274 lines
9.2 KiB
Rust
274 lines
9.2 KiB
Rust
|
use alga::general::Real;
|
||
|
|
||
|
use core::{DefaultAllocator, Matrix, SquareMatrix, Vector, MatrixMN};
|
||
|
use core::dimension::{Dim, U1};
|
||
|
use core::storage::{Storage, StorageMut};
|
||
|
use core::allocator::Allocator;
|
||
|
use core::constraint::{ShapeConstraint, SameNumberOfRows};
|
||
|
|
||
|
|
||
|
|
||
|
impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||
|
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
|
||
|
/// the lower-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
#[inline]
|
||
|
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>)
|
||
|
-> Option<MatrixMN<N, R2, C2>>
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let mut res = b.clone_owned();
|
||
|
if self.solve_lower_triangular_mut(&mut res) {
|
||
|
Some(res)
|
||
|
}
|
||
|
else {
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
|
||
|
/// the upper-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
#[inline]
|
||
|
pub fn solve_upper_triangular<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>)
|
||
|
-> Option<MatrixMN<N, R2, C2>>
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let mut res = b.clone_owned();
|
||
|
if self.solve_upper_triangular_mut(&mut res) {
|
||
|
Some(res)
|
||
|
}
|
||
|
else {
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||
|
/// lower-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let cols = b.ncols();
|
||
|
|
||
|
for i in 0 .. cols {
|
||
|
if !self.solve_lower_triangular_vector_mut(&mut b.column_mut(i)) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
fn solve_lower_triangular_vector_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, U1>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let dim = self.nrows();
|
||
|
|
||
|
for i in 0 .. dim {
|
||
|
let coeff;
|
||
|
|
||
|
unsafe {
|
||
|
let diag = *self.get_unchecked(i, i);
|
||
|
|
||
|
if diag.is_zero() {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
coeff = *b.vget_unchecked(i) / diag;
|
||
|
*b.vget_unchecked_mut(i) = coeff;
|
||
|
}
|
||
|
|
||
|
b.rows_range_mut(i + 1 ..).axpy(-coeff, &self.slice_range(i + 1 .., i), N::one());
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
// FIXME: add the same but for solving upper-triangular.
|
||
|
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||
|
/// lower-triangular part of `self` is concidered not-zero. The diagonal is never read as it is
|
||
|
/// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero.
|
||
|
pub fn solve_lower_triangular_with_diag_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>, diag: N)
|
||
|
-> bool
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
if diag.is_zero() {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
let dim = self.nrows();
|
||
|
let cols = b.ncols();
|
||
|
|
||
|
for k in 0 .. cols {
|
||
|
let mut bcol = b.column_mut(k);
|
||
|
|
||
|
for i in 0 .. dim - 1 {
|
||
|
let coeff = unsafe { *bcol.vget_unchecked(i) } / diag;
|
||
|
bcol.rows_range_mut(i + 1 ..).axpy(-coeff, &self.slice_range(i + 1 .., i), N::one());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||
|
/// upper-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
pub fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let cols = b.ncols();
|
||
|
|
||
|
for i in 0 .. cols {
|
||
|
if !self.solve_upper_triangular_vector_mut(&mut b.column_mut(i)) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
fn solve_upper_triangular_vector_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, U1>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let dim = self.nrows();
|
||
|
|
||
|
for i in (0 .. dim).rev() {
|
||
|
let coeff;
|
||
|
|
||
|
unsafe {
|
||
|
let diag = *self.get_unchecked(i, i);
|
||
|
|
||
|
if diag.is_zero() {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
coeff = *b.vget_unchecked(i) / diag;
|
||
|
*b.vget_unchecked_mut(i) = coeff;
|
||
|
}
|
||
|
|
||
|
b.rows_range_mut(.. i).axpy(-coeff, &self.slice_range(.. i, i), N::one());
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* Transpose versions
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
|
||
|
/// the lower-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
#[inline]
|
||
|
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>)
|
||
|
-> Option<MatrixMN<N, R2, C2>>
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let mut res = b.clone_owned();
|
||
|
if self.tr_solve_lower_triangular_mut(&mut res) {
|
||
|
Some(res)
|
||
|
}
|
||
|
else {
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
|
||
|
/// the upper-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
#[inline]
|
||
|
pub fn tr_solve_upper_triangular<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>)
|
||
|
-> Option<MatrixMN<N, R2, C2>>
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let mut res = b.clone_owned();
|
||
|
if self.tr_solve_upper_triangular_mut(&mut res) {
|
||
|
Some(res)
|
||
|
}
|
||
|
else {
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
|
||
|
/// lower-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let cols = b.ncols();
|
||
|
|
||
|
for i in 0 .. cols {
|
||
|
if !self.tr_solve_lower_triangular_vector_mut(&mut b.column_mut(i)) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
fn tr_solve_lower_triangular_vector_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, U1>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let dim = self.nrows();
|
||
|
|
||
|
for i in (0 .. dim).rev() {
|
||
|
let dot = self.slice_range(i + 1 .., i).dot(&b.slice_range(i + 1 .., 0));
|
||
|
|
||
|
unsafe {
|
||
|
let b_i = b.vget_unchecked_mut(i);
|
||
|
|
||
|
let diag = *self.get_unchecked(i, i);
|
||
|
|
||
|
if diag.is_zero() {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
*b_i = (*b_i - dot) / diag;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
|
||
|
/// upper-triangular part of `self` (including the diagonal) is concidered not-zero.
|
||
|
pub fn tr_solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let cols = b.ncols();
|
||
|
|
||
|
for i in 0 .. cols {
|
||
|
if !self.tr_solve_upper_triangular_vector_mut(&mut b.column_mut(i)) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
fn tr_solve_upper_triangular_vector_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, U1>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let dim = self.nrows();
|
||
|
|
||
|
for i in 0 .. dim {
|
||
|
let dot = self.slice_range(.. i, i).dot(&b.slice_range(.. i, 0));
|
||
|
|
||
|
unsafe {
|
||
|
let b_i = b.vget_unchecked_mut(i);
|
||
|
let diag = *self.get_unchecked(i, i);
|
||
|
|
||
|
if diag.is_zero() {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
*b_i = (*b_i - dot) / diag;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
}
|