nalgebra/src/linalg/svd.rs

911 lines
34 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize-no-std")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Serialize};
use std::any::TypeId;
2019-03-18 18:23:19 +08:00
use approx::AbsDiffEq;
2020-03-21 19:16:46 +08:00
use num::{One, Zero};
2019-03-23 21:29:07 +08:00
use crate::allocator::Allocator;
2021-04-11 17:00:38 +08:00
use crate::base::{DefaultAllocator, Matrix, Matrix2x3, OMatrix, OVector, Vector2};
2019-03-23 21:29:07 +08:00
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, U1};
use crate::storage::Storage;
use crate::{Matrix2, Matrix3, RawStorage, U2, U3};
2020-03-21 19:16:46 +08:00
use simba::scalar::{ComplexField, RealField};
2020-03-21 19:16:46 +08:00
use crate::linalg::givens::GivensRotation;
2019-03-23 21:29:07 +08:00
use crate::linalg::symmetric_eigen;
use crate::linalg::Bidiagonal;
/// Singular Value Decomposition of a general matrix.
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
2018-10-22 13:00:10 +08:00
serde(bound(
2021-04-11 17:00:38 +08:00
serialize = "DefaultAllocator: Allocator<T::RealField, DimMinimum<R, C>> +
Allocator<T, DimMinimum<R, C>, C> +
Allocator<T, R, DimMinimum<R, C>>,
OMatrix<T, R, DimMinimum<R, C>>: Serialize,
OMatrix<T, DimMinimum<R, C>, C>: Serialize,
OVector<T::RealField, DimMinimum<R, C>>: Serialize"
2018-10-22 13:00:10 +08:00
))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
2018-10-22 13:00:10 +08:00
serde(bound(
2021-04-11 17:00:38 +08:00
deserialize = "DefaultAllocator: Allocator<T::RealField, DimMinimum<R, C>> +
Allocator<T, DimMinimum<R, C>, C> +
Allocator<T, R, DimMinimum<R, C>>,
OMatrix<T, R, DimMinimum<R, C>>: Deserialize<'de>,
OMatrix<T, DimMinimum<R, C>, C>: Deserialize<'de>,
OVector<T::RealField, DimMinimum<R, C>>: Deserialize<'de>"
2018-10-22 13:00:10 +08:00
))
)]
2021-07-30 01:33:45 +08:00
#[derive(Clone, Debug)]
2021-04-11 17:00:38 +08:00
pub struct SVD<T: ComplexField, R: DimMin<C>, C: Dim>
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>,
2018-02-02 19:26:35 +08:00
{
/// The left-singular vectors `U` of this SVD.
2021-04-11 17:00:38 +08:00
pub u: Option<OMatrix<T, R, DimMinimum<R, C>>>,
/// The right-singular vectors `V^t` of this SVD.
2021-04-11 17:00:38 +08:00
pub v_t: Option<OMatrix<T, DimMinimum<R, C>, C>>,
/// The singular values of this SVD.
2021-04-11 17:00:38 +08:00
pub singular_values: OVector<T::RealField, DimMinimum<R, C>>,
}
impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<T, R, C>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>,
OMatrix<T, R, DimMinimum<R, C>>: Copy,
OMatrix<T, DimMinimum<R, C>, C>: Copy,
OVector<T::RealField, DimMinimum<R, C>>: Copy,
2021-07-17 17:36:14 +08:00
{
}
2021-04-11 17:00:38 +08:00
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
2018-02-02 19:26:35 +08:00
where
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
2018-02-02 19:26:35 +08:00
{
2021-12-09 18:52:37 +08:00
fn use_special_always_ordered_svd2() -> bool {
TypeId::of::<OMatrix<T, R, C>>() == TypeId::of::<Matrix2<T::RealField>>()
&& TypeId::of::<Self>() == TypeId::of::<SVD<T::RealField, U2, U2>>()
}
fn use_special_always_ordered_svd3() -> bool {
TypeId::of::<OMatrix<T, R, C>>() == TypeId::of::<Matrix3<T::RealField>>()
&& TypeId::of::<Self>() == TypeId::of::<SVD<T::RealField, U3, U3>>()
}
/// Computes the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are not guaranteed to be sorted in any particular order.
/// If a descending order is required, consider using `new` instead.
pub fn new_unordered(matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool) -> Self {
Self::try_new_unordered(
2020-03-21 19:16:46 +08:00
matrix,
compute_u,
compute_v,
2021-04-11 17:00:38 +08:00
T::RealField::default_epsilon(),
2020-03-21 19:16:46 +08:00
0,
)
.unwrap()
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are not guaranteed to be sorted in any particular order.
/// If a descending order is required, consider using `try_new` instead.
///
/// # Arguments
///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of right-singular vectors.
2018-09-24 12:48:42 +08:00
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new_unordered(
2021-04-11 17:00:38 +08:00
mut matrix: OMatrix<T, R, C>,
2018-02-02 19:26:35 +08:00
compute_u: bool,
compute_v: bool,
2021-04-11 17:00:38 +08:00
eps: T::RealField,
2018-02-02 19:26:35 +08:00
max_niter: usize,
2020-04-06 00:49:48 +08:00
) -> Option<Self> {
2018-02-02 19:26:35 +08:00
assert!(
2020-11-16 19:11:24 +08:00
!matrix.is_empty(),
2018-02-02 19:26:35 +08:00
"Cannot compute the SVD of an empty matrix."
);
let (nrows, ncols) = matrix.shape_generic();
let min_nrows_ncols = nrows.min(ncols);
2021-12-09 18:52:37 +08:00
if Self::use_special_always_ordered_svd2() {
// SAFETY: the reference transmutes are OK since we checked that the types match exactly.
let matrix: &Matrix2<T::RealField> = unsafe { std::mem::transmute(&matrix) };
2021-12-09 18:52:37 +08:00
let result = super::svd2::svd_ordered2(matrix, compute_u, compute_v);
let typed_result: &Self = unsafe { std::mem::transmute(&result) };
return Some(typed_result.clone());
2021-12-09 18:52:37 +08:00
} else if Self::use_special_always_ordered_svd3() {
// SAFETY: the reference transmutes are OK since we checked that the types match exactly.
let matrix: &Matrix3<T::RealField> = unsafe { std::mem::transmute(&matrix) };
2021-12-09 18:52:37 +08:00
let result = super::svd3::svd_ordered3(matrix, compute_u, compute_v, eps, max_niter);
let typed_result: &Self = unsafe { std::mem::transmute(&result) };
return Some(typed_result.clone());
}
let dim = min_nrows_ncols.value();
2019-03-18 18:23:19 +08:00
let m_amax = matrix.camax();
if !m_amax.is_zero() {
matrix.unscale_mut(m_amax.clone());
}
2021-06-18 15:45:37 +08:00
let bi_matrix = Bidiagonal::new(matrix);
let mut u = if compute_u { Some(bi_matrix.u()) } else { None };
let mut v_t = if compute_v {
Some(bi_matrix.v_t())
} else {
None
};
let mut diagonal = bi_matrix.diagonal();
let mut off_diagonal = bi_matrix.off_diagonal();
let mut niter = 0;
2020-03-21 19:16:46 +08:00
let (mut start, mut end) = Self::delimit_subproblem(
&mut diagonal,
&mut off_diagonal,
&mut u,
&mut v_t,
2021-06-18 15:45:37 +08:00
bi_matrix.is_upper_diagonal(),
2020-03-21 19:16:46 +08:00
dim - 1,
eps.clone(),
2020-03-21 19:16:46 +08:00
);
while end != start {
let subdim = end - start + 1;
// Solve the subproblem.
2021-06-18 15:45:37 +08:00
#[allow(clippy::comparison_chain)]
if subdim > 2 {
let m = end - 1;
let n = end;
let mut vec;
{
let dm = diagonal[m].clone();
let dn = diagonal[n].clone();
let fm = off_diagonal[m].clone();
let tmm = dm.clone() * dm.clone()
+ off_diagonal[m - 1].clone() * off_diagonal[m - 1].clone();
let tmn = dm * fm.clone();
let tnn = dn.clone() * dn + fm.clone() * fm;
let shift = symmetric_eigen::wilkinson_shift(tmm, tnn, tmn);
2018-02-02 19:26:35 +08:00
vec = Vector2::new(
diagonal[start].clone() * diagonal[start].clone() - shift,
diagonal[start].clone() * off_diagonal[start].clone(),
2018-02-02 19:26:35 +08:00
);
}
2018-02-02 19:26:35 +08:00
for k in start..n {
let m12 = if k == n - 1 {
2021-04-11 17:00:38 +08:00
T::RealField::zero()
2018-02-02 19:26:35 +08:00
} else {
off_diagonal[k + 1].clone()
2018-02-02 19:26:35 +08:00
};
let mut subm = Matrix2x3::new(
diagonal[k].clone(),
off_diagonal[k].clone(),
2021-04-11 17:00:38 +08:00
T::RealField::zero(),
T::RealField::zero(),
diagonal[k + 1].clone(),
2018-02-02 19:26:35 +08:00
m12,
);
2019-03-18 18:23:19 +08:00
if let Some((rot1, norm1)) = GivensRotation::cancel_y(&vec) {
2020-03-21 19:16:46 +08:00
rot1.inverse()
2021-04-11 17:00:38 +08:00
.rotate_rows(&mut subm.fixed_columns_mut::<2>(0));
let rot1 = GivensRotation::new_unchecked(rot1.c(), T::from_real(rot1.s()));
if k > start {
// This is not the first iteration.
2019-03-18 18:23:19 +08:00
off_diagonal[k - 1] = norm1;
}
let v = Vector2::new(subm[(0, 0)].clone(), subm[(1, 0)].clone());
2020-11-15 23:57:49 +08:00
// TODO: does the case `v.y == 0` ever happen?
2020-03-21 19:16:46 +08:00
let (rot2, norm2) = GivensRotation::cancel_y(&v)
.unwrap_or((GivensRotation::identity(), subm[(0, 0)].clone()));
2021-04-11 17:00:38 +08:00
rot2.rotate(&mut subm.fixed_columns_mut::<2>(1));
let rot2 = GivensRotation::new_unchecked(rot2.c(), T::from_real(rot2.s()));
subm[(0, 0)] = norm2;
if let Some(ref mut v_t) = v_t {
2021-06-18 15:45:37 +08:00
if bi_matrix.is_upper_diagonal() {
2021-04-11 17:00:38 +08:00
rot1.rotate(&mut v_t.fixed_rows_mut::<2>(k));
2018-02-02 19:26:35 +08:00
} else {
2021-04-11 17:00:38 +08:00
rot2.rotate(&mut v_t.fixed_rows_mut::<2>(k));
}
}
if let Some(ref mut u) = u {
2021-06-18 15:45:37 +08:00
if bi_matrix.is_upper_diagonal() {
2021-04-11 17:00:38 +08:00
rot2.inverse().rotate_rows(&mut u.fixed_columns_mut::<2>(k));
2018-02-02 19:26:35 +08:00
} else {
2021-04-11 17:00:38 +08:00
rot1.inverse().rotate_rows(&mut u.fixed_columns_mut::<2>(k));
}
}
diagonal[k] = subm[(0, 0)].clone();
diagonal[k + 1] = subm[(1, 1)].clone();
off_diagonal[k] = subm[(0, 1)].clone();
if k != n - 1 {
off_diagonal[k + 1] = subm[(1, 2)].clone();
}
vec.x = subm[(0, 1)].clone();
vec.y = subm[(0, 2)].clone();
2018-02-02 19:26:35 +08:00
} else {
break;
}
}
2018-02-02 19:26:35 +08:00
} else if subdim == 2 {
// Solve the remaining 2x2 subproblem.
let (u2, s, v2) = compute_2x2_uptrig_svd(
diagonal[start].clone(),
off_diagonal[start].clone(),
diagonal[start + 1].clone(),
2021-06-18 15:45:37 +08:00
compute_u && bi_matrix.is_upper_diagonal()
|| compute_v && !bi_matrix.is_upper_diagonal(),
compute_v && bi_matrix.is_upper_diagonal()
|| compute_u && !bi_matrix.is_upper_diagonal(),
2018-02-02 19:26:35 +08:00
);
2021-04-11 17:00:38 +08:00
let u2 = u2.map(|u2| GivensRotation::new_unchecked(u2.c(), T::from_real(u2.s())));
let v2 = v2.map(|v2| GivensRotation::new_unchecked(v2.c(), T::from_real(v2.s())));
diagonal[start] = s[0].clone();
diagonal[start + 1] = s[1].clone();
2021-04-11 17:00:38 +08:00
off_diagonal[start] = T::RealField::zero();
if let Some(ref mut u) = u {
2021-06-18 15:45:37 +08:00
let rot = if bi_matrix.is_upper_diagonal() {
u2.clone().unwrap()
2018-02-02 19:26:35 +08:00
} else {
v2.clone().unwrap()
2018-02-02 19:26:35 +08:00
};
2021-04-11 17:00:38 +08:00
rot.rotate_rows(&mut u.fixed_columns_mut::<2>(start));
}
if let Some(ref mut v_t) = v_t {
2021-06-18 15:45:37 +08:00
let rot = if bi_matrix.is_upper_diagonal() {
2018-02-02 19:26:35 +08:00
v2.unwrap()
} else {
u2.unwrap()
};
2021-04-11 17:00:38 +08:00
rot.inverse().rotate(&mut v_t.fixed_rows_mut::<2>(start));
}
end -= 1;
}
2018-09-24 12:48:42 +08:00
// Re-delimit the subproblem in case some decoupling occurred.
2020-03-21 19:16:46 +08:00
let sub = Self::delimit_subproblem(
&mut diagonal,
&mut off_diagonal,
&mut u,
&mut v_t,
2021-06-18 15:45:37 +08:00
bi_matrix.is_upper_diagonal(),
2020-03-21 19:16:46 +08:00
end,
eps.clone(),
2020-03-21 19:16:46 +08:00
);
start = sub.0;
2018-02-02 19:26:35 +08:00
end = sub.1;
niter += 1;
if niter == max_niter {
return None;
}
}
diagonal *= m_amax;
// Ensure all singular value are non-negative.
2018-02-02 19:26:35 +08:00
for i in 0..dim {
let sval = diagonal[i].clone();
2021-04-11 17:00:38 +08:00
if sval < T::RealField::zero() {
diagonal[i] = -sval;
if let Some(ref mut u) = u {
u.column_mut(i).neg_mut();
}
}
}
Some(Self {
2019-03-18 18:23:19 +08:00
u,
v_t,
singular_values: diagonal,
2018-02-02 19:26:35 +08:00
})
}
/*
2021-04-11 17:00:38 +08:00
fn display_bidiag(b: &Bidiagonal<T, R, C>, begin: usize, end: usize) {
for i in begin .. end {
for k in begin .. i {
print!(" ");
}
println!("{} {}", b.diagonal[i], b.off_diagonal[i]);
}
for k in begin .. end {
print!(" ");
}
println!("{}", b.diagonal[end]);
}
*/
2018-02-02 19:26:35 +08:00
fn delimit_subproblem(
2021-04-11 17:00:38 +08:00
diagonal: &mut OVector<T::RealField, DimMinimum<R, C>>,
off_diagonal: &mut OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
u: &mut Option<OMatrix<T, R, DimMinimum<R, C>>>,
v_t: &mut Option<OMatrix<T, DimMinimum<R, C>, C>>,
2019-03-18 18:23:19 +08:00
is_upper_diagonal: bool,
2018-02-02 19:26:35 +08:00
end: usize,
2021-04-11 17:00:38 +08:00
eps: T::RealField,
2020-04-06 00:49:48 +08:00
) -> (usize, usize) {
let mut n = end;
while n > 0 {
let m = n - 1;
2019-03-18 18:23:19 +08:00
if off_diagonal[m].is_zero()
|| off_diagonal[m].clone().norm1()
<= eps.clone() * (diagonal[n].clone().norm1() + diagonal[m].clone().norm1())
2018-02-02 19:26:35 +08:00
{
2021-04-11 17:00:38 +08:00
off_diagonal[m] = T::RealField::zero();
} else if diagonal[m].clone().norm1() <= eps {
2021-04-11 17:00:38 +08:00
diagonal[m] = T::RealField::zero();
2020-03-21 19:16:46 +08:00
Self::cancel_horizontal_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
m + 1,
);
if m != 0 {
2020-03-21 19:16:46 +08:00
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m - 1,
);
}
} else if diagonal[n].clone().norm1() <= eps {
2021-04-11 17:00:38 +08:00
diagonal[n] = T::RealField::zero();
2020-03-21 19:16:46 +08:00
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
);
2018-02-02 19:26:35 +08:00
} else {
break;
}
n -= 1;
}
if n == 0 {
return (0, 0);
}
let mut new_start = n - 1;
while new_start > 0 {
let m = new_start - 1;
if off_diagonal[m].clone().norm1()
<= eps.clone() * (diagonal[new_start].clone().norm1() + diagonal[m].clone().norm1())
2018-02-02 19:26:35 +08:00
{
2021-04-11 17:00:38 +08:00
off_diagonal[m] = T::RealField::zero();
break;
}
2020-11-15 23:57:49 +08:00
// TODO: write a test that enters this case.
else if diagonal[m].clone().norm1() <= eps {
2021-04-11 17:00:38 +08:00
diagonal[m] = T::RealField::zero();
2020-03-21 19:16:46 +08:00
Self::cancel_horizontal_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
n,
);
if m != 0 {
2020-03-21 19:16:46 +08:00
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m - 1,
);
}
break;
}
new_start -= 1;
}
(new_start, n)
}
// Cancels the i-th off-diagonal element using givens rotations.
2018-02-02 19:26:35 +08:00
fn cancel_horizontal_off_diagonal_elt(
2021-04-11 17:00:38 +08:00
diagonal: &mut OVector<T::RealField, DimMinimum<R, C>>,
off_diagonal: &mut OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
u: &mut Option<OMatrix<T, R, DimMinimum<R, C>>>,
v_t: &mut Option<OMatrix<T, DimMinimum<R, C>, C>>,
2019-03-18 18:23:19 +08:00
is_upper_diagonal: bool,
2018-02-02 19:26:35 +08:00
i: usize,
end: usize,
2020-04-06 00:49:48 +08:00
) {
let mut v = Vector2::new(off_diagonal[i].clone(), diagonal[i + 1].clone());
2021-04-11 17:00:38 +08:00
off_diagonal[i] = T::RealField::zero();
2018-02-02 19:26:35 +08:00
for k in i..end {
2019-03-18 18:23:19 +08:00
if let Some((rot, norm)) = GivensRotation::cancel_x(&v) {
2021-04-11 17:00:38 +08:00
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
2019-03-18 18:23:19 +08:00
diagonal[k + 1] = norm;
2019-03-18 18:23:19 +08:00
if is_upper_diagonal {
if let Some(ref mut u) = *u {
2018-02-02 19:26:35 +08:00
rot.inverse()
2021-04-11 17:00:38 +08:00
.rotate_rows(&mut u.fixed_columns_with_step_mut::<2>(i, k - i));
}
2018-02-02 19:26:35 +08:00
} else if let Some(ref mut v_t) = *v_t {
2021-04-11 17:00:38 +08:00
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<2>(i, k - i));
}
if k + 1 != end {
v.x = -rot.s().real() * off_diagonal[k + 1].clone();
v.y = diagonal[k + 2].clone();
off_diagonal[k + 1] *= rot.c();
}
2018-02-02 19:26:35 +08:00
} else {
break;
}
}
}
// Cancels the i-th off-diagonal element using givens rotations.
2018-02-02 19:26:35 +08:00
fn cancel_vertical_off_diagonal_elt(
2021-04-11 17:00:38 +08:00
diagonal: &mut OVector<T::RealField, DimMinimum<R, C>>,
off_diagonal: &mut OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
u: &mut Option<OMatrix<T, R, DimMinimum<R, C>>>,
v_t: &mut Option<OMatrix<T, DimMinimum<R, C>, C>>,
2019-03-18 18:23:19 +08:00
is_upper_diagonal: bool,
2018-02-02 19:26:35 +08:00
i: usize,
2020-04-06 00:49:48 +08:00
) {
let mut v = Vector2::new(diagonal[i].clone(), off_diagonal[i].clone());
2021-04-11 17:00:38 +08:00
off_diagonal[i] = T::RealField::zero();
2018-02-02 19:26:35 +08:00
for k in (0..i + 1).rev() {
2019-03-18 18:23:19 +08:00
if let Some((rot, norm)) = GivensRotation::cancel_y(&v) {
2021-04-11 17:00:38 +08:00
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
2019-03-18 18:23:19 +08:00
diagonal[k] = norm;
2019-03-18 18:23:19 +08:00
if is_upper_diagonal {
if let Some(ref mut v_t) = *v_t {
2021-04-11 17:00:38 +08:00
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<2>(k, i - k));
}
2018-02-02 19:26:35 +08:00
} else if let Some(ref mut u) = *u {
rot.inverse()
2021-04-11 17:00:38 +08:00
.rotate_rows(&mut u.fixed_columns_with_step_mut::<2>(k, i - k));
}
if k > 0 {
v.x = diagonal[k - 1].clone();
v.y = rot.s().real() * off_diagonal[k - 1].clone();
off_diagonal[k - 1] *= rot.c();
}
2018-02-02 19:26:35 +08:00
} else {
break;
}
}
}
/// Computes the rank of the decomposed matrix, i.e., the number of singular values greater
/// than `eps`.
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn rank(&self, eps: T::RealField) -> usize {
2018-02-02 19:26:35 +08:00
assert!(
2021-04-11 17:00:38 +08:00
eps >= T::RealField::zero(),
2018-02-02 19:26:35 +08:00
"SVD rank: the epsilon must be non-negative."
);
self.singular_values.iter().filter(|e| **e > eps).count()
}
/// Rebuild the original matrix.
///
/// This is useful if some of the singular values have been manually modified.
/// Returns `Err` if the right- and left- singular vectors have not been
/// computed at construction-time.
2021-04-11 17:00:38 +08:00
pub fn recompose(self) -> Result<OMatrix<T, R, C>, &'static str> {
match (self.u, self.v_t) {
2018-10-10 04:21:00 +08:00
(Some(mut u), Some(v_t)) => {
for i in 0..self.singular_values.len() {
let val = self.singular_values[i].clone();
u.column_mut(i).scale_mut(val);
}
Ok(u * v_t)
}
(None, None) => Err("SVD recomposition: U and V^t have not been computed."),
(None, _) => Err("SVD recomposition: U has not been computed."),
2020-03-21 19:16:46 +08:00
(_, None) => Err("SVD recomposition: V^t has not been computed."),
}
}
/// Computes the pseudo-inverse of the decomposed matrix.
///
/// Any singular value smaller than `eps` is assumed to be zero.
/// Returns `Err` if the right- and left- singular vectors have not
/// been computed at construction-time.
2021-04-11 17:00:38 +08:00
pub fn pseudo_inverse(mut self, eps: T::RealField) -> Result<OMatrix<T, C, R>, &'static str>
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, C, R>,
2020-04-06 00:49:48 +08:00
{
2021-04-11 17:00:38 +08:00
if eps < T::RealField::zero() {
Err("SVD pseudo inverse: the epsilon must be non-negative.")
2020-03-21 19:16:46 +08:00
} else {
for i in 0..self.singular_values.len() {
let val = self.singular_values[i].clone();
if val > eps {
2021-04-11 17:00:38 +08:00
self.singular_values[i] = T::RealField::one() / val;
} else {
2021-04-11 17:00:38 +08:00
self.singular_values[i] = T::RealField::zero();
}
}
self.recompose().map(|m| m.adjoint())
}
}
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
///
/// Any singular value smaller than `eps` is assumed to be zero.
/// Returns `Err` if the singular vectors `U` and `V` have not been computed.
2020-11-15 23:57:49 +08:00
// TODO: make this more generic wrt the storage types and the dimensions for `b`.
2018-02-02 19:26:35 +08:00
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
2021-04-11 17:00:38 +08:00
b: &Matrix<T, R2, C2, S2>,
eps: T::RealField,
) -> Result<OMatrix<T, C, C2>, &'static str>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, C, C2> + Allocator<T, DimMinimum<R, C>, C2>,
2018-02-02 19:26:35 +08:00
ShapeConstraint: SameNumberOfRows<R, R2>,
{
2021-04-11 17:00:38 +08:00
if eps < T::RealField::zero() {
Err("SVD solve: the epsilon must be non-negative.")
2020-03-21 19:16:46 +08:00
} else {
match (&self.u, &self.v_t) {
(Some(u), Some(v_t)) => {
let mut ut_b = u.ad_mul(b);
for j in 0..ut_b.ncols() {
let mut col = ut_b.column_mut(j);
for i in 0..self.singular_values.len() {
let val = self.singular_values[i].clone();
if val > eps {
col[i] = col[i].clone().unscale(val);
} else {
2021-04-11 17:00:38 +08:00
col[i] = T::zero();
}
}
}
Ok(v_t.ad_mul(&ut_b))
}
(None, None) => Err("SVD solve: U and V^t have not been computed."),
(None, _) => Err("SVD solve: U has not been computed."),
2020-03-21 19:16:46 +08:00
(_, None) => Err("SVD solve: V^t has not been computed."),
}
}
}
}
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
where
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>,
{
/// converts SVD results to a polar form
pub fn to_polar(&self) -> Result<(OMatrix<T, R, R>, OMatrix<T, R, C>), &'static str>
where DefaultAllocator: Allocator<T, R, C> //result
+ Allocator<T, DimMinimum<R, C>, R> // adjoint
+ Allocator<T, DimMinimum<R, C>> // mapped vals
+ Allocator<T, R, R> // square matrix & result
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>> // ?
,
{
match (&self.u, &self.v_t) {
(Some(u), Some(v_t)) => Ok((
u * OMatrix::from_diagonal(&self.singular_values.map(|e| T::from_real(e)))
* u.adjoint(),
u * v_t,
)),
(None, None) => Err("SVD solve: U and V^t have not been computed."),
(None, _) => Err("SVD solve: U has not been computed."),
(_, None) => Err("SVD solve: V^t has not been computed."),
}
}
}
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
where
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<(usize, usize), DimMinimum<R, C>> // for sorted singular values
+ Allocator<(T::RealField, usize), DimMinimum<R, C>>, // for sorted singular values
{
/// Computes the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are guaranteed to be sorted in descending order.
/// If this order is not required consider using `new_unordered`.
pub fn new(matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool) -> Self {
let mut svd = Self::new_unordered(matrix, compute_u, compute_v);
2021-12-09 18:52:37 +08:00
if !Self::use_special_always_ordered_svd3() && !Self::use_special_always_ordered_svd2() {
svd.sort_by_singular_values();
}
svd
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are guaranteed to be sorted in descending order.
/// If this order is not required consider using `try_new_unordered`.
///
/// # Arguments
///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of right-singular vectors.
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new(
matrix: OMatrix<T, R, C>,
compute_u: bool,
compute_v: bool,
eps: T::RealField,
max_niter: usize,
) -> Option<Self> {
Self::try_new_unordered(matrix, compute_u, compute_v, eps, max_niter).map(|mut svd| {
2021-12-09 18:52:37 +08:00
if !Self::use_special_always_ordered_svd3() && !Self::use_special_always_ordered_svd2()
{
svd.sort_by_singular_values();
}
svd
})
}
/// Sort the estimated components of the SVD by its singular values in descending order.
/// Such an ordering is often implicitly required when the decompositions are used for estimation or fitting purposes.
/// Using this function is only required if `new_unordered` or `try_new_unorderd` were used and the specific sorting is required afterward.
pub fn sort_by_singular_values(&mut self) {
const VALUE_PROCESSED: usize = usize::MAX;
// Collect the singular values with their original index, ...
let mut singular_values = self.singular_values.map_with_location(|r, _, e| (e, r));
assert_ne!(
singular_values.data.shape().0.value(),
VALUE_PROCESSED,
"Too many singular values"
);
// ... sort the singular values, ...
singular_values
.as_mut_slice()
.sort_unstable_by(|(a, _), (b, _)| b.partial_cmp(a).expect("Singular value was NaN"));
// ... and store them.
self.singular_values
.zip_apply(&singular_values, |value, (new_value, _)| {
value.clone_from(&new_value)
});
// Calculate required permutations given the sorted indices.
// We need to identify all circles to calculate the required swaps.
let mut permutations =
crate::PermutationSequence::identity_generic(singular_values.data.shape().0);
for i in 0..singular_values.len() {
let mut index_1 = i;
let mut index_2 = singular_values[i].1;
// Check whether the value was already visited ...
while index_2 != VALUE_PROCESSED // ... or a "double swap" must be avoided.
&& singular_values[index_2].1 != VALUE_PROCESSED
{
// Add the permutation ...
permutations.append_permutation(index_1, index_2);
// ... and mark the value as visited.
singular_values[index_1].1 = VALUE_PROCESSED;
index_1 = index_2;
index_2 = singular_values[index_1].1;
}
}
// Permute the optional components
if let Some(u) = self.u.as_mut() {
permutations.permute_columns(u);
}
if let Some(v_t) = self.v_t.as_mut() {
permutations.permute_rows(v_t);
}
}
}
2021-04-11 17:00:38 +08:00
impl<T: ComplexField, R: DimMin<C>, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S>
2018-02-02 19:26:35 +08:00
where
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
2018-02-02 19:26:35 +08:00
{
/// Computes the singular values of this matrix.
/// The singular values are not guaranteed to be sorted in any particular order.
/// If a descending order is required, consider using `singular_values` instead.
#[must_use]
pub fn singular_values_unordered(&self) -> OVector<T::RealField, DimMinimum<R, C>> {
SVD::new_unordered(self.clone_owned(), false, false).singular_values
}
/// Computes the rank of this matrix.
///
2017-10-27 12:13:35 +08:00
/// All singular values below `eps` are considered equal to 0.
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn rank(&self, eps: T::RealField) -> usize {
let svd = SVD::new_unordered(self.clone_owned(), false, false);
svd.rank(eps)
}
/// Computes the pseudo-inverse of this matrix.
///
2017-10-27 12:13:35 +08:00
/// All singular values below `eps` are considered equal to 0.
2021-04-11 17:00:38 +08:00
pub fn pseudo_inverse(self, eps: T::RealField) -> Result<OMatrix<T, C, R>, &'static str>
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, C, R>,
2020-04-06 00:49:48 +08:00
{
SVD::new_unordered(self.clone_owned(), true, true).pseudo_inverse(eps)
}
}
impl<T: ComplexField, R: DimMin<C>, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S>
where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<(usize, usize), DimMinimum<R, C>>
+ Allocator<(T::RealField, usize), DimMinimum<R, C>>,
{
/// Computes the singular values of this matrix.
/// The singular values are guaranteed to be sorted in descending order.
/// If this order is not required consider using `singular_values_unordered`.
#[must_use]
pub fn singular_values(&self) -> OVector<T::RealField, DimMinimum<R, C>> {
SVD::new(self.clone_owned(), false, false).singular_values
}
}
// Explicit formulae inspired from the paper "Computing the Singular Values of 2-by-2 Complex
// Matrices", Sanzheng Qiao and Xiaohong Wang.
// http://www.cas.mcmaster.ca/sqrl/papers/sqrl5.pdf
2021-04-11 17:00:38 +08:00
fn compute_2x2_uptrig_svd<T: RealField>(
m11: T,
m12: T,
m22: T,
compute_u: bool,
compute_v: bool,
2020-03-21 19:16:46 +08:00
) -> (
2021-04-11 17:00:38 +08:00
Option<GivensRotation<T>>,
Vector2<T>,
Option<GivensRotation<T>>,
2020-04-06 00:49:48 +08:00
) {
2021-04-11 17:00:38 +08:00
let two: T::RealField = crate::convert(2.0f64);
let half: T::RealField = crate::convert(0.5f64);
let denom = (m11.clone() + m22.clone()).hypot(m12.clone())
+ (m11.clone() - m22.clone()).hypot(m12.clone());
// NOTE: v1 is the singular value that is the closest to m22.
// This prevents cancellation issues when constructing the vector `csv` below. If we chose
// otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrophic
// cancellation on `v1 * v1 - m11 * m11` below.
let mut v1 = m11.clone() * m22.clone() * two / denom.clone();
let mut v2 = half * denom;
let mut u = None;
let mut v_t = None;
if compute_u || compute_v {
let (csv, sgn_v) = GivensRotation::new(
m11.clone() * m12.clone(),
v1.clone() * v1.clone() - m11.clone() * m11.clone(),
);
v1 *= sgn_v.clone();
v2 *= sgn_v;
if compute_v {
v_t = Some(csv.clone());
}
if compute_u {
let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1.clone();
let su = (m22 * csv.s()) / v1.clone();
let (csu, sgn_u) = GivensRotation::new(cu, su);
v1 *= sgn_u.clone();
v2 *= sgn_u;
u = Some(csu);
}
}
(u, Vector2::new(v1, v2), v_t)
2020-03-21 19:16:46 +08:00
}