2017-08-14 01:53:04 +08:00
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
|
|
use serde;
|
|
|
|
|
2017-08-06 22:12:05 +08:00
|
|
|
use num::Zero;
|
|
|
|
use std::ops::MulAssign;
|
|
|
|
|
|
|
|
use alga::general::Real;
|
|
|
|
|
|
|
|
use ::ComplexHelper;
|
|
|
|
use na::{Scalar, DefaultAllocator, Matrix, VectorN, MatrixN};
|
|
|
|
use na::dimension::{Dim, U1};
|
|
|
|
use na::storage::Storage;
|
|
|
|
use na::allocator::Allocator;
|
|
|
|
|
|
|
|
use lapack::fortran as interface;
|
|
|
|
|
2017-08-14 01:53:04 +08:00
|
|
|
/// Eigendecomposition of a real square symmetric matrix with real eigenvalues.
|
|
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
|
|
#[cfg_attr(feature = "serde-serialize",
|
|
|
|
serde(bound(serialize =
|
|
|
|
"DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<N, D>,
|
|
|
|
VectorN<N, D>: serde::Serialize,
|
|
|
|
MatrixN<N, D>: serde::Serialize")))]
|
|
|
|
#[cfg_attr(feature = "serde-serialize",
|
|
|
|
serde(bound(deserialize =
|
|
|
|
"DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<N, D>,
|
|
|
|
VectorN<N, D>: serde::Deserialize<'de>,
|
|
|
|
MatrixN<N, D>: serde::Deserialize<'de>")))]
|
|
|
|
#[derive(Clone, Debug)]
|
2017-08-06 22:12:05 +08:00
|
|
|
pub struct SymmetricEigen<N: Scalar, D: Dim>
|
|
|
|
where DefaultAllocator: Allocator<N, D> +
|
|
|
|
Allocator<N, D, D> {
|
2017-08-14 01:52:58 +08:00
|
|
|
/// The eigenvectors of the decomposed matrix.
|
2017-08-06 22:12:05 +08:00
|
|
|
pub eigenvectors: MatrixN<N, D>,
|
2017-08-14 01:52:58 +08:00
|
|
|
|
|
|
|
/// The unsorted eigenvalues of the decomposed matrix.
|
|
|
|
pub eigenvalues: VectorN<N, D>,
|
2017-08-06 22:12:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-08-14 01:53:04 +08:00
|
|
|
impl<N: Scalar, D: Dim> Copy for SymmetricEigen<N, D>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<N, D>,
|
|
|
|
MatrixN<N, D>: Copy,
|
|
|
|
VectorN<N, D>: Copy { }
|
|
|
|
|
2017-08-07 01:41:33 +08:00
|
|
|
impl<N: SymmetricEigenScalar + Real, D: Dim> SymmetricEigen<N, D>
|
2017-08-06 22:12:05 +08:00
|
|
|
where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<N, D> {
|
|
|
|
|
|
|
|
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
|
|
|
|
///
|
|
|
|
/// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the
|
|
|
|
/// eigenvectors are not computed explicitly. Panics if the method did not converge.
|
|
|
|
pub fn new(m: MatrixN<N, D>) -> Self {
|
|
|
|
let (vals, vecs) = Self::do_decompose(m, true).expect("SymmetricEigen: convergence failure.");
|
|
|
|
SymmetricEigen { eigenvalues: vals, eigenvectors: vecs.unwrap() }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
|
|
|
|
///
|
|
|
|
/// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the
|
|
|
|
/// eigenvectors are not computed explicitly. Returns `None` if the method did not converge.
|
|
|
|
pub fn try_new(m: MatrixN<N, D>) -> Option<Self> {
|
|
|
|
Self::do_decompose(m, true).map(|(vals, vecs)| {
|
|
|
|
SymmetricEigen { eigenvalues: vals, eigenvectors: vecs.unwrap() }
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
fn do_decompose(mut m: MatrixN<N, D>, eigenvectors: bool) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)> {
|
|
|
|
assert!(m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix.");
|
|
|
|
|
|
|
|
let jobz = if eigenvectors { b'V' } else { b'N' };
|
|
|
|
|
2017-08-14 01:52:58 +08:00
|
|
|
let nrows = m.data.shape().0;
|
2017-08-06 22:12:05 +08:00
|
|
|
let n = nrows.value();
|
|
|
|
|
|
|
|
let lda = n as i32;
|
|
|
|
|
|
|
|
let mut values = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
|
|
|
|
let mut info = 0;
|
|
|
|
|
|
|
|
let lwork = N::xsyev_work_size(jobz, b'L', n as i32, m.as_mut_slice(), lda, &mut info);
|
|
|
|
lapack_check!(info);
|
|
|
|
|
|
|
|
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
|
|
|
|
|
|
|
|
N::xsyev(jobz, b'L', n as i32, m.as_mut_slice(), lda, values.as_mut_slice(), &mut work, lwork, &mut info);
|
|
|
|
lapack_check!(info);
|
|
|
|
|
|
|
|
let vectors = if eigenvectors { Some(m) } else { None };
|
|
|
|
Some((values, vectors))
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes only the eigenvalues of the input matrix.
|
|
|
|
///
|
|
|
|
/// Panics if the method does not converge.
|
2017-08-14 01:52:58 +08:00
|
|
|
pub fn eigenvalues(m: MatrixN<N, D>) -> VectorN<N, D> {
|
2017-08-06 22:12:05 +08:00
|
|
|
Self::do_decompose(m, false).expect("SymmetricEigen eigenvalues: convergence failure.").0
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes only the eigenvalues of the input matrix.
|
|
|
|
///
|
|
|
|
/// Returns `None` if the method does not converge.
|
2017-08-14 01:52:58 +08:00
|
|
|
pub fn try_eigenvalues(m: MatrixN<N, D>) -> Option<VectorN<N, D>> {
|
2017-08-06 22:12:05 +08:00
|
|
|
Self::do_decompose(m, false).map(|res| res.0)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The determinant of the decomposed matrix.
|
|
|
|
#[inline]
|
|
|
|
pub fn determinant(&self) -> N {
|
|
|
|
let mut det = N::one();
|
|
|
|
for e in self.eigenvalues.iter() {
|
|
|
|
det *= *e;
|
|
|
|
}
|
|
|
|
|
|
|
|
det
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Rebuild the original matrix.
|
|
|
|
///
|
|
|
|
/// This is useful if some of the eigenvalues have been manually modified.
|
|
|
|
pub fn recompose(&self) -> MatrixN<N, D> {
|
|
|
|
let mut u_t = self.eigenvectors.clone();
|
|
|
|
for i in 0 .. self.eigenvalues.len() {
|
|
|
|
let val = self.eigenvalues[i];
|
|
|
|
u_t.column_mut(i).mul_assign(val);
|
|
|
|
}
|
|
|
|
u_t.transpose_mut();
|
|
|
|
&self.eigenvectors * u_t
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
*
|
|
|
|
* Lapack functions dispatch.
|
|
|
|
*
|
|
|
|
*/
|
2017-08-14 01:52:58 +08:00
|
|
|
/// Trait implemented by scalars for which Lapack implements the eigendecomposition of symmetric
|
|
|
|
/// real matrices.
|
2017-08-07 01:41:33 +08:00
|
|
|
pub trait SymmetricEigenScalar: Scalar {
|
2017-08-14 01:52:58 +08:00
|
|
|
#[allow(missing_docs)]
|
2017-08-06 22:12:05 +08:00
|
|
|
fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self],
|
|
|
|
lwork: i32, info: &mut i32);
|
2017-08-14 01:52:58 +08:00
|
|
|
#[allow(missing_docs)]
|
2017-08-06 22:12:05 +08:00
|
|
|
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32;
|
|
|
|
}
|
|
|
|
|
|
|
|
macro_rules! real_eigensystem_scalar_impl (
|
|
|
|
($N: ty, $xsyev: path) => (
|
2017-08-07 01:41:33 +08:00
|
|
|
impl SymmetricEigenScalar for $N {
|
2017-08-06 22:12:05 +08:00
|
|
|
#[inline]
|
|
|
|
fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self],
|
|
|
|
lwork: i32, info: &mut i32) {
|
|
|
|
$xsyev(jobz, uplo, n, a, lda, w, work, lwork, info)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32 {
|
|
|
|
let mut work = [ Zero::zero() ];
|
|
|
|
let mut w = [ Zero::zero() ];
|
|
|
|
let lwork = -1 as i32;
|
|
|
|
|
|
|
|
$xsyev(jobz, uplo, n, a, lda, &mut w, &mut work, lwork, info);
|
|
|
|
ComplexHelper::real_part(work[0]) as i32
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
real_eigensystem_scalar_impl!(f32, interface::ssyev);
|
|
|
|
real_eigensystem_scalar_impl!(f64, interface::dsyev);
|