632 lines
17 KiB
Rust
632 lines
17 KiB
Rust
|
#[cfg(feature = "arbitrary")]
|
|||
|
#[macro_use]
|
|||
|
extern crate quickcheck;
|
|||
|
#[macro_use]
|
|||
|
extern crate approx;
|
|||
|
extern crate num_traits as num;
|
|||
|
extern crate alga;
|
|||
|
extern crate nalgebra as na;
|
|||
|
|
|||
|
use num::{Zero, One};
|
|||
|
use std::fmt::Display;
|
|||
|
|
|||
|
use alga::linear::FiniteDimInnerSpace;
|
|||
|
|
|||
|
use na::{DVector, DMatrix,
|
|||
|
Vector1, Vector2, Vector3, Vector4, Vector5, Vector6,
|
|||
|
RowVector4,
|
|||
|
Matrix1, Matrix2, Matrix3, Matrix4, Matrix5, Matrix6,
|
|||
|
Matrix2x3, Matrix3x2, Matrix3x4, Matrix4x3, Matrix2x4, Matrix4x6};
|
|||
|
|
|||
|
|
|||
|
#[test]
|
|||
|
fn is_column_major() {
|
|||
|
let a = Matrix2x3::new(1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0);
|
|||
|
|
|||
|
let expected = &[ 1.0, 4.0, 2.0, 5.0, 3.0, 6.0 ];
|
|||
|
|
|||
|
assert_eq!(a.as_slice(), expected);
|
|||
|
|
|||
|
let a = Matrix2x3::from_row_slice(&[1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0]);
|
|||
|
|
|||
|
assert_eq!(a.as_slice(), expected);
|
|||
|
|
|||
|
let a = Matrix2x3::from_column_slice(&[1.0, 4.0,
|
|||
|
2.0, 5.0,
|
|||
|
3.0, 6.0]);
|
|||
|
|
|||
|
assert_eq!(a.as_slice(), expected);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn linear_index() {
|
|||
|
let a = Matrix2x3::new(1, 2, 3,
|
|||
|
4, 5, 6);
|
|||
|
|
|||
|
assert_eq!(a[0], 1);
|
|||
|
assert_eq!(a[1], 4);
|
|||
|
assert_eq!(a[2], 2);
|
|||
|
assert_eq!(a[3], 5);
|
|||
|
assert_eq!(a[4], 3);
|
|||
|
assert_eq!(a[5], 6);
|
|||
|
|
|||
|
let b = Vector4::new(1, 2, 3, 4);
|
|||
|
|
|||
|
assert_eq!(b[0], 1);
|
|||
|
assert_eq!(b[1], 2);
|
|||
|
assert_eq!(b[2], 3);
|
|||
|
assert_eq!(b[3], 4);
|
|||
|
|
|||
|
let c = RowVector4::new(1, 2, 3, 4);
|
|||
|
|
|||
|
assert_eq!(c[0], 1);
|
|||
|
assert_eq!(c[1], 2);
|
|||
|
assert_eq!(c[2], 3);
|
|||
|
assert_eq!(c[3], 4);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn identity() {
|
|||
|
let id1 = Matrix3::<f64>::identity();
|
|||
|
let id2 = Matrix3x4::new(1.0, 0.0, 0.0, 0.0,
|
|||
|
0.0, 1.0, 0.0, 0.0,
|
|||
|
0.0, 0.0, 1.0, 0.0);
|
|||
|
let id2bis = Matrix3x4::identity();
|
|||
|
let id3 = Matrix4x3::new(1.0, 0.0, 0.0,
|
|||
|
0.0, 1.0, 0.0,
|
|||
|
0.0, 0.0, 1.0,
|
|||
|
0.0, 0.0, 0.0);
|
|||
|
let id3bis = Matrix4x3::identity();
|
|||
|
|
|||
|
|
|||
|
let not_id1 = Matrix3::identity() * 2.0;
|
|||
|
let not_id2 = Matrix3x4::new(1.0, 0.0, 0.0, 0.0,
|
|||
|
0.0, 1.0, 0.0, 0.0,
|
|||
|
0.0, 0.0, 1.0, 1.0);
|
|||
|
let not_id3 = Matrix4x3::new(1.0, 0.0, 0.0,
|
|||
|
0.0, 1.0, 0.0,
|
|||
|
0.0, 0.0, 1.0,
|
|||
|
0.0, 1.0, 0.0);
|
|||
|
|
|||
|
assert_eq!(id2, id2bis);
|
|||
|
assert_eq!(id3, id3bis);
|
|||
|
assert!(id1.is_identity(0.0));
|
|||
|
assert!(id2.is_identity(0.0));
|
|||
|
assert!(id3.is_identity(0.0));
|
|||
|
assert!(!not_id1.is_identity(0.0));
|
|||
|
assert!(!not_id2.is_identity(0.0));
|
|||
|
assert!(!not_id3.is_identity(0.0));
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn coordinates() {
|
|||
|
let a = Matrix3x4::new(11, 12, 13, 14,
|
|||
|
21, 22, 23, 24,
|
|||
|
31, 32, 33, 34);
|
|||
|
|
|||
|
assert_eq!(a.m11, 11);
|
|||
|
assert_eq!(a.m12, 12);
|
|||
|
assert_eq!(a.m13, 13);
|
|||
|
assert_eq!(a.m14, 14);
|
|||
|
|
|||
|
assert_eq!(a.m21, 21);
|
|||
|
assert_eq!(a.m22, 22);
|
|||
|
assert_eq!(a.m23, 23);
|
|||
|
assert_eq!(a.m24, 24);
|
|||
|
|
|||
|
assert_eq!(a.m31, 31);
|
|||
|
assert_eq!(a.m32, 32);
|
|||
|
assert_eq!(a.m33, 33);
|
|||
|
assert_eq!(a.m34, 34);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn from_diagonal() {
|
|||
|
let diag = Vector3::new(1, 2, 3);
|
|||
|
let expected = Matrix3::new(
|
|||
|
1, 0, 0,
|
|||
|
0, 2, 0,
|
|||
|
0, 0, 3);
|
|||
|
let a = Matrix3::from_diagonal(&diag);
|
|||
|
|
|||
|
assert_eq!(a, expected);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn from_rows() {
|
|||
|
let rows = &[
|
|||
|
RowVector4::new(11, 12, 13, 14),
|
|||
|
RowVector4::new(21, 22, 23, 24),
|
|||
|
RowVector4::new(31, 32, 33, 34)
|
|||
|
];
|
|||
|
|
|||
|
let expected = Matrix3x4::new(
|
|||
|
11, 12, 13, 14,
|
|||
|
21, 22, 23, 24,
|
|||
|
31, 32, 33, 34);
|
|||
|
|
|||
|
let a = Matrix3x4::from_rows(rows);
|
|||
|
|
|||
|
assert_eq!(a, expected);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn from_columns() {
|
|||
|
let columns = &[
|
|||
|
Vector3::new(11, 21, 31),
|
|||
|
Vector3::new(12, 22, 32),
|
|||
|
Vector3::new(13, 23, 33),
|
|||
|
Vector3::new(14, 24, 34)
|
|||
|
];
|
|||
|
|
|||
|
let expected = Matrix3x4::new(
|
|||
|
11, 12, 13, 14,
|
|||
|
21, 22, 23, 24,
|
|||
|
31, 32, 33, 34);
|
|||
|
|
|||
|
let a = Matrix3x4::from_columns(columns);
|
|||
|
|
|||
|
assert_eq!(a, expected);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn from_columns_dynamic() {
|
|||
|
let columns = &[
|
|||
|
DVector::from_row_slice(3, &[11, 21, 31]),
|
|||
|
DVector::from_row_slice(3, &[12, 22, 32]),
|
|||
|
DVector::from_row_slice(3, &[13, 23, 33]),
|
|||
|
DVector::from_row_slice(3, &[14, 24, 34])
|
|||
|
];
|
|||
|
|
|||
|
let expected = DMatrix::from_row_slice(3, 4,
|
|||
|
&[ 11, 12, 13, 14,
|
|||
|
21, 22, 23, 24,
|
|||
|
31, 32, 33, 34 ]);
|
|||
|
|
|||
|
let a = DMatrix::from_columns(columns);
|
|||
|
|
|||
|
assert_eq!(a, expected);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
#[should_panic]
|
|||
|
fn from_too_many_rows() {
|
|||
|
let rows = &[
|
|||
|
RowVector4::new(11, 12, 13, 14),
|
|||
|
RowVector4::new(21, 22, 23, 24),
|
|||
|
RowVector4::new(31, 32, 33, 34),
|
|||
|
RowVector4::new(31, 32, 33, 34)
|
|||
|
];
|
|||
|
|
|||
|
let _ = Matrix3x4::from_rows(rows);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
#[should_panic]
|
|||
|
fn from_not_enough_columns() {
|
|||
|
let columns = &[
|
|||
|
Vector3::new(11, 21, 31),
|
|||
|
Vector3::new(14, 24, 34)
|
|||
|
];
|
|||
|
|
|||
|
let _ = Matrix3x4::from_columns(columns);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
#[should_panic]
|
|||
|
fn from_rows_with_different_dimensions() {
|
|||
|
let columns = &[
|
|||
|
DVector::from_row_slice(3, &[11, 21, 31]),
|
|||
|
DVector::from_row_slice(3, &[12, 22, 32, 33])
|
|||
|
];
|
|||
|
|
|||
|
let _ = DMatrix::from_columns(columns);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn to_homogeneous() {
|
|||
|
let a = Vector3::new(1.0, 2.0, 3.0);
|
|||
|
let expected_a = Vector4::new(1.0, 2.0, 3.0, 0.0);
|
|||
|
|
|||
|
let b = DVector::from_row_slice(3, &[1.0, 2.0, 3.0]);
|
|||
|
let expected_b = DVector::from_row_slice(4, &[1.0, 2.0, 3.0, 0.0]);
|
|||
|
|
|||
|
assert_eq!(a.to_homogeneous(), expected_a);
|
|||
|
assert_eq!(b.to_homogeneous(), expected_b);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn simple_add() {
|
|||
|
let a = Matrix2x3::new(1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0);
|
|||
|
|
|||
|
let b = Matrix2x3::new(10.0, 20.0, 30.0,
|
|||
|
40.0, 50.0, 60.0);
|
|||
|
let c = DMatrix::from_row_slice(2, 3, &[ 10.0, 20.0, 30.0,
|
|||
|
40.0, 50.0, 60.0 ]);
|
|||
|
|
|||
|
let expected = Matrix2x3::new(11.0, 22.0, 33.0,
|
|||
|
44.0, 55.0, 66.0);
|
|||
|
|
|||
|
assert_eq!(expected, &a + &b);
|
|||
|
assert_eq!(expected, &a + b);
|
|||
|
assert_eq!(expected, a + &b);
|
|||
|
assert_eq!(expected, a + b);
|
|||
|
|
|||
|
// Sum of a static matrix with a dynamic one.
|
|||
|
assert_eq!(expected, &a + &c);
|
|||
|
assert_eq!(expected, a + &c);
|
|||
|
assert_eq!(expected, &c + &a);
|
|||
|
assert_eq!(expected, &c + a);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn simple_scalar_mul() {
|
|||
|
let a = Matrix2x3::new(1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0);
|
|||
|
|
|||
|
let expected = Matrix2x3::new(10.0, 20.0, 30.0,
|
|||
|
40.0, 50.0, 60.0);
|
|||
|
|
|||
|
assert_eq!(expected, a * 10.0);
|
|||
|
assert_eq!(expected, &a * 10.0);
|
|||
|
assert_eq!(expected, 10.0 * a);
|
|||
|
assert_eq!(expected, 10.0 * &a);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn simple_mul() {
|
|||
|
let a = Matrix2x3::new(1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0);
|
|||
|
|
|||
|
let b = Matrix3x4::new(10.0, 20.0, 30.0, 40.0,
|
|||
|
50.0, 60.0, 70.0, 80.0,
|
|||
|
90.0, 100.0, 110.0, 120.0);
|
|||
|
|
|||
|
let expected = Matrix2x4::new(380.0, 440.0, 500.0, 560.0,
|
|||
|
830.0, 980.0, 1130.0, 1280.0);
|
|||
|
|
|||
|
assert_eq!(expected, &a * &b);
|
|||
|
assert_eq!(expected, a * &b);
|
|||
|
assert_eq!(expected, &a * b);
|
|||
|
assert_eq!(expected, a * b);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn simple_scalar_conversion() {
|
|||
|
let a = Matrix2x3::new(1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0);
|
|||
|
let expected = Matrix2x3::new(1, 2, 3,
|
|||
|
4, 5, 6);
|
|||
|
|
|||
|
let a_u32: Matrix2x3<u32> = na::try_convert(a).unwrap(); // f32 -> u32
|
|||
|
let a_f32: Matrix2x3<f32> = na::convert(a_u32); // u32 -> f32
|
|||
|
|
|||
|
assert_eq!(a, a_f32);
|
|||
|
assert_eq!(expected, a_u32);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn simple_transpose() {
|
|||
|
let a = Matrix2x3::new(1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0);
|
|||
|
let expected = Matrix3x2::new(1.0, 4.0,
|
|||
|
2.0, 5.0,
|
|||
|
3.0, 6.0);
|
|||
|
|
|||
|
assert_eq!(a.transpose(), expected);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn simple_transpose_mut() {
|
|||
|
let mut a = Matrix3::new(1.0, 2.0, 3.0,
|
|||
|
4.0, 5.0, 6.0,
|
|||
|
7.0, 8.0, 9.0);
|
|||
|
let expected = Matrix3::new(1.0, 4.0, 7.0,
|
|||
|
2.0, 5.0, 8.0,
|
|||
|
3.0, 6.0, 9.0);
|
|||
|
|
|||
|
a.transpose_mut();
|
|||
|
assert_eq!(a, expected);
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn vector_index_mut() {
|
|||
|
let mut v = Vector3::new(1, 2, 3);
|
|||
|
|
|||
|
assert_eq!(v[0], 1);
|
|||
|
assert_eq!(v[1], 2);
|
|||
|
assert_eq!(v[2], 3);
|
|||
|
|
|||
|
v[0] = 10;
|
|||
|
v[1] = 20;
|
|||
|
v[2] = 30;
|
|||
|
|
|||
|
assert_eq!(v, Vector3::new(10, 20, 30));
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn components_mut() {
|
|||
|
let mut m2 = Matrix2::from_element(1.0);
|
|||
|
let mut m3 = Matrix3::from_element(1.0);
|
|||
|
let mut m4 = Matrix4::from_element(1.0);
|
|||
|
let mut m5 = Matrix5::from_element(1.0);
|
|||
|
let mut m6 = Matrix6::from_element(1.0);
|
|||
|
|
|||
|
m2.m11 = 0.0; m2.m12 = 0.0;
|
|||
|
m2.m21 = 0.0; m2.m22 = 0.0;
|
|||
|
|
|||
|
m3.m11 = 0.0; m3.m12 = 0.0; m3.m13 = 0.0;
|
|||
|
m3.m21 = 0.0; m3.m22 = 0.0; m3.m23 = 0.0;
|
|||
|
m3.m31 = 0.0; m3.m32 = 0.0; m3.m33 = 0.0;
|
|||
|
|
|||
|
m4.m11 = 0.0; m4.m12 = 0.0; m4.m13 = 0.0; m4.m14 = 0.0;
|
|||
|
m4.m21 = 0.0; m4.m22 = 0.0; m4.m23 = 0.0; m4.m24 = 0.0;
|
|||
|
m4.m31 = 0.0; m4.m32 = 0.0; m4.m33 = 0.0; m4.m34 = 0.0;
|
|||
|
m4.m41 = 0.0; m4.m42 = 0.0; m4.m43 = 0.0; m4.m44 = 0.0;
|
|||
|
|
|||
|
m5.m11 = 0.0; m5.m12 = 0.0; m5.m13 = 0.0; m5.m14 = 0.0; m5.m15 = 0.0;
|
|||
|
m5.m21 = 0.0; m5.m22 = 0.0; m5.m23 = 0.0; m5.m24 = 0.0; m5.m25 = 0.0;
|
|||
|
m5.m31 = 0.0; m5.m32 = 0.0; m5.m33 = 0.0; m5.m34 = 0.0; m5.m35 = 0.0;
|
|||
|
m5.m41 = 0.0; m5.m42 = 0.0; m5.m43 = 0.0; m5.m44 = 0.0; m5.m45 = 0.0;
|
|||
|
m5.m51 = 0.0; m5.m52 = 0.0; m5.m53 = 0.0; m5.m54 = 0.0; m5.m55 = 0.0;
|
|||
|
|
|||
|
m6.m11 = 0.0; m6.m12 = 0.0; m6.m13 = 0.0; m6.m14 = 0.0; m6.m15 = 0.0; m6.m16 = 0.0;
|
|||
|
m6.m21 = 0.0; m6.m22 = 0.0; m6.m23 = 0.0; m6.m24 = 0.0; m6.m25 = 0.0; m6.m26 = 0.0;
|
|||
|
m6.m31 = 0.0; m6.m32 = 0.0; m6.m33 = 0.0; m6.m34 = 0.0; m6.m35 = 0.0; m6.m36 = 0.0;
|
|||
|
m6.m41 = 0.0; m6.m42 = 0.0; m6.m43 = 0.0; m6.m44 = 0.0; m6.m45 = 0.0; m6.m46 = 0.0;
|
|||
|
m6.m51 = 0.0; m6.m52 = 0.0; m6.m53 = 0.0; m6.m54 = 0.0; m6.m55 = 0.0; m6.m56 = 0.0;
|
|||
|
m6.m61 = 0.0; m6.m62 = 0.0; m6.m63 = 0.0; m6.m64 = 0.0; m6.m65 = 0.0; m6.m66 = 0.0;
|
|||
|
|
|||
|
assert!(m2.is_zero());
|
|||
|
assert!(m3.is_zero());
|
|||
|
assert!(m4.is_zero());
|
|||
|
assert!(m5.is_zero());
|
|||
|
assert!(m6.is_zero());
|
|||
|
|
|||
|
|
|||
|
let mut v1 = Vector1::from_element(1.0);
|
|||
|
let mut v2 = Vector2::from_element(1.0);
|
|||
|
let mut v3 = Vector3::from_element(1.0);
|
|||
|
let mut v4 = Vector4::from_element(1.0);
|
|||
|
let mut v5 = Vector5::from_element(1.0);
|
|||
|
let mut v6 = Vector6::from_element(1.0);
|
|||
|
|
|||
|
v1.x = 0.0;
|
|||
|
v2.x = 0.0; v2.y = 0.0;
|
|||
|
v3.x = 0.0; v3.y = 0.0; v3.z = 0.0;
|
|||
|
v4.x = 0.0; v4.y = 0.0; v4.z = 0.0; v4.w = 0.0;
|
|||
|
v5.x = 0.0; v5.y = 0.0; v5.z = 0.0; v5.w = 0.0; v5.a = 0.0;
|
|||
|
v6.x = 0.0; v6.y = 0.0; v6.z = 0.0; v6.w = 0.0; v6.a = 0.0; v6.b = 0.0;
|
|||
|
|
|||
|
assert!(v1.is_zero());
|
|||
|
assert!(v2.is_zero());
|
|||
|
assert!(v3.is_zero());
|
|||
|
assert!(v4.is_zero());
|
|||
|
assert!(v5.is_zero());
|
|||
|
assert!(v6.is_zero());
|
|||
|
|
|||
|
// Check that the components order is correct.
|
|||
|
m3.m11 = 11.0; m3.m12 = 12.0; m3.m13 = 13.0;
|
|||
|
m3.m21 = 21.0; m3.m22 = 22.0; m3.m23 = 23.0;
|
|||
|
m3.m31 = 31.0; m3.m32 = 32.0; m3.m33 = 33.0;
|
|||
|
|
|||
|
let expected_m3 = Matrix3::new(11.0, 12.0, 13.0,
|
|||
|
21.0, 22.0, 23.0,
|
|||
|
31.0, 32.0, 33.0);
|
|||
|
assert_eq!(expected_m3, m3);
|
|||
|
}
|
|||
|
|
|||
|
#[cfg(feature = "arbitrary")]
|
|||
|
quickcheck!{
|
|||
|
/*
|
|||
|
*
|
|||
|
* Transposition.
|
|||
|
*
|
|||
|
*/
|
|||
|
fn transpose_transpose_is_self(m: Matrix2x3<f64>) -> bool {
|
|||
|
m.transpose().transpose() == m
|
|||
|
}
|
|||
|
|
|||
|
fn transpose_mut_transpose_mut_is_self(m: Matrix3<f64>) -> bool {
|
|||
|
let mut mm = m;
|
|||
|
mm.transpose_mut();
|
|||
|
mm.transpose_mut();
|
|||
|
m == mm
|
|||
|
}
|
|||
|
|
|||
|
fn transpose_transpose_is_id_dyn(m: DMatrix<f64>) -> bool {
|
|||
|
m.transpose().transpose() == m
|
|||
|
}
|
|||
|
|
|||
|
fn check_transpose_components_dyn(m: DMatrix<f64>) -> bool {
|
|||
|
let tr = m.transpose();
|
|||
|
let (nrows, ncols) = m.shape();
|
|||
|
|
|||
|
if nrows != tr.shape().1 || ncols != tr.shape().0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
for i in 0 .. nrows {
|
|||
|
for j in 0 .. ncols {
|
|||
|
if m[(i, j)] != tr[(j, i)] {
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
true
|
|||
|
}
|
|||
|
|
|||
|
fn tr_mul_is_transpose_then_mul(m: Matrix4x6<f64>, v: Vector4<f64>) -> bool {
|
|||
|
m.transpose() * v == m.tr_mul(&v)
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
*
|
|||
|
*
|
|||
|
* Inversion.
|
|||
|
*
|
|||
|
*
|
|||
|
*/
|
|||
|
fn self_mul_inv_is_id_dim1(m: Matrix1<f64>) -> bool {
|
|||
|
if let Some(im) = m.try_inverse() {
|
|||
|
let id = Matrix1::one();
|
|||
|
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
|
|||
|
relative_eq!(m * im, id, epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
else {
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn self_mul_inv_is_id_dim2(m: Matrix2<f64>) -> bool {
|
|||
|
if let Some(im) = m.try_inverse() {
|
|||
|
let id = Matrix2::one();
|
|||
|
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
|
|||
|
relative_eq!(m * im, id, epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
else {
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn self_mul_inv_is_id_dim3(m: Matrix3<f64>) -> bool {
|
|||
|
if let Some(im) = m.try_inverse() {
|
|||
|
let id = Matrix3::one();
|
|||
|
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
|
|||
|
relative_eq!(m * im, id, epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
else {
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn self_mul_inv_is_id_dim6(m: Matrix6<f64>) -> bool {
|
|||
|
if let Some(im) = m.try_inverse() {
|
|||
|
let id = Matrix6::one();
|
|||
|
relative_eq!(im * m, id, epsilon = 1.0e-7) &&
|
|||
|
relative_eq!(m * im, id, epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
else {
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
*
|
|||
|
* Normalization.
|
|||
|
*
|
|||
|
*/
|
|||
|
fn normalized_vec_norm_is_one(v: Vector3<f64>) -> bool {
|
|||
|
if let Some(nv) = v.try_normalize(1.0e-10) {
|
|||
|
relative_eq!(nv.norm(), 1.0, epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
else {
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn normalized_vec_norm_is_one_dyn(v: DVector<f64>) -> bool {
|
|||
|
if let Some(nv) = v.try_normalize(1.0e-10) {
|
|||
|
relative_eq!(nv.norm(), 1.0)
|
|||
|
}
|
|||
|
else {
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// FIXME: move this to alga ?
|
|||
|
macro_rules! finite_dim_inner_space_test(
|
|||
|
($($Vector: ident, $orthonormal_subspace: ident, $orthonormalization: ident);* $(;)*) => {$(
|
|||
|
#[cfg(feature = "arbitrary")]
|
|||
|
quickcheck!{
|
|||
|
fn $orthonormal_subspace(vs: Vec<$Vector<f64>>) -> bool {
|
|||
|
let mut given_basis = vs.clone();
|
|||
|
let given_basis_dim = $Vector::orthonormalize(&mut given_basis[..]);
|
|||
|
let mut ortho_basis = Vec::new();
|
|||
|
$Vector::orthonormal_subspace_basis(
|
|||
|
&given_basis[.. given_basis_dim],
|
|||
|
|e| { ortho_basis.push(*e); true }
|
|||
|
);
|
|||
|
|
|||
|
if !is_subspace_basis(&ortho_basis[..]) {
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
for v in vs {
|
|||
|
for b in &ortho_basis {
|
|||
|
if !relative_eq!(v.dot(b), 0.0, epsilon = 1.0e-7) {
|
|||
|
println!("Found dot product: {} · {} = {}", v, b, v.dot(b));
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
true
|
|||
|
}
|
|||
|
|
|||
|
fn $orthonormalization(vs: Vec<$Vector<f64>>) -> bool {
|
|||
|
let mut basis = vs.clone();
|
|||
|
let subdim = $Vector::orthonormalize(&mut basis[..]);
|
|||
|
|
|||
|
if !is_subspace_basis(&basis[.. subdim]) {
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
for mut e in vs {
|
|||
|
for b in &basis[.. subdim] {
|
|||
|
e -= e.dot(b) * b
|
|||
|
}
|
|||
|
|
|||
|
// Any element of `e` must be a linear combination of the basis elements.
|
|||
|
if !relative_eq!(e.norm(), 0.0, epsilon = 1.0e-7) {
|
|||
|
println!("Orthonormalization; element decomposition failure: {}", e);
|
|||
|
println!("... the non-zero norm is: {}", e.norm());
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
)*}
|
|||
|
);
|
|||
|
|
|||
|
finite_dim_inner_space_test!(
|
|||
|
Vector1, orthonormal_subspace_basis1, orthonormalize1;
|
|||
|
Vector2, orthonormal_subspace_basis2, orthonormalize2;
|
|||
|
Vector3, orthonormal_subspace_basis3, orthonormalize3;
|
|||
|
Vector4, orthonormal_subspace_basis4, orthonormalize4;
|
|||
|
Vector5, orthonormal_subspace_basis5, orthonormalize5;
|
|||
|
Vector6, orthonormal_subspace_basis6, orthonormalize6;
|
|||
|
);
|
|||
|
|
|||
|
/*
|
|||
|
*
|
|||
|
* Helper functions.
|
|||
|
*
|
|||
|
*/
|
|||
|
fn is_subspace_basis<T: FiniteDimInnerSpace<Real = f64> + Display>(vs: &[T]) -> bool {
|
|||
|
for i in 0 .. vs.len() {
|
|||
|
// Basis elements must be normalized.
|
|||
|
if !relative_eq!(vs[i].norm(), 1.0, epsilon = 1.0e-7) {
|
|||
|
println!("Non-zero basis element norm: {}", vs[i].norm());
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
for j in 0 .. i {
|
|||
|
// Basis elements must be orthogonal.
|
|||
|
if !relative_eq!(vs[i].dot(&vs[j]), 0.0, epsilon = 1.0e-7) {
|
|||
|
println!("Non-orthogonal basis elements: {} · {} = {}", vs[i], vs[j], vs[i].dot(&vs[j]));
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
true
|
|||
|
}
|