nalgebra/src/linalg/decompositions.rs

71 lines
2.1 KiB
Rust
Raw Normal View History

use std::num::{Zero, Float};
use traits::operations::Transpose;
use traits::structure::{ColSlice, Eye, Indexable};
use traits::geometry::Norm;
use std::cmp::min;
/// Get the householder matrix corresponding to a reflexion to the hyperplane
/// defined by `vec`. It can be a reflexion contained in a subspace.
///
/// # Arguments
/// * `dim` - the dimension of the space the resulting matrix operates in
/// * `start` - the starting dimension of the subspace of the reflexion
/// * `vec` - the vector defining the reflection.
pub fn householder_matrix<N: Float,
M: Eye + Indexable<(uint, uint), N>,
V: Indexable<uint, N>>
(dim: uint, start: uint, vec: V) -> M {
let mut qk : M = Eye::new_identity(dim);
let stop = start + vec.shape();
assert!(stop <= dim);
for j in range(start, stop) {
for i in range(start, stop) {
unsafe {
let vv = vec.unsafe_at(i) * vec.unsafe_at(j);
let qkij = qk.unsafe_at((i, j));
qk.unsafe_set((i, j), qkij - vv - vv);
}
}
}
qk
}
/// QR decomposition using Householder reflections.
///
/// # Arguments
2014-05-10 18:48:25 +08:00
/// * `m` - matrix to decompose
pub fn qr<N: Float,
V: Indexable<uint, N> + Norm<N>,
M: Clone + Eye + ColSlice<V> + Transpose
+ Indexable<(uint, uint), N> + Mul<M, M>>
(m: &M)
-> (M, M) {
let (rows, cols) = m.shape();
assert!(rows >= cols);
let mut q : M = Eye::new_identity(rows);
let mut r = m.clone();
2014-05-10 18:48:25 +08:00
let iterations = min(rows - 1, cols);
for ite in range(0u, iterations) {
let mut v = r.col_slice(ite, ite, rows);
let alpha =
if unsafe { v.unsafe_at(ite) } >= Zero::zero() {
-Norm::norm(&v)
}
else {
Norm::norm(&v)
};
unsafe {
let x = v.unsafe_at(0);
v.unsafe_set(0, x - alpha);
}
let _ = v.normalize();
let qk: M = householder_matrix(rows, 0, v);
r = qk * r;
q = q * Transpose::transpose_cpy(&qk);
}
(q, r)
}