nalgebra/nalgebra-lapack/src/generalized_eigenvalues.rs

394 lines
12 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use simba::scalar::RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Const, Dim};
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
use lapack;
2022-02-12 15:52:18 +08:00
/// Generalized eigenvalues and generalized eigenvectors (left and right) of a pair of N*N square matrices.
///
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Serialize")
)
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Deserialize<'de>,
OMatrix<T, D, D>: Deserialize<'de>")
)
)]
#[derive(Clone, Debug)]
2022-02-12 15:37:26 +08:00
pub struct GeneralizedEigen<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
alphar: OVector<T, D>,
alphai: OVector<T, D>,
beta: OVector<T, D>,
vsl: OMatrix<T, D, D>,
vsr: OMatrix<T, D, D>,
}
2022-02-12 15:37:26 +08:00
impl<T: Scalar + Copy, D: Dim> Copy for GeneralizedEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OMatrix<T, D, D>: Copy,
OVector<T, D>: Copy,
{
}
2022-02-12 15:37:26 +08:00
impl<T: GeneralizedEigenScalar + RealField + Copy, D: Dim> GeneralizedEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
{
/// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors
/// via the raw returns from LAPACK's dggev and sggev routines
///
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
///
/// Panics if the method did not converge.
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.")
}
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
/// dggev and sggev routines
///
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
///
/// Returns `None` if the method did not converge.
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
assert!(
a.is_square() && b.is_square(),
"Unable to compute the generalized eigenvalues of non-square matrices."
);
assert!(
a.shape_generic() == b.shape_generic(),
"Unable to compute the generalized eigenvalues of two square matrices of different dimensions."
);
let (nrows, ncols) = a.shape_generic();
let n = nrows.value();
let mut info = 0;
let mut alphar = Matrix::zeros_generic(nrows, Const::<1>);
let mut alphai = Matrix::zeros_generic(nrows, Const::<1>);
let mut beta = Matrix::zeros_generic(nrows, Const::<1>);
let mut vsl = Matrix::zeros_generic(nrows, ncols);
let mut vsr = Matrix::zeros_generic(nrows, ncols);
let lwork = T::xggev_work_size(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut info,
);
lapack_check!(info);
let mut work = vec![T::zero(); lwork as usize];
T::xggev(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut work,
lwork,
&mut info,
);
lapack_check!(info);
2022-02-12 15:37:26 +08:00
Some(GeneralizedEigen {
alphar,
alphai,
beta,
vsl,
vsr,
})
}
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
/// Outputs two matrices.
/// The first output matix contains the left eigenvectors of the generalized eigenvalues
/// as columns.
/// The second matrix contains the right eigenvectors of the generalized eigenvalues
/// as columns.
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j)
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B
/// where u(j)**H is the conjugate-transpose of u(j).
///
/// How the eigenvectors are build up:
///
/// Since the input entries are all real, the generalized eigenvalues if complex come in pairs
/// as a consequence of <https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem>
/// The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated
/// eigenvectors from the real matrix output via the following procedure
///
/// (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns,
/// VR stands for the lapack real matrix output containing the right eigenvectors as columns)
///
/// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
/// then
///
/// u(j) = VL(:,j)+i*VL(:,j+1)
/// u(j+1) = VL(:,j)-i*VL(:,j+1)
///
/// and
///
/// u(j) = VR(:,j)+i*VR(:,j+1)
/// v(j+1) = VR(:,j)-i*VR(:,j+1).
2022-02-04 13:09:29 +08:00
///
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
where
DefaultAllocator:
Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D> + Allocator<(Complex<T>, T), D>,
{
let n = self.vsl.shape().0;
let mut l = self
.vsl
.clone()
.map(|x| Complex::new(x, T::RealField::zero()));
let mut r = self
.vsr
.clone()
.map(|x| Complex::new(x, T::RealField::zero()));
let eigenvalues = &self.raw_eigenvalues();
let mut c = 0;
let epsilon = T::RealField::default_epsilon();
while c < n {
if eigenvalues[c].0.im.abs() > epsilon && c + 1 < n {
// taking care of the left eigenvector matrix
l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| {
*r = Complex::new(r.re.clone(), i.clone());
});
l.column_mut(c + 1).zip_apply(&self.vsl.column(c), |i, r| {
*i = Complex::new(r.clone(), -i.re.clone());
});
// taking care of the right eigenvector matrix
r.column_mut(c).zip_apply(&self.vsr.column(c + 1), |r, i| {
*r = Complex::new(r.re.clone(), i.clone());
});
r.column_mut(c + 1).zip_apply(&self.vsr.column(c), |i, r| {
*i = Complex::new(r.clone(), -i.re.clone());
});
c += 2;
} else {
c += 1;
}
}
(l, r)
}
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta)
/// straight from LAPACK
#[must_use]
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
where
DefaultAllocator: Allocator<(Complex<T>, T), D>,
{
let mut out = Matrix::from_element_generic(
self.vsl.shape_generic().0,
Const::<1>,
(Complex::zero(), T::RealField::zero()),
);
for i in 0..out.len() {
out[i] = (Complex::new(self.alphar[i], self.alphai[i]), self.beta[i])
}
out
}
}
/*
*
* Lapack functions dispatch.
*
*/
2022-02-12 15:37:26 +08:00
/// Trait implemented by scalars for which Lapack implements the RealField GeneralizedEigen decomposition.
pub trait GeneralizedEigenScalar: Scalar {
#[allow(missing_docs)]
fn xggev(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
work: &mut [Self],
lwork: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xggev_work_size(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
info: &mut i32,
) -> i32;
}
2022-02-12 15:59:04 +08:00
macro_rules! generalized_eigen_scalar_impl (
($N: ty, $xggev: path) => (
2022-02-12 15:37:26 +08:00
impl GeneralizedEigenScalar for $N {
#[inline]
fn xggev(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
work: &mut [$N],
lwork: i32,
info: &mut i32) {
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info); }
}
#[inline]
fn xggev_work_size(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
info: &mut i32)
-> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, info); }
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
2022-02-12 15:59:04 +08:00
generalized_eigen_scalar_impl!(f32, lapack::sggev);
generalized_eigen_scalar_impl!(f64, lapack::dggev);