nalgebra/src/vec_impl.rs

496 lines
10 KiB
Rust
Raw Normal View History

2013-06-29 08:34:45 +08:00
#[macro_escape];
macro_rules! new_impl(
($t: ident, $dim: expr) => (
impl<N> $t<N>
{
#[inline]
pub fn new(at: [N, ..$dim]) -> $t<N>
{ $t { at: at } }
}
)
)
macro_rules! indexable_impl(
($t: ident) => (
impl<N: Copy> Indexable<uint, N> for $t<N>
{
#[inline]
pub fn at(&self, i: uint) -> N
{ copy self.at[i] }
#[inline]
pub fn set(&mut self, i: uint, val: N)
{ self.at[i] = val }
}
)
)
2013-06-29 08:34:45 +08:00
macro_rules! new_repeat_impl(
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
impl<N: Copy> $t<N>
{
#[inline]
pub fn new_repeat($param: N) -> $t<N>
{ $t{ at: [ $( copy $elem, )+ ] } }
}
)
)
macro_rules! iterable_impl(
($t: ident) => (
impl<N> Iterable<N> for $t<N>
{
fn iter<'l>(&'l self) -> VecIterator<'l, N>
{ self.at.iter() }
}
)
)
macro_rules! iterable_mut_impl(
($t: ident) => (
impl<N> IterableMut<N> for $t<N>
{
fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N>
{ self.at.mut_iter() }
}
)
)
macro_rules! eq_impl(
($t: ident) => (
impl<N: Eq> Eq for $t<N>
{
#[inline]
fn eq(&self, other: &$t<N>) -> bool
{ self.at.iter().zip(other.at.iter()).all(|(a, b)| a == b) }
#[inline]
fn ne(&self, other: &$t<N>) -> bool
{ self.at.iter().zip(other.at.iter()).all(|(a, b)| a != b) }
}
)
)
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N>
{
#[inline]
fn dim() -> uint
{ $dim }
}
)
)
// FIXME: add the possibility to specialize that
macro_rules! basis_impl(
($t: ident, $dim: expr) => (
impl<N: Copy + DivisionRing + Algebraic + ApproxEq<N>> Basis for $t<N>
{
pub fn canonical_basis() -> ~[$t<N>]
{
let mut res : ~[$t<N>] = ~[];
for iterate(0u, $dim) |i|
{
let mut basis_element : $t<N> = Zero::zero();
basis_element.at[i] = One::one();
res.push(basis_element);
}
res
}
pub fn orthogonal_subspace_basis(&self) -> ~[$t<N>]
{
// compute the basis of the orthogonal subspace using Gram-Schmidt
// orthogonalization algorithm
let mut res : ~[$t<N>] = ~[];
for iterate(0u, $dim) |i|
{
let mut basis_element : $t<N> = Zero::zero();
basis_element.at[i] = One::one();
if res.len() == $dim - 1
{ break; }
let mut elt = copy basis_element;
elt = elt - self.scalar_mul(&basis_element.dot(self));
for res.iter().advance |v|
{ elt = elt - v.scalar_mul(&elt.dot(v)) };
if !elt.sqnorm().approx_eq(&Zero::zero())
{ res.push(elt.normalized()); }
}
res
}
}
)
)
macro_rules! add_impl(
($t: ident) => (
impl<N: Copy + Add<N,N>> Add<$t<N>, $t<N>> for $t<N>
{
#[inline]
fn add(&self, other: &$t<N>) -> $t<N>
{
self.at.iter()
.zip(other.at.iter())
.transform(|(a, b)| { *a + *b })
.collect()
}
}
)
)
macro_rules! sub_impl(
($t: ident) => (
impl<N: Copy + Sub<N,N>> Sub<$t<N>, $t<N>> for $t<N>
{
#[inline]
fn sub(&self, other: &$t<N>) -> $t<N>
{
self.at.iter()
.zip(other.at.iter())
.transform(| (a, b) | { *a - *b })
.collect()
}
}
)
)
macro_rules! neg_impl(
($t: ident) => (
impl<N: Neg<N>> Neg<$t<N>> for $t<N>
{
#[inline]
fn neg(&self) -> $t<N>
{ self.at.iter().transform(|a| -a).collect() }
}
)
)
macro_rules! dot_impl(
($t: ident, $dim: expr) => (
impl<N: Ring> Dot<N> for $t<N>
{
#[inline]
fn dot(&self, other: &$t<N>) -> N
{
let mut res = Zero::zero::<N>();
for iterate(0u, $dim) |i|
{ res = res + self.at[i] * other.at[i]; }
res
}
}
)
)
macro_rules! sub_dot_impl(
($t: ident, $dim: expr) => (
impl<N: Ring> SubDot<N> for $t<N>
{
#[inline]
fn sub_dot(&self, a: &$t<N>, b: &$t<N>) -> N
{
let mut res = Zero::zero::<N>();
for iterate(0u, $dim) |i|
{ res = res + (self.at[i] - a.at[i]) * b.at[i]; }
res
}
}
)
)
macro_rules! scalar_mul_impl(
($t: ident, $dim: expr) => (
impl<N: Mul<N, N>> ScalarMul<N> for $t<N>
{
#[inline]
fn scalar_mul(&self, s: &N) -> $t<N>
{ self.at.iter().transform(|a| a * *s).collect() }
#[inline]
fn scalar_mul_inplace(&mut self, s: &N)
{
for iterate(0u, $dim) |i|
{ self.at[i] = self.at[i] * *s; }
}
}
)
)
macro_rules! scalar_div_impl(
($t: ident, $dim: expr) => (
impl<N: Div<N, N>> ScalarDiv<N> for $t<N>
{
#[inline]
fn scalar_div(&self, s: &N) -> $t<N>
{ self.at.iter().transform(|a| a / *s).collect() }
#[inline]
fn scalar_div_inplace(&mut self, s: &N)
{
for iterate(0u, $dim) |i|
{ self.at[i] = self.at[i] / *s; }
}
}
)
)
macro_rules! scalar_add_impl(
($t: ident, $dim: expr) => (
impl<N: Add<N, N>> ScalarAdd<N> for $t<N>
{
#[inline]
fn scalar_add(&self, s: &N) -> $t<N>
{ self.at.iter().transform(|a| a + *s).collect() }
#[inline]
fn scalar_add_inplace(&mut self, s: &N)
{
for iterate(0u, $dim) |i|
{ self.at[i] = self.at[i] + *s; }
}
}
)
)
macro_rules! scalar_sub_impl(
($t: ident, $dim: expr) => (
impl<N: Sub<N, N>> ScalarSub<N> for $t<N>
{
#[inline]
fn scalar_sub(&self, s: &N) -> $t<N>
{ self.at.iter().transform(|a| a - *s).collect() }
#[inline]
fn scalar_sub_inplace(&mut self, s: &N)
{
for iterate(0u, $dim) |i|
{ self.at[i] = self.at[i] - *s; }
}
}
)
)
macro_rules! translation_impl(
($t: ident) => (
impl<N: Copy + Add<N, N> + Neg<N>> Translation<$t<N>> for $t<N>
{
#[inline]
fn translation(&self) -> $t<N>
{ copy *self }
#[inline]
fn inv_translation(&self) -> $t<N>
{ -self }
#[inline]
fn translate_by(&mut self, t: &$t<N>)
{ *self = *self + *t; }
}
)
)
macro_rules! translatable_impl(
($t: ident) => (
impl<N: Add<N, N> + Copy> Translatable<$t<N>, $t<N>> for $t<N>
{
#[inline]
fn translated(&self, t: &$t<N>) -> $t<N>
{ self + *t }
}
)
)
macro_rules! norm_impl(
($t: ident, $dim: expr) => (
impl<N: Copy + DivisionRing + Algebraic> Norm<N> for $t<N>
{
#[inline]
fn sqnorm(&self) -> N
{ self.dot(self) }
#[inline]
fn norm(&self) -> N
{ self.sqnorm().sqrt() }
#[inline]
fn normalized(&self) -> $t<N>
{
let mut res : $t<N> = copy *self;
res.normalize();
res
}
#[inline]
fn normalize(&mut self) -> N
{
let l = self.norm();
for iterate(0u, $dim) |i|
{ self.at[i] = self.at[i] / l; }
l
}
}
)
)
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
{
#[inline]
fn approx_epsilon() -> N
{ ApproxEq::approx_epsilon::<N, N>() }
#[inline]
fn approx_eq(&self, other: &$t<N>) -> bool
{
let mut zip = self.at.iter().zip(other.at.iter());
do zip.all |(a, b)| { a.approx_eq(b) }
}
#[inline]
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
{
let mut zip = self.at.iter().zip(other.at.iter());
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
}
}
)
)
macro_rules! zero_impl(
($t: ident) => (
impl<N: Copy + Zero> Zero for $t<N>
{
#[inline]
fn zero() -> $t<N>
{ $t::new_repeat(Zero::zero()) }
#[inline]
fn is_zero(&self) -> bool
{ self.at.iter().all(|e| e.is_zero()) }
}
)
)
macro_rules! one_impl(
($t: ident) => (
impl<N: Copy + One> One for $t<N>
{
#[inline]
fn one() -> $t<N>
{ $t::new_repeat(One::one()) }
}
)
)
2013-06-29 08:34:45 +08:00
macro_rules! rand_impl(
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
impl<N: Rand> Rand for $t<N>
{
#[inline]
fn rand<R: Rng>($param: &mut R) -> $t<N>
{ $t::new([ $( $elem.gen(), )+ ]) }
}
)
)
macro_rules! from_any_iterator_impl(
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
impl<N: Copy> FromAnyIterator<N> for $t<N>
{
fn from_iterator<'l>($param: &mut VecIterator<'l, N>) -> $t<N>
{ $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } }
fn from_mut_iterator<'l>($param: &mut VecMutIterator<'l, N>) -> $t<N>
{ $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } }
}
)
)
macro_rules! from_iterator_impl(
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
impl<N, Iter: Iterator<N>> FromIterator<N, Iter> for $t<N>
{
fn from_iterator($param: &mut Iter) -> $t<N>
{ $t { at: [ $( $elem.next().unwrap(), )+ ] } }
}
)
)
macro_rules! bounded_impl(
($t: ident) => (
impl<N: Bounded + Copy> Bounded for $t<N>
{
#[inline]
fn max_value() -> $t<N>
{ $t::new_repeat(Bounded::max_value()) }
#[inline]
fn min_value() -> $t<N>
{ $t::new_repeat(Bounded::min_value()) }
}
)
)
macro_rules! to_homogeneous_impl(
($t: ident, $t2: ident) =>
{
impl<N: Copy + One> ToHomogeneous<$t2<N>> for $t<N>
{
fn to_homogeneous(&self) -> $t2<N>
{
let mut res: $t2<N> = One::one();
for self.iter().zip(res.mut_iter()).advance |(in, out)|
{ *out = copy *in }
res
}
}
}
)
macro_rules! from_homogeneous_impl(
($t: ident, $t2: ident, $dim2: expr) =>
{
impl<N: Copy + Div<N, N> + One + Zero> FromHomogeneous<$t2<N>> for $t<N>
{
fn from_homogeneous(v: &$t2<N>) -> $t<N>
{
let mut res: $t<N> = Zero::zero();
for v.iter().zip(res.mut_iter()).advance |(in, out)|
{ *out = copy *in }
res.scalar_div(&v.at[$dim2 - 1]);
res
}
}
}
)