nalgebra/src/linalg/svd3.rs

56 lines
1.7 KiB
Rust
Raw Normal View History

use crate::{Matrix3, SVD, U3};
use simba::scalar::RealField;
// For the 3x3 case, on the GPU, it is much more efficient to compute the SVD
// using an eigendecomposition followed by a QR decomposition.
2021-12-09 18:52:37 +08:00
//
// This is based on the paper "Computing the Singular Value Decomposition of 3 x 3 matrices with
// minimal branching and elementary floating point operations" from McAdams, et al.
pub fn svd_ordered3<T: RealField>(
m: &Matrix3<T>,
compute_u: bool,
compute_v: bool,
eps: T,
niter: usize,
) -> Option<SVD<T, U3, U3>> {
let s = m.tr_mul(&m);
2021-12-09 18:52:37 +08:00
let mut v = s.try_symmetric_eigen(eps, niter)?.eigenvectors;
let mut b = m * &v;
// Sort singular values. This is a necessary step to ensure that
// the QR decompositions R matrix ends up diagonal.
let mut rho0 = b.column(0).norm_squared();
let mut rho1 = b.column(1).norm_squared();
let mut rho2 = b.column(2).norm_squared();
if rho0 < rho1 {
b.swap_columns(0, 1);
b.column_mut(1).neg_mut();
v.swap_columns(0, 1);
v.column_mut(1).neg_mut();
std::mem::swap(&mut rho0, &mut rho1);
}
if rho0 < rho2 {
b.swap_columns(0, 2);
b.column_mut(2).neg_mut();
v.swap_columns(0, 2);
v.column_mut(2).neg_mut();
std::mem::swap(&mut rho0, &mut rho2);
}
if rho1 < rho2 {
b.swap_columns(1, 2);
b.column_mut(2).neg_mut();
v.swap_columns(1, 2);
v.column_mut(2).neg_mut();
std::mem::swap(&mut rho0, &mut rho2);
}
let qr = b.qr();
Some(SVD {
u: if compute_u { Some(qr.q()) } else { None },
2021-12-09 18:52:37 +08:00
singular_values: qr.diag_internal().map(|e| e.abs()),
v_t: if compute_v { Some(v.transpose()) } else { None },
})
}