nalgebra/src/geometry/translation_conversion.rs

290 lines
8.4 KiB
Rust
Raw Normal View History

use num::{One, Zero};
2020-03-21 19:16:46 +08:00
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use simba::simd::PrimitiveSimdValue;
2019-03-23 21:29:07 +08:00
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN, Scalar, VectorN};
2020-03-21 19:16:46 +08:00
use crate::geometry::{
AbstractRotation, Isometry, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
2021-01-29 07:46:14 +08:00
Translation3, UnitDualQuaternion, UnitQuaternion,
2020-03-21 19:16:46 +08:00
};
/*
* This file provides the following conversions:
* =============================================
*
* Translation -> Translation
* Translation -> Isometry
* Translation3 -> UnitDualQuaternion
* Translation -> Similarity
* Translation -> Transform
* Translation -> Matrix (homogeneous)
*/
impl<N1, N2, D: DimName> SubsetOf<Translation<N2, D>> for Translation<N1, D>
2018-02-02 19:26:35 +08:00
where
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Translation<N2, D> {
Translation::from(self.vector.to_superset())
}
#[inline]
fn is_in_subset(rot: &Translation<N2, D>) -> bool {
2019-03-23 21:29:07 +08:00
crate::is_convertible::<_, VectorN<N1, D>>(&rot.vector)
}
#[inline]
2020-03-21 19:16:46 +08:00
fn from_superset_unchecked(rot: &Translation<N2, D>) -> Self {
Translation {
vector: rot.vector.to_subset_unchecked(),
}
}
}
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D>
2018-02-02 19:26:35 +08:00
where
2019-03-25 18:21:41 +08:00
N1: RealField,
N2: RealField + SupersetOf<N1>,
2020-03-21 19:16:46 +08:00
R: AbstractRotation<N2, D>,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, D, R> {
Isometry::from_parts(self.to_superset(), R::identity())
}
#[inline]
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool {
iso.rotation == R::identity()
}
#[inline]
2020-03-21 19:16:46 +08:00
fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self {
Self::from_superset_unchecked(&iso.translation)
}
}
impl<N1, N2> SubsetOf<UnitDualQuaternion<N2>> for Translation3<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitDualQuaternion<N2> {
let dq = UnitDualQuaternion::<N1>::from_parts(self.clone(), UnitQuaternion::identity());
dq.to_superset()
}
#[inline]
fn is_in_subset(dq: &UnitDualQuaternion<N2>) -> bool {
2021-01-29 07:46:14 +08:00
crate::is_convertible::<_, Translation<N1, _>>(&dq.translation())
&& dq.rotation() == UnitQuaternion::identity()
}
#[inline]
fn from_superset_unchecked(dq: &UnitDualQuaternion<N2>) -> Self {
let dq: UnitDualQuaternion<N1> = crate::convert_ref_unchecked(dq);
dq.translation()
}
}
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Translation<N1, D>
2018-02-02 19:26:35 +08:00
where
2019-03-25 18:21:41 +08:00
N1: RealField,
N2: RealField + SupersetOf<N1>,
2020-03-21 19:16:46 +08:00
R: AbstractRotation<N2, D>,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, D, R> {
Similarity::from_parts(self.to_superset(), R::identity(), N2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool {
2018-02-02 19:26:35 +08:00
sim.isometry.rotation == R::identity() && sim.scaling() == N2::one()
}
#[inline]
2020-03-21 19:16:46 +08:00
fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self {
Self::from_superset_unchecked(&sim.isometry.translation)
}
}
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Translation<N1, D>
2018-02-02 19:26:35 +08:00
where
2019-03-25 18:21:41 +08:00
N1: RealField,
N2: RealField + SupersetOf<N1>,
2018-02-02 19:26:35 +08:00
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D>
+ Allocator<N2, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn to_superset(&self) -> Transform<N2, D, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
2020-03-21 19:16:46 +08:00
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1, N2, D> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Translation<N1, D>
2018-02-02 19:26:35 +08:00
where
2019-03-25 18:21:41 +08:00
N1: RealField,
N2: RealField + SupersetOf<N1>,
2018-02-02 19:26:35 +08:00
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D>
+ Allocator<N2, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
let id = m.fixed_slice::<DimNameSum<D, U1>, D>(0, 0);
// Scalar types agree.
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
// The block part does nothing.
id.is_identity(N2::zero()) &&
// The normalization factor is one.
m[(D::dim(), D::dim())] == N2::one()
}
#[inline]
2020-03-21 19:16:46 +08:00
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let t = m.fixed_slice::<D, U1>(0, D::dim());
Self {
2019-03-23 21:29:07 +08:00
vector: crate::convert_unchecked(t.into_owned()),
}
}
}
impl<N: Scalar + Zero + One, D: DimName> From<Translation<N, D>> for MatrixN<N, DimNameSum<D, U1>>
where
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn from(t: Translation<N, D>) -> Self {
t.to_homogeneous()
}
}
impl<N: Scalar, D: DimName> From<VectorN<N, D>> for Translation<N, D>
2020-04-06 00:49:48 +08:00
where
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn from(vector: VectorN<N, D>) -> Self {
Translation { vector }
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Translation<N::Element, D>; 2]>
for Translation<N, D>
where
N: From<[<N as simba::simd::SimdValue>::Element; 2]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Translation<N::Element, D>; 2]) -> Self {
Self::from(VectorN::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
]))
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Translation<N::Element, D>; 4]>
for Translation<N, D>
where
N: From<[<N as simba::simd::SimdValue>::Element; 4]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Translation<N::Element, D>; 4]) -> Self {
Self::from(VectorN::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
arr[2].vector.clone(),
arr[3].vector.clone(),
]))
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Translation<N::Element, D>; 8]>
for Translation<N, D>
where
N: From<[<N as simba::simd::SimdValue>::Element; 8]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Translation<N::Element, D>; 8]) -> Self {
Self::from(VectorN::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
arr[2].vector.clone(),
arr[3].vector.clone(),
arr[4].vector.clone(),
arr[5].vector.clone(),
arr[6].vector.clone(),
arr[7].vector.clone(),
]))
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Translation<N::Element, D>; 16]>
for Translation<N, D>
where
N: From<[<N as simba::simd::SimdValue>::Element; 16]>,
N::Element: Scalar,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Translation<N::Element, D>; 16]) -> Self {
Self::from(VectorN::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
arr[2].vector.clone(),
arr[3].vector.clone(),
arr[4].vector.clone(),
arr[5].vector.clone(),
arr[6].vector.clone(),
arr[7].vector.clone(),
arr[8].vector.clone(),
arr[9].vector.clone(),
arr[10].vector.clone(),
arr[11].vector.clone(),
arr[12].vector.clone(),
arr[13].vector.clone(),
arr[14].vector.clone(),
arr[15].vector.clone(),
]))
}
}