nalgebra/src/geometry/rotation_specialization.rs

403 lines
13 KiB
Rust
Raw Normal View History

#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
#[cfg(feature = "arbitrary")]
use base::storage::Owned;
use std::ops::Neg;
use num::Zero;
use rand::{Rand, Rng};
use alga::general::Real;
use base::{MatrixN, Unit, Vector, Vector1, Vector3, VectorN};
use base::dimension::{U1, U2, U3};
use base::storage::Storage;
2018-02-02 19:26:35 +08:00
use geometry::{Rotation2, Rotation3, UnitComplex};
/*
*
* 2D Rotation matrix.
*
*/
impl<N: Real> Rotation2<N> {
/// Builds a 2 dimensional rotation matrix from an angle in radian.
pub fn new(angle: N) -> Self {
let (sia, coa) = angle.sin_cos();
Self::from_matrix_unchecked(MatrixN::<N, U2>::new(coa, -sia, sia, coa))
}
/// Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
///
/// Equivalent to `Self::new(axisangle[0])`.
#[inline]
pub fn from_scaled_axis<SB: Storage<N, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
Self::new(axisangle[0])
}
/// The rotation matrix required to align `a` and `b` but with its angl.
///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<N, U2, SB>, b: &Vector<N, U2, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U2>,
SC: Storage<N, U2>,
{
2017-02-13 01:17:09 +08:00
::convert(UnitComplex::rotation_between(a, b).to_rotation_matrix())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
#[inline]
2018-02-02 19:26:35 +08:00
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U2, SB>,
b: &Vector<N, U2, SC>,
s: N,
) -> Self
where
SB: Storage<N, U2>,
SC: Storage<N, U2>,
{
2017-02-13 01:17:09 +08:00
::convert(UnitComplex::scaled_rotation_between(a, b, s).to_rotation_matrix())
}
}
impl<N: Real> Rotation2<N> {
/// The rotation angle.
#[inline]
pub fn angle(&self) -> N {
self.matrix()[(1, 0)].atan2(self.matrix()[(0, 0)])
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &Rotation2<N>) -> N {
self.rotation_to(other).angle()
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &Rotation2<N>) -> Rotation2<N> {
other * self.inverse()
}
2017-02-13 01:17:09 +08:00
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the angle
/// of `self` multiplied by `n`.
#[inline]
pub fn powf(&self, n: N) -> Rotation2<N> {
Self::new(self.angle() * n)
}
/// The rotation angle returned as a 1-dimensional vector.
#[inline]
pub fn scaled_axis(&self) -> VectorN<N, U1> {
Vector1::new(self.angle())
}
}
impl<N: Real + Rand> Rand for Rotation2<N> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Self {
Self::new(rng.gen())
}
}
2018-02-02 19:26:35 +08:00
#[cfg(feature = "arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for Rotation2<N>
2018-02-02 19:26:35 +08:00
where
Owned<N, U2, U2>: Send,
{
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
Self::new(N::arbitrary(g))
}
}
/*
*
* 3D Rotation matrix.
*
*/
impl<N: Real> Rotation3<N> {
/// Builds a 3 dimensional rotation matrix from an axis and an angle.
///
/// # Arguments
/// * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation
/// in radian. Its direction is the axis of rotation.
pub fn new<SB: Storage<N, U3>>(axisangle: Vector<N, U3, SB>) -> Self {
let axisangle = axisangle.into_owned();
let (axis, angle) = Unit::new_and_get(axisangle);
Self::from_axis_angle(&axis, angle)
}
/// Builds a 3D rotation matrix from an axis scaled by the rotation angle.
pub fn from_scaled_axis<SB: Storage<N, U3>>(axisangle: Vector<N, U3, SB>) -> Self {
Self::new(axisangle)
}
/// Builds a 3D rotation matrix from an axis and a rotation angle.
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
{
if angle.is_zero() {
Self::identity()
2018-02-02 19:26:35 +08:00
} else {
let ux = axis.as_ref()[0];
let uy = axis.as_ref()[1];
let uz = axis.as_ref()[2];
let sqx = ux * ux;
let sqy = uy * uy;
let sqz = uz * uz;
let (sin, cos) = angle.sin_cos();
2018-02-02 19:26:35 +08:00
let one_m_cos = N::one() - cos;
Self::from_matrix_unchecked(MatrixN::<N, U3>::new(
2018-02-02 19:26:37 +08:00
sqx + (N::one() - sqx) * cos,
ux * uy * one_m_cos - uz * sin,
ux * uz * one_m_cos + uy * sin,
ux * uy * one_m_cos + uz * sin,
sqy + (N::one() - sqy) * cos,
uy * uz * one_m_cos - ux * sin,
ux * uz * one_m_cos - uy * sin,
uy * uz * one_m_cos + ux * sin,
sqz + (N::one() - sqz) * cos,
2018-02-02 19:26:35 +08:00
))
}
}
/// Creates a new rotation from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
let (sr, cr) = roll.sin_cos();
let (sp, cp) = pitch.sin_cos();
let (sy, cy) = yaw.sin_cos();
2018-02-02 19:26:35 +08:00
Self::from_matrix_unchecked(MatrixN::<N, U3>::new(
cy * cp,
cy * sp * sr - sy * cr,
cy * sp * cr + sy * sr,
sy * cp,
sy * sp * sr + cy * cr,
sy * sp * cr - cy * sr,
-sp,
cp * sr,
cp * cr,
))
}
/// Creates Euler angles from a rotation.
///
/// The angles are produced in the form (roll, yaw, pitch).
pub fn to_euler_angles(&self) -> (N, N, N) {
// Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
if self[(2,0)].abs() != N::one() {
let yaw = -self[(2,0)].asin();
let roll = (self[(2,1)] / yaw.cos()).atan2(self[(2,2)] / yaw.cos());
let pitch = (self[(1,0)] / yaw.cos()).atan2(self[(0,0)] / yaw.cos());
(roll, yaw, pitch)
} else if self[(2,0)] == -N::one() {
(self[(0,1)].atan2(self[(0,2)]), N::frac_pi_2(), N::zero())
} else {
(-self[(0,1)].atan2(-self[(0,2)]), -N::frac_pi_2(), N::zero())
}
}
/// Creates a rotation that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
/// It maps the view direction `dir` to the positive `z` axis.
///
/// # Arguments
/// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
/// * up - The vertical direction. The only requirement of this parameter is to not be
/// collinear
/// to `dir`. Non-collinearity is not checked.
#[inline]
pub fn new_observer_frame<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
let zaxis = dir.normalize();
let xaxis = up.cross(&zaxis).normalize();
let yaxis = zaxis.cross(&xaxis).normalize();
Self::from_matrix_unchecked(MatrixN::<N, U3>::new(
2018-02-02 19:26:35 +08:00
xaxis.x,
yaxis.x,
zaxis.x,
xaxis.y,
yaxis.y,
zaxis.y,
xaxis.z,
yaxis.z,
zaxis.z,
))
}
/// Builds a right-handed look-at view matrix without translation.
///
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_rh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::new_observer_frame(&dir.neg(), up).inverse()
}
/// Builds a left-handed look-at view matrix without translation.
///
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_lh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::new_observer_frame(dir, up).inverse()
}
/// The rotation matrix required to align `a` and `b` but with its angl.
///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>) -> Option<Self>
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::scaled_rotation_between(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
#[inline]
2018-02-02 19:26:35 +08:00
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>,
n: N,
) -> Option<Self>
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
// FIXME: code duplication with Rotation.
if let (Some(na), Some(nb)) = (a.try_normalize(N::zero()), b.try_normalize(N::zero())) {
let c = na.cross(&nb);
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
2018-02-02 19:26:35 +08:00
return Some(Self::from_axis_angle(&axis, na.dot(&nb).acos() * n));
}
// Zero or PI.
if na.dot(&nb) < N::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
return None;
}
}
Some(Self::identity())
}
/// The rotation angle.
#[inline]
pub fn angle(&self) -> N {
2018-02-02 19:26:35 +08:00
((self.matrix()[(0, 0)] + self.matrix()[(1, 1)] + self.matrix()[(2, 2)] - N::one())
/ ::convert(2.0))
.acos()
}
/// The rotation axis. Returns `None` if the rotation angle is zero or PI.
#[inline]
pub fn axis(&self) -> Option<Unit<Vector3<N>>> {
let axis = VectorN::<N, U3>::new(
self.matrix()[(2, 1)] - self.matrix()[(1, 2)],
self.matrix()[(0, 2)] - self.matrix()[(2, 0)],
2018-02-02 19:26:35 +08:00
self.matrix()[(1, 0)] - self.matrix()[(0, 1)],
);
Unit::try_new(axis, N::default_epsilon())
}
/// The rotation axis multiplied by the rotation angle.
#[inline]
pub fn scaled_axis(&self) -> Vector3<N> {
if let Some(axis) = self.axis() {
axis.unwrap() * self.angle()
2018-02-02 19:26:35 +08:00
} else {
Vector::zero()
}
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &Rotation3<N>) -> N {
self.rotation_to(other).angle()
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &Rotation3<N>) -> Rotation3<N> {
other * self.inverse()
}
2017-02-13 01:17:09 +08:00
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the same
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
#[inline]
pub fn powf(&self, n: N) -> Rotation3<N> {
if let Some(axis) = self.axis() {
Self::from_axis_angle(&axis, self.angle() * n)
2018-02-02 19:26:35 +08:00
} else if self.matrix()[(0, 0)] < N::zero() {
let minus_id = MatrixN::<N, U3>::from_diagonal_element(-N::one());
Self::from_matrix_unchecked(minus_id)
2018-02-02 19:26:35 +08:00
} else {
Self::identity()
}
}
}
impl<N: Real + Rand> Rand for Rotation3<N> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Self {
Self::new(VectorN::rand(rng))
}
}
2018-02-02 19:26:35 +08:00
#[cfg(feature = "arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for Rotation3<N>
2018-02-02 19:26:35 +08:00
where
Owned<N, U3, U3>: Send,
Owned<N, U3>: Send,
{
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
Self::new(VectorN::arbitrary(g))
}
}