nalgebra/src/geometry/rotation.rs

174 lines
5.1 KiB
Rust
Raw Normal View History

use num::{Zero, One};
use std::fmt;
use approx::ApproxEq;
use alga::general::Real;
use core::{SquareMatrix, Scalar, OwnedSquareMatrix};
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
use core::storage::{Storage, StorageMut};
use core::allocator::Allocator;
/// A rotation matrix with an owned storage.
pub type OwnedRotation<N, D, A> = RotationBase<N, D, <A as Allocator<N, D, D>>::Buffer>;
/// A rotation matrix.
#[repr(C)]
#[derive(Hash, Debug, Clone, Copy)]
pub struct RotationBase<N: Scalar, D: DimName, S: Storage<N, D, D>> {
matrix: SquareMatrix<N, D, S>
}
impl<N: Scalar, D: DimName, S: Storage<N, D, D>> RotationBase<N, D, S>
where N: Scalar,
S: Storage<N, D, D> {
/// A reference to the underlying matrix representation of this rotation.
#[inline]
pub fn matrix(&self) -> &SquareMatrix<N, D, S> {
&self.matrix
}
/// A mutable reference to the underlying matrix representation of this rotation.
///
/// This is unsafe because this allows the user to replace the matrix by another one that is
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
/// subsequent method calls may be UB.
#[inline]
pub unsafe fn matrix_mut(&mut self) -> &mut SquareMatrix<N, D, S> {
&mut self.matrix
}
/// Unwraps the underlying matrix.
#[inline]
pub fn unwrap(self) -> SquareMatrix<N, D, S> {
self.matrix
}
/// Converts this rotation into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>
where N: Zero + One,
D: DimNameAdd<U1>,
S::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
let mut res = OwnedSquareMatrix::<N, _, S::Alloc>::identity();
res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);
res
}
}
impl<N: Scalar, D: DimName, S: Storage<N, D, D>> RotationBase<N, D, S> {
/// Creates a new rotation from the given square matrix.
///
/// The matrix squareness is checked but not its orthonormality.
#[inline]
pub fn from_matrix_unchecked(matrix: SquareMatrix<N, D, S>) -> RotationBase<N, D, S> {
assert!(matrix.is_square(), "Unable to create a rotation from a non-square matrix.");
RotationBase {
matrix: matrix
}
}
/// Transposes `self`.
#[inline]
pub fn transpose(&self) -> OwnedRotation<N, D, S::Alloc> {
RotationBase::from_matrix_unchecked(self.matrix.transpose())
}
/// Inverts `self`.
#[inline]
pub fn inverse(&self) -> OwnedRotation<N, D, S::Alloc> {
self.transpose()
}
}
impl<N: Scalar, D: DimName, S: StorageMut<N, D, D>> RotationBase<N, D, S> {
/// Transposes `self` in-place.
#[inline]
pub fn transpose_mut(&mut self) {
self.matrix.transpose_mut()
}
/// Inverts `self` in-place.
#[inline]
pub fn inverse_mut(&mut self) {
self.transpose_mut()
}
}
impl<N: Scalar + Eq, D: DimName, S: Storage<N, D, D>> Eq for RotationBase<N, D, S> { }
impl<N: Scalar + PartialEq, D: DimName, S: Storage<N, D, D>> PartialEq for RotationBase<N, D, S> {
#[inline]
fn eq(&self, right: &RotationBase<N, D, S>) -> bool {
self.matrix == right.matrix
}
}
impl<N, D: DimName, S> ApproxEq for RotationBase<N, D, S>
where N: Scalar + ApproxEq,
S: Storage<N, D, D>,
N::Epsilon: Copy {
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.matrix.relative_eq(&other.matrix, epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N, D: DimName, S> fmt::Display for RotationBase<N, D, S>
where N: Real + fmt::Display,
S: Storage<N, D, D>,
S::Alloc: Allocator<usize, D, D> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "RotationBase matrix {{"));
try!(write!(f, "{:.*}", precision, self.matrix));
writeln!(f, "}}")
}
}
// // /*
// // *
// // * Absolute
// // *
// // */
// // impl<N: Absolute> Absolute for $t<N> {
// // type AbsoluteValue = $submatrix<N::AbsoluteValue>;
// //
// // #[inline]
// // fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
// // Absolute::abs(&m.submatrix)
// // }
// // }