2017-08-03 01:37:44 +08:00
|
|
|
//! Functions for balancing a matrix.
|
|
|
|
|
|
|
|
use alga::general::Real;
|
2018-05-19 23:15:15 +08:00
|
|
|
use std::ops::{DivAssign, MulAssign};
|
2017-08-03 01:37:44 +08:00
|
|
|
|
2019-03-23 21:29:07 +08:00
|
|
|
use crate::allocator::Allocator;
|
|
|
|
use crate::base::dimension::{Dim, U1};
|
|
|
|
use crate::base::storage::Storage;
|
|
|
|
use crate::base::{DefaultAllocator, MatrixN, VectorN};
|
2017-08-03 01:37:44 +08:00
|
|
|
|
|
|
|
/// Applies in-place a modified Parlett and Reinsch matrix balancing with 2-norm to the matrix `m` and returns
|
|
|
|
/// the corresponding diagonal transformation.
|
|
|
|
///
|
|
|
|
/// See https://arxiv.org/pdf/1401.5766.pdf
|
|
|
|
pub fn balance_parlett_reinsch<N: Real, D: Dim>(m: &mut MatrixN<N, D>) -> VectorN<N, D>
|
2018-10-22 13:00:10 +08:00
|
|
|
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> {
|
2017-08-03 01:37:44 +08:00
|
|
|
assert!(m.is_square(), "Unable to balance a non-square matrix.");
|
|
|
|
|
|
|
|
let dim = m.data.shape().0;
|
2019-03-23 21:29:07 +08:00
|
|
|
let radix: N = crate::convert(2.0f64);
|
2017-08-03 01:37:44 +08:00
|
|
|
let mut d = VectorN::from_element_generic(dim, U1, N::one());
|
|
|
|
|
|
|
|
let mut converged = false;
|
|
|
|
|
|
|
|
while !converged {
|
|
|
|
converged = true;
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
for i in 0..dim.value() {
|
2017-08-03 01:37:44 +08:00
|
|
|
let mut c = m.column(i).norm_squared();
|
|
|
|
let mut r = m.row(i).norm_squared();
|
|
|
|
let mut f = N::one();
|
|
|
|
|
|
|
|
let s = c + r;
|
|
|
|
c = c.sqrt();
|
|
|
|
r = r.sqrt();
|
|
|
|
|
|
|
|
if c.is_zero() || r.is_zero() {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
while c < r / radix {
|
|
|
|
c *= radix;
|
|
|
|
r /= radix;
|
|
|
|
f *= radix;
|
|
|
|
}
|
|
|
|
|
|
|
|
while c >= r * radix {
|
|
|
|
c /= radix;
|
|
|
|
r *= radix;
|
|
|
|
f /= radix;
|
|
|
|
}
|
|
|
|
|
2019-03-23 21:29:07 +08:00
|
|
|
let eps: N = crate::convert(0.95);
|
2017-08-03 01:37:44 +08:00
|
|
|
if c * c + r * r < eps * s {
|
|
|
|
converged = false;
|
|
|
|
d[i] *= f;
|
|
|
|
m.column_mut(i).mul_assign(f);
|
|
|
|
m.row_mut(i).div_assign(f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
d
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes in-place `D * m * D.inverse()`, where `D` is the matrix with diagonal `d`.
|
|
|
|
pub fn unbalance<N: Real, D: Dim>(m: &mut MatrixN<N, D>, d: &VectorN<N, D>)
|
2018-10-22 13:00:10 +08:00
|
|
|
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> {
|
2017-08-03 01:37:44 +08:00
|
|
|
assert!(m.is_square(), "Unable to unbalance a non-square matrix.");
|
|
|
|
assert_eq!(m.nrows(), d.len(), "Unbalancing: mismatched dimensions.");
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
for j in 0..d.len() {
|
2017-08-03 01:37:44 +08:00
|
|
|
let mut col = m.column_mut(j);
|
|
|
|
let denom = N::one() / d[j];
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
for i in 0..d.len() {
|
2017-08-03 01:37:44 +08:00
|
|
|
col[i] *= d[i] * denom;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|