2017-08-14 01:53:04 +08:00
|
|
|
#[cfg(feature = "serde-serialize")]
|
2018-10-22 13:00:10 +08:00
|
|
|
use serde::{Deserialize, Serialize};
|
2017-08-14 01:53:04 +08:00
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
use alga::general::Real;
|
|
|
|
use allocator::Allocator;
|
2018-05-19 23:15:15 +08:00
|
|
|
use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN};
|
2018-02-02 19:26:35 +08:00
|
|
|
use constraint::{DimEq, ShapeConstraint};
|
2018-05-19 23:15:15 +08:00
|
|
|
use dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, Dynamic, U1};
|
|
|
|
use storage::Storage;
|
2017-08-03 01:37:44 +08:00
|
|
|
|
|
|
|
use geometry::Reflection;
|
2018-05-19 23:15:15 +08:00
|
|
|
use linalg::householder;
|
2017-08-03 01:37:44 +08:00
|
|
|
|
|
|
|
/// The bidiagonalization of a general matrix.
|
2017-08-14 01:53:04 +08:00
|
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
2018-05-19 23:15:15 +08:00
|
|
|
#[cfg_attr(
|
|
|
|
feature = "serde-serialize",
|
2018-10-22 13:00:10 +08:00
|
|
|
serde(bound(
|
|
|
|
serialize = "DimMinimum<R, C>: DimSub<U1>,
|
2017-08-14 01:53:04 +08:00
|
|
|
DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<N, DimMinimum<R, C>> +
|
|
|
|
Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
2018-09-13 12:55:58 +08:00
|
|
|
MatrixMN<N, R, C>: Serialize,
|
|
|
|
VectorN<N, DimMinimum<R, C>>: Serialize,
|
|
|
|
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Serialize"
|
2018-10-22 13:00:10 +08:00
|
|
|
))
|
2018-05-19 23:15:15 +08:00
|
|
|
)]
|
|
|
|
#[cfg_attr(
|
|
|
|
feature = "serde-serialize",
|
2018-10-22 13:00:10 +08:00
|
|
|
serde(bound(
|
|
|
|
deserialize = "DimMinimum<R, C>: DimSub<U1>,
|
2017-08-14 01:53:04 +08:00
|
|
|
DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<N, DimMinimum<R, C>> +
|
|
|
|
Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
2018-09-13 12:55:58 +08:00
|
|
|
MatrixMN<N, R, C>: Deserialize<'de>,
|
|
|
|
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>,
|
|
|
|
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Deserialize<'de>"
|
2018-10-22 13:00:10 +08:00
|
|
|
))
|
2018-05-19 23:15:15 +08:00
|
|
|
)]
|
2017-08-14 01:53:00 +08:00
|
|
|
#[derive(Clone, Debug)]
|
2017-08-03 01:37:44 +08:00
|
|
|
pub struct Bidiagonal<N: Real, R: DimMin<C>, C: Dim>
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
DimMinimum<R, C>: DimSub<U1>,
|
|
|
|
DefaultAllocator: Allocator<N, R, C>
|
|
|
|
+ Allocator<N, DimMinimum<R, C>>
|
|
|
|
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
|
|
|
{
|
2017-08-03 01:37:44 +08:00
|
|
|
// FIXME: perhaps we should pack the axises into different vectors so that axises for `v_t` are
|
|
|
|
// contiguous. This prevents some useless copies.
|
2017-08-14 01:53:00 +08:00
|
|
|
uv: MatrixMN<N, R, C>,
|
2017-08-03 01:37:44 +08:00
|
|
|
/// The diagonal elements of the decomposed matrix.
|
2017-08-14 01:53:00 +08:00
|
|
|
pub diagonal: VectorN<N, DimMinimum<R, C>>,
|
2017-08-03 01:37:44 +08:00
|
|
|
/// The off-diagonal elements of the decomposed matrix.
|
|
|
|
pub off_diagonal: VectorN<N, DimDiff<DimMinimum<R, C>, U1>>,
|
2018-02-02 19:26:35 +08:00
|
|
|
upper_diagonal: bool,
|
2017-08-03 01:37:44 +08:00
|
|
|
}
|
|
|
|
|
2017-08-14 01:53:00 +08:00
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C>
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
DimMinimum<R, C>: DimSub<U1>,
|
|
|
|
DefaultAllocator: Allocator<N, R, C>
|
|
|
|
+ Allocator<N, DimMinimum<R, C>>
|
|
|
|
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
|
|
|
MatrixMN<N, R, C>: Copy,
|
|
|
|
VectorN<N, DimMinimum<R, C>>: Copy,
|
|
|
|
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy,
|
2018-10-22 13:00:10 +08:00
|
|
|
{}
|
2017-08-14 01:53:04 +08:00
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C>
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
DimMinimum<R, C>: DimSub<U1>,
|
|
|
|
DefaultAllocator: Allocator<N, R, C>
|
|
|
|
+ Allocator<N, C>
|
|
|
|
+ Allocator<N, R>
|
|
|
|
+ Allocator<N, DimMinimum<R, C>>
|
|
|
|
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
|
|
|
{
|
2017-08-03 01:37:44 +08:00
|
|
|
/// Computes the Bidiagonal decomposition using householder reflections.
|
|
|
|
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
|
2018-02-02 19:26:35 +08:00
|
|
|
let (nrows, ncols) = matrix.data.shape();
|
2017-08-03 01:37:44 +08:00
|
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
let dim = min_nrows_ncols.value();
|
2018-02-02 19:26:35 +08:00
|
|
|
assert!(
|
|
|
|
dim != 0,
|
|
|
|
"Cannot compute the bidiagonalization of an empty matrix."
|
|
|
|
);
|
2017-08-03 01:37:44 +08:00
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
let mut diagonal = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
|
|
|
|
let mut off_diagonal =
|
|
|
|
unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols.sub(U1), U1) };
|
|
|
|
let mut axis_packed = unsafe { MatrixMN::new_uninitialized_generic(ncols, U1) };
|
|
|
|
let mut work = unsafe { MatrixMN::new_uninitialized_generic(nrows, U1) };
|
2017-08-03 01:37:44 +08:00
|
|
|
|
|
|
|
let upper_diagonal = nrows.value() >= ncols.value();
|
|
|
|
if upper_diagonal {
|
2018-02-02 19:26:35 +08:00
|
|
|
for ite in 0..dim - 1 {
|
2017-08-03 01:37:44 +08:00
|
|
|
householder::clear_column_unchecked(&mut matrix, &mut diagonal[ite], ite, 0, None);
|
2018-02-02 19:26:35 +08:00
|
|
|
householder::clear_row_unchecked(
|
|
|
|
&mut matrix,
|
|
|
|
&mut off_diagonal[ite],
|
|
|
|
&mut axis_packed,
|
|
|
|
&mut work,
|
|
|
|
ite,
|
|
|
|
1,
|
|
|
|
);
|
2017-08-03 01:37:44 +08:00
|
|
|
}
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
householder::clear_column_unchecked(
|
|
|
|
&mut matrix,
|
|
|
|
&mut diagonal[dim - 1],
|
|
|
|
dim - 1,
|
|
|
|
0,
|
|
|
|
None,
|
|
|
|
);
|
|
|
|
} else {
|
|
|
|
for ite in 0..dim - 1 {
|
|
|
|
householder::clear_row_unchecked(
|
|
|
|
&mut matrix,
|
|
|
|
&mut diagonal[ite],
|
|
|
|
&mut axis_packed,
|
|
|
|
&mut work,
|
|
|
|
ite,
|
|
|
|
0,
|
|
|
|
);
|
|
|
|
householder::clear_column_unchecked(
|
|
|
|
&mut matrix,
|
|
|
|
&mut off_diagonal[ite],
|
|
|
|
ite,
|
|
|
|
1,
|
|
|
|
None,
|
|
|
|
);
|
2017-08-03 01:37:44 +08:00
|
|
|
}
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
householder::clear_row_unchecked(
|
|
|
|
&mut matrix,
|
|
|
|
&mut diagonal[dim - 1],
|
|
|
|
&mut axis_packed,
|
|
|
|
&mut work,
|
|
|
|
dim - 1,
|
|
|
|
0,
|
|
|
|
);
|
2017-08-03 01:37:44 +08:00
|
|
|
}
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
Bidiagonal {
|
|
|
|
uv: matrix,
|
|
|
|
diagonal: diagonal,
|
|
|
|
off_diagonal: off_diagonal,
|
|
|
|
upper_diagonal: upper_diagonal,
|
|
|
|
}
|
2017-08-03 01:37:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Indicates whether this decomposition contains an upper-diagonal matrix.
|
|
|
|
#[inline]
|
|
|
|
pub fn is_upper_diagonal(&self) -> bool {
|
|
|
|
self.upper_diagonal
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn axis_shift(&self) -> (usize, usize) {
|
|
|
|
if self.upper_diagonal {
|
|
|
|
(0, 1)
|
2018-02-02 19:26:35 +08:00
|
|
|
} else {
|
2017-08-03 01:37:44 +08:00
|
|
|
(1, 0)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-08-14 01:53:04 +08:00
|
|
|
/// Unpacks this decomposition into its three matrix factors `(U, D, V^t)`.
|
2017-08-03 01:37:44 +08:00
|
|
|
///
|
|
|
|
/// The decomposed matrix `M` is equal to `U * D * V^t`.
|
|
|
|
#[inline]
|
2018-02-02 19:26:35 +08:00
|
|
|
pub fn unpack(
|
|
|
|
self,
|
|
|
|
) -> (
|
|
|
|
MatrixMN<N, R, DimMinimum<R, C>>,
|
|
|
|
MatrixN<N, DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, DimMinimum<R, C>, C>,
|
|
|
|
)
|
|
|
|
where
|
|
|
|
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>
|
|
|
|
+ Allocator<N, R, DimMinimum<R, C>>
|
|
|
|
+ Allocator<N, DimMinimum<R, C>, C>,
|
|
|
|
// FIXME: the following bounds are ugly.
|
|
|
|
DimMinimum<R, C>: DimMin<DimMinimum<R, C>, Output = DimMinimum<R, C>>,
|
|
|
|
ShapeConstraint: DimEq<Dynamic, DimDiff<DimMinimum<R, C>, U1>>,
|
|
|
|
{
|
2017-08-03 01:37:44 +08:00
|
|
|
// FIXME: optimize by calling a reallocator.
|
|
|
|
(self.u(), self.d(), self.v_t())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>>
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
|
|
|
|
// FIXME: the following bounds are ugly.
|
|
|
|
DimMinimum<R, C>: DimMin<DimMinimum<R, C>, Output = DimMinimum<R, C>>,
|
|
|
|
ShapeConstraint: DimEq<Dynamic, DimDiff<DimMinimum<R, C>, U1>>,
|
|
|
|
{
|
2017-08-03 01:37:44 +08:00
|
|
|
let (nrows, ncols) = self.uv.data.shape();
|
|
|
|
|
|
|
|
let d = nrows.min(ncols);
|
|
|
|
let mut res = MatrixN::identity_generic(d, d);
|
|
|
|
res.set_diagonal(&self.diagonal);
|
|
|
|
|
|
|
|
let start = self.axis_shift();
|
2018-02-02 19:26:35 +08:00
|
|
|
res.slice_mut(start, (d.value() - 1, d.value() - 1))
|
|
|
|
.set_diagonal(&self.off_diagonal);
|
2017-08-03 01:37:44 +08:00
|
|
|
res
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the orthogonal matrix `U` of this `U * D * V` decomposition.
|
|
|
|
// FIXME: code duplication with householder::assemble_q.
|
|
|
|
// Except that we are returning a rectangular matrix here.
|
|
|
|
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
2018-10-22 13:00:10 +08:00
|
|
|
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
2017-08-03 01:37:44 +08:00
|
|
|
let (nrows, ncols) = self.uv.data.shape();
|
2018-02-02 19:26:35 +08:00
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
|
2018-02-02 19:26:35 +08:00
|
|
|
let dim = self.diagonal.len();
|
|
|
|
let shift = self.axis_shift().0;
|
|
|
|
|
|
|
|
for i in (0..dim - shift).rev() {
|
|
|
|
let axis = self.uv.slice_range(i + shift.., i);
|
2017-08-03 01:37:44 +08:00
|
|
|
// FIXME: sometimes, the axis might have a zero magnitude.
|
|
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
2018-02-02 19:26:35 +08:00
|
|
|
|
|
|
|
let mut res_rows = res.slice_range_mut(i + shift.., i..);
|
2017-08-03 01:37:44 +08:00
|
|
|
refl.reflect(&mut res_rows);
|
|
|
|
}
|
2018-02-02 19:26:35 +08:00
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
res
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the orthogonal matrix `V` of this `U * D * V` decomposition.
|
|
|
|
pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
2018-10-22 13:00:10 +08:00
|
|
|
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
|
2017-08-03 01:37:44 +08:00
|
|
|
let (nrows, ncols) = self.uv.data.shape();
|
|
|
|
let min_nrows_ncols = nrows.min(ncols);
|
2018-02-02 19:26:35 +08:00
|
|
|
|
|
|
|
let mut res = Matrix::identity_generic(min_nrows_ncols, ncols);
|
|
|
|
let mut work = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
|
2017-08-03 01:37:44 +08:00
|
|
|
let mut axis_packed = unsafe { MatrixMN::new_uninitialized_generic(ncols, U1) };
|
|
|
|
|
|
|
|
let shift = self.axis_shift().1;
|
2018-02-02 19:26:35 +08:00
|
|
|
|
|
|
|
for i in (0..min_nrows_ncols.value() - shift).rev() {
|
|
|
|
let axis = self.uv.slice_range(i, i + shift..);
|
|
|
|
let mut axis_packed = axis_packed.rows_range_mut(i + shift..);
|
2017-08-03 01:37:44 +08:00
|
|
|
axis_packed.tr_copy_from(&axis);
|
|
|
|
// FIXME: sometimes, the axis might have a zero magnitude.
|
|
|
|
let refl = Reflection::new(Unit::new_unchecked(axis_packed), N::zero());
|
2018-02-02 19:26:35 +08:00
|
|
|
|
|
|
|
let mut res_rows = res.slice_range_mut(i.., i + shift..);
|
|
|
|
refl.reflect_rows(&mut res_rows, &mut work.rows_range_mut(i..));
|
2017-08-03 01:37:44 +08:00
|
|
|
}
|
2018-02-02 19:26:35 +08:00
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
res
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The diagonal part of this decomposed matrix.
|
|
|
|
pub fn diagonal(&self) -> &VectorN<N, DimMinimum<R, C>> {
|
|
|
|
&self.diagonal
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The off-diagonal part of this decomposed matrix.
|
|
|
|
pub fn off_diagonal(&self) -> &VectorN<N, DimDiff<DimMinimum<R, C>, U1>> {
|
|
|
|
&self.off_diagonal
|
|
|
|
}
|
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub fn uv_internal(&self) -> &MatrixMN<N, R, C> {
|
|
|
|
&self.uv
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// impl<N: Real, D: DimMin<D, Output = D> + DimSub<Dynamic>> Bidiagonal<N, D, D>
|
|
|
|
// where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
// Allocator<N, D> {
|
|
|
|
// /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
|
|
// pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> MatrixMN<N, R2, C2>
|
|
|
|
// where S2: StorageMut<N, R2, C2>,
|
|
|
|
// ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
|
|
// DefaultAllocator: Allocator<N, R2, C2> {
|
|
|
|
// let mut res = b.clone_owned();
|
|
|
|
// self.solve_mut(&mut res);
|
|
|
|
// res
|
|
|
|
// }
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
|
|
// pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
|
|
|
// where S2: StorageMut<N, R2, C2>,
|
|
|
|
// ShapeConstraint: SameNumberOfRows<R2, D> {
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// assert_eq!(self.uv.nrows(), b.nrows(), "Bidiagonal solve matrix dimension mismatch.");
|
|
|
|
// assert!(self.uv.is_square(), "Bidiagonal solve: unable to solve a non-square system.");
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// self.q_tr_mul(b);
|
|
|
|
// self.solve_upper_triangular_mut(b);
|
|
|
|
// }
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// // FIXME: duplicate code from the `solve` module.
|
|
|
|
// fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
|
|
|
// where S2: StorageMut<N, R2, C2>,
|
|
|
|
// ShapeConstraint: SameNumberOfRows<R2, D> {
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// let dim = self.uv.nrows();
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// for k in 0 .. b.ncols() {
|
|
|
|
// let mut b = b.column_mut(k);
|
|
|
|
// for i in (0 .. dim).rev() {
|
|
|
|
// let coeff;
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// unsafe {
|
|
|
|
// let diag = *self.diag.vget_unchecked(i);
|
|
|
|
// coeff = *b.vget_unchecked(i) / diag;
|
|
|
|
// *b.vget_unchecked_mut(i) = coeff;
|
|
|
|
// }
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// b.rows_range_mut(.. i).axpy(-coeff, &self.uv.slice_range(.. i, i), N::one());
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
// }
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// /// Computes the inverse of the decomposed matrix.
|
|
|
|
// pub fn inverse(&self) -> MatrixN<N, D> {
|
|
|
|
// assert!(self.uv.is_square(), "Bidiagonal inverse: unable to compute the inverse of a non-square matrix.");
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// // FIXME: is there a less naive method ?
|
|
|
|
// let (nrows, ncols) = self.uv.data.shape();
|
|
|
|
// let mut res = MatrixN::identity_generic(nrows, ncols);
|
|
|
|
// self.solve_mut(&mut res);
|
|
|
|
// res
|
|
|
|
// }
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// // /// Computes the determinant of the decomposed matrix.
|
|
|
|
// // pub fn determinant(&self) -> N {
|
|
|
|
// // let dim = self.uv.nrows();
|
|
|
|
// // assert!(self.uv.is_square(), "Bidiagonal determinant: unable to compute the determinant of a non-square matrix.");
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// // let mut res = N::one();
|
|
|
|
// // for i in 0 .. dim {
|
|
|
|
// // res *= unsafe { *self.diag.vget_unchecked(i) };
|
|
|
|
// // }
|
2018-02-02 19:26:35 +08:00
|
|
|
//
|
2017-08-03 01:37:44 +08:00
|
|
|
// // res self.q_determinant()
|
|
|
|
// // }
|
|
|
|
// }
|
2017-08-14 01:52:46 +08:00
|
|
|
|
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
DimMinimum<R, C>: DimSub<U1>,
|
|
|
|
DefaultAllocator: Allocator<N, R, C>
|
|
|
|
+ Allocator<N, C>
|
|
|
|
+ Allocator<N, R>
|
|
|
|
+ Allocator<N, DimMinimum<R, C>>
|
|
|
|
+ Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
|
|
|
|
{
|
2017-08-14 01:52:46 +08:00
|
|
|
/// Computes the bidiagonalization using householder reflections.
|
|
|
|
pub fn bidiagonalize(self) -> Bidiagonal<N, R, C> {
|
|
|
|
Bidiagonal::new(self.into_owned())
|
|
|
|
}
|
|
|
|
}
|