nalgebra/src/geometry/similarity_conversion.rs

164 lines
7.1 KiB
Rust
Raw Normal View History

use alga::general::{Real, SubsetOf, SupersetOf};
use alga::linear::Rotation;
use core::{SquareMatrix, OwnedSquareMatrix};
use core::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use core::storage::OwnedStorage;
use core::allocator::{Allocator, OwnedAllocator};
use geometry::{PointBase, TranslationBase, IsometryBase, SimilarityBase, TransformBase, SuperTCategoryOf, TAffine};
/*
* This file provides the following conversions:
* =============================================
*
* SimilarityBase -> SimilarityBase
* SimilarityBase -> TransformBase
* SimilarityBase -> Matrix (homogeneous)
*/
impl<N1, N2, D: DimName, SA, SB, R1, R2> SubsetOf<SimilarityBase<N2, D, SB, R2>> for SimilarityBase<N1, D, SA, R1>
where N1: Real + SubsetOf<N2>,
N2: Real + SupersetOf<N1>,
R1: Rotation<PointBase<N1, D, SA>> + SubsetOf<R2>,
R2: Rotation<PointBase<N2, D, SB>>,
SA: OwnedStorage<N1, D, U1>,
SB: OwnedStorage<N2, D, U1>,
SA::Alloc: OwnedAllocator<N1, D, U1, SA>,
SB::Alloc: OwnedAllocator<N2, D, U1, SB> {
#[inline]
fn to_superset(&self) -> SimilarityBase<N2, D, SB, R2> {
SimilarityBase::from_isometry(
self.isometry.to_superset(),
self.scaling().to_superset()
)
}
#[inline]
fn is_in_subset(sim: &SimilarityBase<N2, D, SB, R2>) -> bool {
::is_convertible::<_, IsometryBase<N1, D, SA, R1>>(&sim.isometry) &&
::is_convertible::<_, N1>(&sim.scaling())
}
#[inline]
unsafe fn from_superset_unchecked(sim: &SimilarityBase<N2, D, SB, R2>) -> Self {
SimilarityBase::from_isometry(
sim.isometry.to_subset_unchecked(),
sim.scaling().to_subset_unchecked()
)
}
}
impl<N1, N2, D, SA, SB, R, C> SubsetOf<TransformBase<N2, D, SB, C>> for SimilarityBase<N1, D, SA, R>
where N1: Real,
N2: Real + SupersetOf<N1>,
SA: OwnedStorage<N1, D, U1>,
SB: OwnedStorage<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<PointBase<N1, D, SA>> +
SubsetOf<OwnedSquareMatrix<N1, DimNameSum<D, U1>, SA::Alloc>> + // needed by: .to_homogeneous()
SubsetOf<SquareMatrix<N2, DimNameSum<D, U1>, SB>>, // needed by: ::convert_unchecked(mm)
D: DimNameAdd<U1>,
SA::Alloc: OwnedAllocator<N1, D, U1, SA> +
Allocator<N1, D, D> + // needed by R
Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by: .to_homogeneous()
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>, // needed by R
SB::Alloc: OwnedAllocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>, SB> +
Allocator<N2, D, D> + // needed by: mm.fixed_slice_mut
Allocator<N2, D, U1> + // needed by: m.fixed_slice
Allocator<N2, U1, D> { // needed by: m.fixed_slice
#[inline]
fn to_superset(&self) -> TransformBase<N2, D, SB, C> {
TransformBase::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &TransformBase<N2, D, SB, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
unsafe fn from_superset_unchecked(t: &TransformBase<N2, D, SB, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1, N2, D, SA, SB, R> SubsetOf<SquareMatrix<N2, DimNameSum<D, U1>, SB>> for SimilarityBase<N1, D, SA, R>
where N1: Real,
N2: Real + SupersetOf<N1>,
SA: OwnedStorage<N1, D, U1>,
SB: OwnedStorage<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
R: Rotation<PointBase<N1, D, SA>> +
SubsetOf<OwnedSquareMatrix<N1, DimNameSum<D, U1>, SA::Alloc>> + // needed by: .to_homogeneous()
SubsetOf<SquareMatrix<N2, DimNameSum<D, U1>, SB>>, // needed by: ::convert_unchecked(mm)
D: DimNameAdd<U1>,
SA::Alloc: OwnedAllocator<N1, D, U1, SA> +
Allocator<N1, D, D> + // needed by R
Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by: .to_homogeneous()
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>, // needed by R
SB::Alloc: OwnedAllocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>, SB> +
Allocator<N2, D, D> + // needed by: mm.fixed_slice_mut
Allocator<N2, D, U1> + // needed by: m.fixed_slice
Allocator<N2, U1, D> { // needed by: m.fixed_slice
#[inline]
fn to_superset(&self) -> SquareMatrix<N2, DimNameSum<D, U1>, SB> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &SquareMatrix<N2, DimNameSum<D, U1>, SB>) -> bool {
let mut rot = m.fixed_slice::<D, D>(0, 0).clone_owned();
if rot.fixed_columns_mut::<U1>(0).try_normalize_mut(N2::zero()).is_some() &&
rot.fixed_columns_mut::<U1>(1).try_normalize_mut(N2::zero()).is_some() &&
rot.fixed_columns_mut::<U1>(2).try_normalize_mut(N2::zero()).is_some() {
// FIXME: could we avoid explicit the computation of the determinant?
// (its sign is needed to see if the scaling factor is negative).
if rot.determinant() < N2::zero() {
rot.fixed_columns_mut::<U1>(0).neg_mut();
rot.fixed_columns_mut::<U1>(1).neg_mut();
rot.fixed_columns_mut::<U1>(2).neg_mut();
}
let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
// Scalar types agree.
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
// The normalized block part is a rotation.
// rot.is_special_orthogonal(N2::default_epsilon().sqrt()) &&
// The bottom row is (0, 0, ..., 1)
bottom.iter().all(|e| e.is_zero()) &&
m[(D::dim(), D::dim())] == N2::one()
}
else {
false
}
}
#[inline]
unsafe fn from_superset_unchecked(m: &SquareMatrix<N2, DimNameSum<D, U1>, SB>) -> Self {
let mut mm = m.clone_owned();
let na = mm.fixed_slice_mut::<D, U1>(0, 0).normalize_mut();
let nb = mm.fixed_slice_mut::<D, U1>(0, 1).normalize_mut();
let nc = mm.fixed_slice_mut::<D, U1>(0, 2).normalize_mut();
let mut scale = (na + nb + nc) / ::convert(3.0); // We take the mean, for robustness.
// FIXME: could we avoid the explicit computation of the determinant?
// (its sign is needed to see if the scaling factor is negative).
if mm.fixed_slice::<D, D>(0, 0).determinant() < N2::zero() {
mm.fixed_slice_mut::<D, U1>(0, 0).neg_mut();
mm.fixed_slice_mut::<D, U1>(0, 1).neg_mut();
mm.fixed_slice_mut::<D, U1>(0, 2).neg_mut();
scale = -scale;
}
let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
let t = TranslationBase::from_vector(::convert_unchecked(t));
Self::from_parts(t, ::convert_unchecked(mm), ::convert_unchecked(scale))
}
}