nalgebra/src/linalg/qr.rs

266 lines
9.4 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
use serde;
use alga::general::Real;
use core::{Unit, Matrix, MatrixN, MatrixMN, VectorN, DefaultAllocator};
use dimension::{Dim, DimMin, DimMinimum, U1};
use storage::{Storage, StorageMut};
use allocator::{Allocator, Reallocator};
use constraint::{ShapeConstraint, SameNumberOfRows};
use linalg::householder;
use geometry::Reflection;
/// The QR decomposition of a general matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(serialize =
"DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: serde::Serialize,
VectorN<N, DimMinimum<R, C>>: serde::Serialize")))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(deserialize =
"DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: serde::Deserialize<'de>,
VectorN<N, DimMinimum<R, C>>: serde::Deserialize<'de>")))]
#[derive(Clone, Debug)]
pub struct QR<N: Real, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>> {
qr: MatrixMN<N, R, C>,
diag: VectorN<N, DimMinimum<R, C>>,
}
impl<N: Real, R: DimMin<C>, C: Dim> Copy for QR<N, R, C>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy { }
impl<N: Real, R: DimMin<C>, C: Dim> QR<N, R, C>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R> +
Allocator<N, DimMinimum<R, C>> {
/// Computes the QR decomposition using householder reflections.
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
let (nrows, ncols) = matrix.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let mut diag = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
if min_nrows_ncols.value() == 0 {
return QR { qr: matrix, diag: diag };
}
for ite in 0 .. min_nrows_ncols.value() {
householder::clear_column_unchecked(&mut matrix, &mut diag[ite], ite, 0, None);
}
QR { qr: matrix, diag: diag }
}
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
#[inline]
pub fn r(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
// FIXME: the following bound is ugly.
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>> {
let (nrows, ncols) = self.qr.data.shape();
let mut res = self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle();
res.set_diagonal(&self.diag);
res
}
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
///
/// This is usually faster than `r` but consumes `self`.
#[inline]
pub fn unpack_r(self) -> MatrixMN<N, DimMinimum<R, C>, C>
where DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C>,
// FIXME: the following bound is ugly (needed by `set_diagonal`).
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>> {
let (nrows, ncols) = self.qr.data.shape();
let mut res = self.qr.resize_generic(nrows.min(ncols), ncols, N::zero());
res.fill_lower_triangle(N::zero(), 1);
res.set_diagonal(&self.diag);
res
}
/// Computes the orthogonal matrix `Q` of this decomposition.
pub fn q(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.qr.data.shape();
// NOTE: we could build the identity matrix and call q_mul on it.
// Instead we don't so that we take in accout the matrix sparcity.
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
let dim = self.diag.len();
for i in (0 .. dim).rev() {
let axis = self.qr.slice_range(i .., i);
// FIXME: sometimes, the axis might have a zero magnitude.
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut res_rows = res.slice_range_mut(i .., i ..);
refl.reflect(&mut res_rows);
}
res
}
/// Unpacks this decomposition into its two matrix factors.
pub fn unpack(self) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>)
where DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>>,
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> +
Reallocator<N, R, C, DimMinimum<R, C>, C> {
(self.q(), self.unpack_r())
}
#[doc(hidden)]
pub fn qr_internal(&self) -> &MatrixMN<N, R, C> {
&self.qr
}
/// Multiplies the provided matrix by the transpose of the `Q` matrix of this decomposition.
pub fn q_tr_mul<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
// FIXME: do we need a static constraint on the number of rows of rhs?
where S2: StorageMut<N, R2, C2> {
let dim = self.diag.len();
for i in 0 .. dim {
let axis = self.qr.slice_range(i .., i);
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut rhs_rows = rhs.rows_range_mut(i ..);
refl.reflect(&mut rhs_rows);
}
}
}
impl<N: Real, D: DimMin<D, Output = D>> QR<N, D, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> {
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
///
/// Returns `None` if `self` is not invertible.
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> Option<MatrixMN<N, R2, C2>>
where S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<N, R2, C2> {
let mut res = b.clone_owned();
if self.solve_mut(&mut res) {
Some(res)
}
else {
None
}
}
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
///
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` is
/// overwritten with garbage.
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
where S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D> {
assert_eq!(self.qr.nrows(), b.nrows(), "QR solve matrix dimension mismatch.");
assert!(self.qr.is_square(), "QR solve: unable to solve a non-square system.");
self.q_tr_mul(b);
self.solve_upper_triangular_mut(b)
}
// FIXME: duplicate code from the `solve` module.
fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
where S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D> {
let dim = self.qr.nrows();
for k in 0 .. b.ncols() {
let mut b = b.column_mut(k);
for i in (0 .. dim).rev() {
let coeff;
unsafe {
let diag = *self.diag.vget_unchecked(i);
if diag.is_zero() {
return false;
}
coeff = *b.vget_unchecked(i) / diag;
*b.vget_unchecked_mut(i) = coeff;
}
b.rows_range_mut(.. i).axpy(-coeff, &self.qr.slice_range(.. i, i), N::one());
}
}
true
}
/// Computes the inverse of the decomposed matrix.
///
/// Returns `None` if the decomposed matrix is not invertible.
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
assert!(self.qr.is_square(), "QR inverse: unable to compute the inverse of a non-square matrix.");
// FIXME: is there a less naive method ?
let (nrows, ncols) = self.qr.data.shape();
let mut res = MatrixN::identity_generic(nrows, ncols);
if self.solve_mut(&mut res) {
Some(res)
}
else {
None
}
}
/// Indicates if the decomposed matrix is invertible.
pub fn is_invertible(&self) -> bool {
assert!(self.qr.is_square(), "QR: unable to test the invertibility of a non-square matrix.");
for i in 0 .. self.diag.len() {
if self.diag[i].is_zero() {
return false;
}
}
true
}
// /// Computes the determinant of the decomposed matrix.
// pub fn determinant(&self) -> N {
// let dim = self.qr.nrows();
// assert!(self.qr.is_square(), "QR determinant: unable to compute the determinant of a non-square matrix.");
// let mut res = N::one();
// for i in 0 .. dim {
// res *= unsafe { *self.diag.vget_unchecked(i) };
// }
// res self.q_determinant()
// }
}
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R> +
Allocator<N, DimMinimum<R, C>> {
/// Computes the QR decomposition of this matrix.
pub fn qr(self) -> QR<N, R, C> {
QR::new(self.into_owned())
}
}