nalgebra/src/base/construction.rs

821 lines
27 KiB
Rust
Raw Normal View History

#[cfg(feature = "arbitrary")]
use base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
2018-02-02 19:26:35 +08:00
use num::{Bounded, One, Zero};
2018-05-27 03:02:24 +08:00
#[cfg(feature = "std")]
use rand;
2018-05-23 05:58:14 +08:00
use rand::distributions::{Distribution, Standard};
2018-05-27 03:02:24 +08:00
use rand::Rng;
use std::iter;
use typenum::{self, Cmp, Greater};
use alga::general::{ClosedAdd, ClosedMul};
use base::allocator::Allocator;
use base::dimension::{Dim, DimName, Dynamic, U1, U2, U3, U4, U5, U6};
use base::storage::Storage;
use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vector, VectorN};
/*
*
* Generic constructors.
*
*/
impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, R, C>,
{
/// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics
/// if `nrows != R::to_usize()` or `ncols != C::to_usize()`.
#[inline]
pub unsafe fn new_uninitialized_generic(nrows: R, ncols: C) -> Self {
Self::from_data(DefaultAllocator::allocate_uninitialized(nrows, ncols))
}
/// Creates a matrix with all its elements set to `elem`.
#[inline]
pub fn from_element_generic(nrows: R, ncols: C, elem: N) -> Self {
let len = nrows.value() * ncols.value();
Self::from_iterator_generic(nrows, ncols, iter::repeat(elem).take(len))
}
2018-02-02 19:26:16 +08:00
/// Creates a matrix with all its elements set to `elem`.
2018-02-02 19:26:35 +08:00
///
2018-02-02 19:26:16 +08:00
/// Same as `from_element_generic`.
#[inline]
pub fn repeat_generic(nrows: R, ncols: C, elem: N) -> Self {
let len = nrows.value() * ncols.value();
Self::from_iterator_generic(nrows, ncols, iter::repeat(elem).take(len))
}
/// Creates a matrix with all its elements set to 0.
#[inline]
pub fn zeros_generic(nrows: R, ncols: C) -> Self
2018-02-02 19:26:35 +08:00
where
N: Zero,
{
Self::from_element_generic(nrows, ncols, N::zero())
}
/// Creates a matrix with all its elements filled by an iterator.
#[inline]
pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
2018-02-02 19:26:35 +08:00
where
I: IntoIterator<Item = N>,
{
Self::from_data(DefaultAllocator::allocate_from_iterator(nrows, ncols, iter))
}
/// Creates a matrix with its elements filled with the components provided by a slice in
/// row-major order.
///
/// The order of elements in the slice must follow the usual mathematic writing, i.e.,
/// row-by-row.
#[inline]
pub fn from_row_slice_generic(nrows: R, ncols: C, slice: &[N]) -> Self {
2018-02-02 19:26:35 +08:00
assert!(
slice.len() == nrows.value() * ncols.value(),
"Matrix init. error: the slice did not contain the right number of elements."
);
2018-02-02 19:26:35 +08:00
let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) };
let mut iter = slice.iter();
2018-02-02 19:26:35 +08:00
for i in 0..nrows.value() {
for j in 0..ncols.value() {
unsafe { *res.get_unchecked_mut(i, j) = *iter.next().unwrap() }
}
}
res
}
/// Creates a matrix with its elements filled with the components provided by a slice. The
/// components must have the same layout as the matrix data storage (i.e. row-major or column-major).
#[inline]
pub fn from_column_slice_generic(nrows: R, ncols: C, slice: &[N]) -> Self {
Self::from_iterator_generic(nrows, ncols, slice.iter().cloned())
}
/// Creates a matrix filled with the results of a function applied to each of its component
/// coordinates.
#[inline]
pub fn from_fn_generic<F>(nrows: R, ncols: C, mut f: F) -> Self
2018-02-02 19:26:35 +08:00
where
F: FnMut(usize, usize) -> N,
{
let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) };
2018-02-02 19:26:35 +08:00
for i in 0..nrows.value() {
for j in 0..ncols.value() {
unsafe { *res.get_unchecked_mut(i, j) = f(i, j) }
}
}
res
}
2018-05-04 17:22:24 +08:00
/// Creates a new identity matrix.
///
/// If the matrix is not square, the largest square submatrix starting at index `(0, 0)` is set
/// to the identity matrix. All other entries are set to zero.
#[inline]
pub fn identity_generic(nrows: R, ncols: C) -> Self
2018-02-02 19:26:35 +08:00
where
N: Zero + One,
{
Self::from_diagonal_element_generic(nrows, ncols, N::one())
}
/// Creates a new matrix with its diagonal filled with copies of `elt`.
///
/// If the matrix is not square, the largest square submatrix starting at index `(0, 0)` is set
/// to the identity matrix. All other entries are set to zero.
#[inline]
pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: N) -> Self
2018-02-02 19:26:35 +08:00
where
N: Zero + One,
{
let mut res = Self::zeros_generic(nrows, ncols);
2018-02-02 19:26:35 +08:00
for i in 0..::min(nrows.value(), ncols.value()) {
unsafe { *res.get_unchecked_mut(i, i) = elt }
}
res
}
/// Creates a new matrix that may be rectangular. The first `elts.len()` diagonal elements are
/// filled with the content of `elts`. Others are set to 0.
///
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
#[inline]
pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[N]) -> Self
2018-02-02 19:26:35 +08:00
where
N: Zero,
{
let mut res = Self::zeros_generic(nrows, ncols);
2018-02-02 19:26:35 +08:00
assert!(
elts.len() <= ::min(nrows.value(), ncols.value()),
"Too many diagonal elements provided."
);
for (i, elt) in elts.iter().enumerate() {
unsafe { *res.get_unchecked_mut(i, i) = *elt }
}
res
}
2017-02-13 01:17:09 +08:00
/// Builds a new matrix from its rows.
///
/// Panics if not enough rows are provided (for statically-sized matrices), or if all rows do
/// not have the same dimensions.
#[inline]
pub fn from_rows<SB>(rows: &[Matrix<N, U1, C, SB>]) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U1, C>,
{
assert!(rows.len() > 0, "At least one row must be given.");
let nrows = R::try_to_usize().unwrap_or(rows.len());
let ncols = rows[0].len();
2018-02-02 19:26:35 +08:00
assert!(
rows.len() == nrows,
"Invalid number of rows provided to build this matrix."
);
if C::try_to_usize().is_none() {
2018-02-02 19:26:35 +08:00
assert!(
rows.iter().all(|r| r.len() == ncols),
"The provided rows must all have the same dimension."
);
}
// FIXME: optimize that.
2018-02-02 19:26:35 +08:00
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
rows[i][(0, j)]
})
}
2017-02-13 01:17:09 +08:00
/// Builds a new matrix from its columns.
///
/// Panics if not enough columns are provided (for statically-sized matrices), or if all
/// columns do not have the same dimensions.
#[inline]
pub fn from_columns<SB>(columns: &[Vector<N, R, SB>]) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, R>,
{
assert!(columns.len() > 0, "At least one column must be given.");
let ncols = C::try_to_usize().unwrap_or(columns.len());
let nrows = columns[0].len();
2018-02-02 19:26:35 +08:00
assert!(
columns.len() == ncols,
"Invalid number of columns provided to build this matrix."
);
if R::try_to_usize().is_none() {
2018-02-02 19:26:35 +08:00
assert!(
columns.iter().all(|r| r.len() == nrows),
"The columns provided must all have the same dimension."
);
}
// FIXME: optimize that.
2018-02-02 19:26:35 +08:00
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
columns[j][i]
})
}
/// Creates a matrix filled with random values.
#[inline]
#[cfg(feature = "std")]
pub fn new_random_generic(nrows: R, ncols: C) -> Self
2018-02-02 19:26:35 +08:00
where
2018-05-23 05:58:14 +08:00
Standard: Distribution<N>,
2018-02-02 19:26:35 +08:00
{
Self::from_fn_generic(nrows, ncols, |_, _| rand::random())
}
/// Creates a matrix filled with random values from the given distribution.
#[inline]
2018-05-23 05:58:14 +08:00
pub fn from_distribution_generic<Distr: Distribution<N> + ?Sized, G: Rng + ?Sized>(
nrows: R,
ncols: C,
distribution: &mut Distr,
rng: &mut G,
) -> Self {
Self::from_fn_generic(nrows, ncols, |_, _| distribution.sample(rng))
}
}
impl<N, D: Dim> MatrixN<N, D>
2018-02-02 19:26:35 +08:00
where
N: Scalar,
DefaultAllocator: Allocator<N, D, D>,
{
/// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0.
#[inline]
pub fn from_diagonal<SB: Storage<N, D>>(diag: &Vector<N, D, SB>) -> Self
2018-02-02 19:26:35 +08:00
where
N: Zero,
{
let (dim, _) = diag.data.shape();
let mut res = Self::zeros_generic(dim, dim);
2018-02-02 19:26:35 +08:00
for i in 0..diag.len() {
unsafe {
*res.get_unchecked_mut(i, i) = *diag.vget_unchecked(i);
}
}
res
}
}
/*
*
* Generate constructors with varying number of arguments, depending on the object type.
*
*/
macro_rules! impl_constructors(
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
where DefaultAllocator: Allocator<N $(, $Dims)*> {
/// Creates a new uninitialized matrix.
#[inline]
pub unsafe fn new_uninitialized($($args: usize),*) -> Self {
Self::new_uninitialized_generic($($gargs),*)
}
/// Creates a matrix with all its elements set to `elem`.
#[inline]
pub fn from_element($($args: usize,)* elem: N) -> Self {
Self::from_element_generic($($gargs, )* elem)
}
2018-02-02 19:26:16 +08:00
/// Creates a matrix with all its elements set to `elem`.
///
/// Same as `.from_element`.
#[inline]
pub fn repeat($($args: usize,)* elem: N) -> Self {
Self::repeat_generic($($gargs, )* elem)
}
/// Creates a matrix with all its elements set to `0`.
#[inline]
pub fn zeros($($args: usize),*) -> Self
where N: Zero {
Self::zeros_generic($($gargs),*)
}
/// Creates a matrix with all its elements filled by an iterator.
#[inline]
pub fn from_iterator<I>($($args: usize,)* iter: I) -> Self
where I: IntoIterator<Item = N> {
Self::from_iterator_generic($($gargs, )* iter)
}
/// Creates a matrix with its elements filled with the components provided by a slice
/// in row-major order.
///
/// The order of elements in the slice must follow the usual mathematic writing, i.e.,
/// row-by-row.
#[inline]
pub fn from_row_slice($($args: usize,)* slice: &[N]) -> Self {
Self::from_row_slice_generic($($gargs, )* slice)
}
/// Creates a matrix with its elements filled with the components provided by a slice
/// in column-major order.
#[inline]
pub fn from_column_slice($($args: usize,)* slice: &[N]) -> Self {
Self::from_column_slice_generic($($gargs, )* slice)
}
/// Creates a matrix filled with the results of a function applied to each of its
/// component coordinates.
// FIXME: don't take a dimension of the matrix is statically sized.
#[inline]
pub fn from_fn<F>($($args: usize,)* f: F) -> Self
where F: FnMut(usize, usize) -> N {
Self::from_fn_generic($($gargs, )* f)
}
2017-02-13 01:17:09 +08:00
/// Creates an identity matrix. If the matrix is not square, the largest square
/// submatrix (starting at the first row and column) is set to the identity while all
/// other entries are set to zero.
#[inline]
pub fn identity($($args: usize,)*) -> Self
where N: Zero + One {
Self::identity_generic($($gargs),* )
}
2017-02-13 01:17:09 +08:00
/// Creates a matrix filled with its diagonal filled with `elt` and all other
/// components set to zero.
#[inline]
pub fn from_diagonal_element($($args: usize,)* elt: N) -> Self
where N: Zero + One {
Self::from_diagonal_element_generic($($gargs, )* elt)
}
/// Creates a new matrix that may be rectangular. The first `elts.len()` diagonal
/// elements are filled with the content of `elts`. Others are set to 0.
///
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
#[inline]
pub fn from_partial_diagonal($($args: usize,)* elts: &[N]) -> Self
where N: Zero {
Self::from_partial_diagonal_generic($($gargs, )* elts)
}
/// Creates a matrix filled with random values from the given distribution.
#[inline]
2018-05-23 05:58:14 +08:00
pub fn from_distribution<Distr: Distribution<N> + ?Sized, G: Rng + ?Sized>(
$($args: usize,)*
distribution: &mut Distr,
rng: &mut G,
) -> Self {
Self::from_distribution_generic($($gargs, )* distribution, rng)
}
}
2018-05-23 05:58:14 +08:00
impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
where
DefaultAllocator: Allocator<N $(, $Dims)*>,
Standard: Distribution<N> {
/// Creates a matrix filled with random values.
#[inline]
#[cfg(feature = "std")]
pub fn new_random($($args: usize),*) -> Self {
Self::new_random_generic($($gargs),*)
}
}
}
);
// FIXME: this is not very pretty. We could find a better call syntax.
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
2018-02-02 19:26:35 +08:00
); // Arguments for non-generic constructors.
impl_constructors!(R, Dynamic;
=> R: DimName;
R::name(), Dynamic::new(ncols);
ncols);
impl_constructors!(Dynamic, C;
=> C: DimName;
Dynamic::new(nrows), C::name();
nrows);
impl_constructors!(Dynamic, Dynamic;
;
Dynamic::new(nrows), Dynamic::new(ncols);
nrows, ncols);
/*
*
* Zero, One, Rand traits.
*
*/
impl<N, R: DimName, C: DimName> Zero for MatrixMN<N, R, C>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Zero + ClosedAdd,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn zero() -> Self {
Self::from_element(N::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.iter().all(|e| e.is_zero())
}
}
impl<N, D: DimName> One for MatrixN<N, D>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N, R: DimName, C: DimName> Bounded for MatrixMN<N, R, C>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Bounded,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn max_value() -> Self {
Self::from_element(N::max_value())
}
#[inline]
fn min_value() -> Self {
Self::from_element(N::min_value())
}
}
2018-05-23 05:58:14 +08:00
impl<N: Scalar, R: Dim, C: Dim> Distribution<MatrixMN<N, R, C>> for Standard
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, R, C>,
2018-05-23 05:58:14 +08:00
Standard: Distribution<N>,
2018-02-02 19:26:35 +08:00
{
#[inline]
2018-05-23 05:58:14 +08:00
fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> MatrixMN<N, R, C> {
let nrows = R::try_to_usize().unwrap_or(rng.gen_range(0, 10));
let ncols = C::try_to_usize().unwrap_or(rng.gen_range(0, 10));
2018-05-23 05:58:14 +08:00
MatrixMN::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| rng.gen())
}
}
#[cfg(feature = "arbitrary")]
impl<N, R, C> Arbitrary for MatrixMN<N, R, C>
2018-02-02 19:26:35 +08:00
where
R: Dim,
C: Dim,
N: Scalar + Arbitrary + Send,
DefaultAllocator: Allocator<N, R, C>,
Owned<N, R, C>: Clone + Send,
{
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let nrows = R::try_to_usize().unwrap_or(g.gen_range(0, 10));
let ncols = C::try_to_usize().unwrap_or(g.gen_range(0, 10));
2018-02-02 19:26:35 +08:00
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| {
N::arbitrary(g)
})
}
}
/*
*
* Constructors for small matrices and vectors.
*
*/
macro_rules! componentwise_constructors_impl(
($($R: ty, $C: ty, $($args: ident:($irow: expr,$icol: expr)),*);* $(;)*) => {$(
impl<N> MatrixMN<N, $R, $C>
where N: Scalar,
DefaultAllocator: Allocator<N, $R, $C> {
/// Initializes this matrix from its components.
#[inline]
pub fn new($($args: N),*) -> Self {
unsafe {
let mut res = Self::new_uninitialized();
$( *res.get_unchecked_mut($irow, $icol) = $args; )*
res
}
}
}
)*}
);
componentwise_constructors_impl!(
/*
* Square matrices 1 .. 6.
*/
U2, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1);
U3, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2);
U4, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3);
U5, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4);
U6, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4), m46:(3,5),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4), m56:(4,5),
m61:(5,0), m62:(5,1), m63:(5,2), m64:(5,3), m65:(5,4), m66:(5,5);
/*
* Rectangular matrices with 2 rows.
*/
U2, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2);
U2, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3);
U2, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4);
U2, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5);
/*
* Rectangular matrices with 3 rows.
*/
U3, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1);
U3, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3);
U3, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4);
U3, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5);
/*
* Rectangular matrices with 4 rows.
*/
U4, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1),
m41:(3,0), m42:(3,1);
U4, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2),
m41:(3,0), m42:(3,1), m43:(3,2);
U4, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4);
U4, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4), m46:(3,5);
/*
* Rectangular matrices with 5 rows.
*/
U5, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1),
m41:(3,0), m42:(3,1),
m51:(4,0), m52:(4,1);
U5, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2),
m41:(3,0), m42:(3,1), m43:(3,2),
m51:(4,0), m52:(4,1), m53:(4,2);
U5, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3);
U5, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4), m46:(3,5),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4), m56:(4,5);
/*
* Rectangular matrices with 6 rows.
*/
U6, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1),
m41:(3,0), m42:(3,1),
m51:(4,0), m52:(4,1),
m61:(5,0), m62:(5,1);
U6, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2),
m41:(3,0), m42:(3,1), m43:(3,2),
m51:(4,0), m52:(4,1), m53:(4,2),
m61:(5,0), m62:(5,1), m63:(5,2);
U6, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3),
m61:(5,0), m62:(5,1), m63:(5,2), m64:(5,3);
U6, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4),
m61:(5,0), m62:(5,1), m63:(5,2), m64:(5,3), m65:(5,4);
/*
* Row vectors 1 .. 6.
*/
U1, U1, x:(0,0);
U1, U2, x:(0,0), y:(0,1);
U1, U3, x:(0,0), y:(0,1), z:(0,2);
U1, U4, x:(0,0), y:(0,1), z:(0,2), w:(0,3);
U1, U5, x:(0,0), y:(0,1), z:(0,2), w:(0,3), a:(0,4);
U1, U6, x:(0,0), y:(0,1), z:(0,2), w:(0,3), a:(0,4), b:(0,5);
/*
* Column vectors 1 .. 6.
*/
U2, U1, x:(0,0), y:(1,0);
U3, U1, x:(0,0), y:(1,0), z:(2,0);
U4, U1, x:(0,0), y:(1,0), z:(2,0), w:(3,0);
U5, U1, x:(0,0), y:(1,0), z:(2,0), w:(3,0), a:(4,0);
U6, U1, x:(0,0), y:(1,0), z:(2,0), w:(3,0), a:(4,0), b:(5,0);
);
/*
*
* Axis constructors.
*
*/
impl<N, R: DimName> VectorN<N, R>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, R>,
{
/// The column vector with a 1 as its first component, and zero elsewhere.
#[inline]
pub fn x() -> Self
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U0, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(0) = N::one();
}
res
}
/// The column vector with a 1 as its second component, and zero elsewhere.
#[inline]
pub fn y() -> Self
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U1, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(1) = N::one();
}
res
}
/// The column vector with a 1 as its third component, and zero elsewhere.
#[inline]
pub fn z() -> Self
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U2, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(2) = N::one();
}
res
}
/// The column vector with a 1 as its fourth component, and zero elsewhere.
#[inline]
pub fn w() -> Self
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U3, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(3) = N::one();
}
res
}
/// The column vector with a 1 as its fifth component, and zero elsewhere.
#[inline]
pub fn a() -> Self
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U4, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(4) = N::one();
}
res
}
/// The column vector with a 1 as its sixth component, and zero elsewhere.
#[inline]
pub fn b() -> Self
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U5, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(5) = N::one();
}
res
}
/// The unit column vector with a 1 as its first component, and zero elsewhere.
#[inline]
pub fn x_axis() -> Unit<Self>
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U0, Output = Greater>,
{
Unit::new_unchecked(Self::x())
}
/// The unit column vector with a 1 as its second component, and zero elsewhere.
#[inline]
pub fn y_axis() -> Unit<Self>
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U1, Output = Greater>,
{
Unit::new_unchecked(Self::y())
}
/// The unit column vector with a 1 as its third component, and zero elsewhere.
#[inline]
pub fn z_axis() -> Unit<Self>
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U2, Output = Greater>,
{
Unit::new_unchecked(Self::z())
}
/// The unit column vector with a 1 as its fourth component, and zero elsewhere.
#[inline]
pub fn w_axis() -> Unit<Self>
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U3, Output = Greater>,
{
Unit::new_unchecked(Self::w())
}
/// The unit column vector with a 1 as its fifth component, and zero elsewhere.
#[inline]
pub fn a_axis() -> Unit<Self>
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U4, Output = Greater>,
{
Unit::new_unchecked(Self::a())
}
/// The unit column vector with a 1 as its sixth component, and zero elsewhere.
#[inline]
pub fn b_axis() -> Unit<Self>
2018-02-02 19:26:35 +08:00
where
R::Value: Cmp<typenum::U5, Output = Greater>,
{
Unit::new_unchecked(Self::b())
}
}