174 lines
5.1 KiB
Rust
174 lines
5.1 KiB
Rust
|
use num::{Zero, One};
|
||
|
use std::fmt;
|
||
|
use approx::ApproxEq;
|
||
|
|
||
|
use alga::general::Real;
|
||
|
|
||
|
use core::{SquareMatrix, Scalar, OwnedSquareMatrix};
|
||
|
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
|
||
|
use core::storage::{Storage, StorageMut};
|
||
|
use core::allocator::Allocator;
|
||
|
|
||
|
|
||
|
/// A rotation matrix with an owned storage.
|
||
|
pub type OwnedRotation<N, D, A> = RotationBase<N, D, <A as Allocator<N, D, D>>::Buffer>;
|
||
|
|
||
|
/// A rotation matrix.
|
||
|
#[repr(C)]
|
||
|
#[derive(Hash, Debug, Clone, Copy)]
|
||
|
pub struct RotationBase<N: Scalar, D: DimName, S: Storage<N, D, D>> {
|
||
|
matrix: SquareMatrix<N, D, S>
|
||
|
}
|
||
|
|
||
|
impl<N: Scalar, D: DimName, S: Storage<N, D, D>> RotationBase<N, D, S>
|
||
|
where N: Scalar,
|
||
|
S: Storage<N, D, D> {
|
||
|
/// A reference to the underlying matrix representation of this rotation.
|
||
|
#[inline]
|
||
|
pub fn matrix(&self) -> &SquareMatrix<N, D, S> {
|
||
|
&self.matrix
|
||
|
}
|
||
|
|
||
|
/// A mutable reference to the underlying matrix representation of this rotation.
|
||
|
///
|
||
|
/// This is unsafe because this allows the user to replace the matrix by another one that is
|
||
|
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
|
||
|
/// subsequent method calls may be UB.
|
||
|
#[inline]
|
||
|
pub unsafe fn matrix_mut(&mut self) -> &mut SquareMatrix<N, D, S> {
|
||
|
&mut self.matrix
|
||
|
}
|
||
|
|
||
|
/// Unwraps the underlying matrix.
|
||
|
#[inline]
|
||
|
pub fn unwrap(self) -> SquareMatrix<N, D, S> {
|
||
|
self.matrix
|
||
|
}
|
||
|
|
||
|
/// Converts this rotation into its equivalent homogeneous transformation matrix.
|
||
|
#[inline]
|
||
|
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>
|
||
|
where N: Zero + One,
|
||
|
D: DimNameAdd<U1>,
|
||
|
S::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
|
||
|
let mut res = OwnedSquareMatrix::<N, _, S::Alloc>::identity();
|
||
|
res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Scalar, D: DimName, S: Storage<N, D, D>> RotationBase<N, D, S> {
|
||
|
/// Creates a new rotation from the given square matrix.
|
||
|
///
|
||
|
/// The matrix squareness is checked but not its orthonormality.
|
||
|
#[inline]
|
||
|
pub fn from_matrix_unchecked(matrix: SquareMatrix<N, D, S>) -> RotationBase<N, D, S> {
|
||
|
assert!(matrix.is_square(), "Unable to create a rotation from a non-square matrix.");
|
||
|
|
||
|
RotationBase {
|
||
|
matrix: matrix
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Transposes `self`.
|
||
|
#[inline]
|
||
|
pub fn transpose(&self) -> OwnedRotation<N, D, S::Alloc> {
|
||
|
RotationBase::from_matrix_unchecked(self.matrix.transpose())
|
||
|
}
|
||
|
|
||
|
/// Inverts `self`.
|
||
|
#[inline]
|
||
|
pub fn inverse(&self) -> OwnedRotation<N, D, S::Alloc> {
|
||
|
self.transpose()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
impl<N: Scalar, D: DimName, S: StorageMut<N, D, D>> RotationBase<N, D, S> {
|
||
|
/// Transposes `self` in-place.
|
||
|
#[inline]
|
||
|
pub fn transpose_mut(&mut self) {
|
||
|
self.matrix.transpose_mut()
|
||
|
}
|
||
|
|
||
|
/// Inverts `self` in-place.
|
||
|
#[inline]
|
||
|
pub fn inverse_mut(&mut self) {
|
||
|
self.transpose_mut()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Scalar + Eq, D: DimName, S: Storage<N, D, D>> Eq for RotationBase<N, D, S> { }
|
||
|
|
||
|
impl<N: Scalar + PartialEq, D: DimName, S: Storage<N, D, D>> PartialEq for RotationBase<N, D, S> {
|
||
|
#[inline]
|
||
|
fn eq(&self, right: &RotationBase<N, D, S>) -> bool {
|
||
|
self.matrix == right.matrix
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N, D: DimName, S> ApproxEq for RotationBase<N, D, S>
|
||
|
where N: Scalar + ApproxEq,
|
||
|
S: Storage<N, D, D>,
|
||
|
N::Epsilon: Copy {
|
||
|
type Epsilon = N::Epsilon;
|
||
|
|
||
|
#[inline]
|
||
|
fn default_epsilon() -> Self::Epsilon {
|
||
|
N::default_epsilon()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn default_max_relative() -> Self::Epsilon {
|
||
|
N::default_max_relative()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn default_max_ulps() -> u32 {
|
||
|
N::default_max_ulps()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
|
||
|
self.matrix.relative_eq(&other.matrix, epsilon, max_relative)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||
|
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* Display
|
||
|
*
|
||
|
*/
|
||
|
impl<N, D: DimName, S> fmt::Display for RotationBase<N, D, S>
|
||
|
where N: Real + fmt::Display,
|
||
|
S: Storage<N, D, D>,
|
||
|
S::Alloc: Allocator<usize, D, D> {
|
||
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
|
let precision = f.precision().unwrap_or(3);
|
||
|
|
||
|
try!(writeln!(f, "RotationBase matrix {{"));
|
||
|
try!(write!(f, "{:.*}", precision, self.matrix));
|
||
|
writeln!(f, "}}")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// // /*
|
||
|
// // *
|
||
|
// // * Absolute
|
||
|
// // *
|
||
|
// // */
|
||
|
// // impl<N: Absolute> Absolute for $t<N> {
|
||
|
// // type AbsoluteValue = $submatrix<N::AbsoluteValue>;
|
||
|
// //
|
||
|
// // #[inline]
|
||
|
// // fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
|
||
|
// // Absolute::abs(&m.submatrix)
|
||
|
// // }
|
||
|
// // }
|