2017-02-13 01:17:09 +08:00
|
|
|
extern crate alga;
|
|
|
|
extern crate nalgebra as na;
|
|
|
|
|
|
|
|
use alga::linear::Transformation;
|
2018-02-02 19:26:35 +08:00
|
|
|
use na::{Id, Isometry3, Point3, Vector3};
|
2017-02-13 01:17:09 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Applies `n` times the transformation `t` to the vector `v` and sum each
|
|
|
|
* intermediate value.
|
|
|
|
*/
|
|
|
|
fn complicated_algorithm<T>(v: &Vector3<f32>, t: &T, n: usize) -> Vector3<f32>
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
T: Transformation<Point3<f32>>,
|
|
|
|
{
|
|
|
|
let mut result = *v;
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
// Do lots of operations involving t.
|
|
|
|
for _ in 0..n {
|
|
|
|
result = v + t.transform_vector(&result);
|
|
|
|
}
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
result
|
2017-02-13 01:17:09 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The two following calls are equivalent in term of result.
|
|
|
|
*/
|
|
|
|
fn main() {
|
2018-02-02 19:26:35 +08:00
|
|
|
let v = Vector3::new(1.0, 2.0, 3.0);
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
// The specialization generated by the compiler will do vector additions only.
|
|
|
|
let result1 = complicated_algorithm(&v, &Id::new(), 100000);
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
// The specialization generated by the compiler will also include matrix multiplications.
|
|
|
|
let iso = Isometry3::identity();
|
|
|
|
let result2 = complicated_algorithm(&v, &iso, 100000);
|
2017-02-13 01:17:09 +08:00
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
// They both return the same result.
|
|
|
|
assert!(result1 == Vector3::new(100001.0, 200002.0, 300003.0));
|
|
|
|
assert!(result2 == Vector3::new(100001.0, 200002.0, 300003.0));
|
2017-02-13 01:17:09 +08:00
|
|
|
}
|