TCategory>: TCategory { }
impl<T1, T2> SubTCategoryOf<T2> for T1
where T1: TCategory,
T2: SuperTCategoryOf<T1> {
}
2017-02-13 01:17:09 +08:00
/// Tag representing the most general (not necessarily inversible) `Transform` type.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
2017-02-13 01:17:09 +08:00
pub enum TGeneral { }
2017-02-13 01:17:09 +08:00
/// Tag representing the most general inversible `Transform` type.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
2017-02-13 01:17:09 +08:00
pub enum TProjective { }
2017-02-13 01:17:09 +08:00
/// Tag representing an affine `Transform`. Its bottom-row is equal to `(0, 0 ... 0, 1)`.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
2017-02-13 01:17:09 +08:00
pub enum TAffine { }
impl TCategory for TGeneral {
#[inline]
fn check_homogeneous_invariants<N, D, S>(_: &SquareMatrix<N, D, S>) -> bool
where N: Scalar + Field + ApproxEq,
D: DimName,
S: Storage<N, D, D>,
N::Epsilon: Copy {
true
}
}
impl TCategory for TProjective {
#[inline]
fn check_homogeneous_invariants<N, D, S>(mat: &SquareMatrix<N, D, S>) -> bool
where N: Scalar + Field + ApproxEq,
D: DimName,
S: Storage<N, D, D>,
N::Epsilon: Copy {
mat.is_invertible()
}
}
impl TCategory for TAffine {
#[inline]
fn has_normalizer() -> bool {
false
}
#[inline]
fn check_homogeneous_invariants<N, D, S>(mat: &SquareMatrix<N, D, S>) -> bool
where N: Scalar + Field + ApproxEq,
D: DimName,
S: Storage<N, D, D>,
N::Epsilon: Copy {
mat.is_invertible() &&
mat[(D::dim(), D::dim())] == N::one() &&
(0 .. D::dim()).all(|i| mat[(D::dim(), i)].is_zero())
}
}
macro_rules! category_mul_impl(
($($a: ident * $b: ident => $c: ty);* $(;)*) => {$(
impl TCategoryMul<$a> for $b {
type Representative = $c;
}
)*}
);
// We require stability uppon multiplication.
impl<T: TCategory> TCategoryMul<T> for T {
type Representative = T;
}
category_mul_impl!(
// TGeneral * TGeneral => TGeneral;
TGeneral * TProjective => TGeneral;
TGeneral * TAffine => TGeneral;
TProjective * TGeneral => TGeneral;
// TProjective * TProjective => TProjective;
TProjective * TAffine => TProjective;
TAffine * TGeneral => TGeneral;
TAffine * TProjective => TProjective;
// TAffine * TAffine => TAffine;
);
macro_rules! super_tcategory_impl(
($($a: ident >= $b: ident);* $(;)*) => {$(
impl SuperTCategoryOf<$b> for $a { }
)*}
);
impl<T: TCategory> SuperTCategoryOf<T> for T { }
super_tcategory_impl!(
TGeneral >= TProjective;
TGeneral >= TAffine;
TProjective >= TAffine;
);
/// A transformation matrix that owns its data.
pub type OwnedTransform<N, D, A, C>
= TransformBase<N, D, <A as Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>>::Buffer, C>;
/// A transformation matrix in homogeneous coordinates.
///
/// It is stored as a matrix with dimensions `(D + 1, D + 1)`, e.g., it stores a 4x4 matrix for a
/// 3D transformation.
#[repr(C)]
#[derive(Debug, Clone, Copy)] // FIXME: Hash
pub struct TransformBase<N: Scalar, D: DimNameAdd<U1>, S, C: TCategory> {
matrix: SquareMatrix<N, DimNameSum<D, U1>, S>,
2017-02-13 01:17:09 +08:00
_phantom: PhantomData<C>
}
#[cfg(feature = "serde-serialize")]
impl<N, D, S, C> Serialize for TransformBase<N, D, S, C>
where N: Scalar,
D: DimNameAdd<U1>,
C: TCategory,
SquareMatrix<N, DimNameSum<D, U1>, S>: Serialize,
{
fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error>
where T: Serializer
{
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'de, N, D, S, C> Deserialize<'de> for TransformBase<N, D, S, C>
where N: Scalar,
D: DimNameAdd<U1>,
C: TCategory,
SquareMatrix<N, DimNameSum<D, U1>, S>: Deserialize<'de>,
{
fn deserialize<T>(deserializer: T) -> Result<Self, T::Error>
where T: Deserializer<'de>
{
SquareMatrix::deserialize(deserializer).map(|x| TransformBase { matrix: x, _phantom: PhantomData })
}
}
// XXX: for some reasons, implementing Clone and Copy manually causes an ICE…
impl<N, D, S, C: TCategory> Eq for TransformBase<N, D, S, C>
where N: Scalar + Eq,
D: DimNameAdd<U1>,
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
impl<N, D, S, C: TCategory> PartialEq for TransformBase<N, D, S, C>
where N: Scalar,
D: DimNameAdd<U1>,
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.matrix == right.matrix
}
}
impl<N, D, S, C: TCategory> TransformBase<N, D, S, C>
where N: Scalar,
D: DimNameAdd<U1>,
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
/// Creates a new transformation from the given homogeneous matrix. The transformation category
/// of `Self` is not checked to be verified by the given matrix.
#[inline]
pub fn from_matrix_unchecked(matrix: SquareMatrix<N, DimNameSum<D, U1>, S>) -> Self {
TransformBase {
matrix: matrix,
_phantom: PhantomData
}
}
/// Moves this transform into one that owns its data.
#[inline]
pub fn into_owned(self) -> OwnedTransform<N, D, S::Alloc, C> {
TransformBase::from_matrix_unchecked(self.matrix.into_owned())
}
/// Clones this transform into one that owns its data.
#[inline]
pub fn clone_owned(&self) -> OwnedTransform<N, D, S::Alloc, C> {
TransformBase::from_matrix_unchecked(self.matrix.clone_owned())
}
/// The underlying matrix.
#[inline]
pub fn unwrap(self) -> SquareMatrix<N, DimNameSum<D, U1>, S> {
self.matrix
}
/// A reference to the underlynig matrix.
#[inline]
pub fn matrix(&self) -> &SquareMatrix<N, DimNameSum<D, U1>, S> {
&self.matrix
}
/// A mutable reference to the underlying matrix.
///
/// It is `_unchecked` because direct modifications of this matrix may break invariants
/// identified by this transformation category.
#[inline]
pub fn matrix_mut_unchecked(&mut self) -> &mut SquareMatrix<N, DimNameSum<D, U1>, S> {
&mut self.matrix
}
/// Sets the category of this transform.
///
/// This can be done only if the new category is more general than the current one, e.g., a
/// transform with category `TProjective` cannot be converted to a transform with category
/// `TAffine` because not all projective transformations are affine (the other way-round is
/// valid though).
#[inline]
pub fn set_category<CNew: SuperTCategoryOf<C>>(self) -> TransformBase<N, D, S, CNew> {
TransformBase::from_matrix_unchecked(self.matrix)
}
/// Converts this transform into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc> {
self.matrix().clone_owned()
}
}
impl<N, D, S, C> TransformBase<N, D, S, C>
where N: Scalar + Field + ApproxEq,
D: DimNameAdd<U1>,
C: TCategory,
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
/// Attempts to invert this transformation. You may use `.inverse` instead of this
/// transformation has a subcategory of `TProjective`.
#[inline]
pub fn try_inverse(self) -> Option<OwnedTransform<N, D, S::Alloc, C>> {
if let Some(m) = self.matrix.try_inverse() {
Some(TransformBase::from_matrix_unchecked(m))
}
else {
None
}
}
/// Inverts this transformation. Use `.try_inverse` if this transform has the `TGeneral`
/// category (it may not be invertible).
#[inline]
pub fn inverse(self) -> OwnedTransform<N, D, S::Alloc, C>
where C: SubTCategoryOf<TProjective> {
// FIXME: specialize for TAffine?
TransformBase::from_matrix_unchecked(self.matrix.try_inverse().unwrap())
}
}
impl<N, D, S, C> TransformBase<N, D, S, C>
where N: Scalar + Field + ApproxEq,
D: DimNameAdd<U1>,
C: TCategory,
S: StorageMut<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
/// Attempts to invert this transformation in-place. You may use `.inverse_mut` instead of this
/// transformation has a subcategory of `TProjective`.
#[inline]
pub fn try_inverse_mut(&mut self) -> bool {
self.matrix.try_inverse_mut()
}
/// Inverts this transformation in-place. Use `.try_inverse_mut` if this transform has the
/// `TGeneral` category (it may not be invertible).
#[inline]
pub fn inverse_mut(&mut self)
where C: SubTCategoryOf<TProjective> {
let _ = self.matrix.try_inverse_mut();
}
}
impl<N, D, S> TransformBase<N, D, S, TGeneral>
where N: Scalar,
D: DimNameAdd<U1>,
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
/// A mutable reference to underlying matrix. Use `.matrix_mut_unchecked` instead if this
/// transformation category is not `TGeneral`.
#[inline]
pub fn matrix_mut(&mut self) -> &mut SquareMatrix<N, DimNameSum<D, U1>, S> {
self.matrix_mut_unchecked()
}
}