nalgebra/src/linalg/symmetric_tridiagonal.rs

161 lines
5.3 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Serialize};
use alga::general::Complex;
use allocator::Allocator;
use base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
2018-02-02 19:26:35 +08:00
use dimension::{DimDiff, DimSub, U1};
use storage::Storage;
use linalg::householder;
/// Tridiagonalization of a symmetric matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
2018-10-22 13:00:10 +08:00
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Serialize,
VectorN<N, DimDiff<D, U1>>: Serialize"
2018-10-22 13:00:10 +08:00
))
)]
#[cfg_attr(
feature = "serde-serialize",
2018-10-22 13:00:10 +08:00
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Deserialize<'de>,
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"
2018-10-22 13:00:10 +08:00
))
)]
#[derive(Clone, Debug)]
pub struct SymmetricTridiagonal<N: Complex, D: DimSub<U1>>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
2018-02-02 19:26:35 +08:00
{
tri: MatrixN<N, D>,
off_diagonal: VectorN<N, DimDiff<D, U1>>,
}
impl<N: Complex, D: DimSub<U1>> Copy for SymmetricTridiagonal<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Copy,
VectorN<N, DimDiff<D, U1>>: Copy,
2018-10-22 13:00:10 +08:00
{}
impl<N: Complex, D: DimSub<U1>> SymmetricTridiagonal<N, D>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
2018-02-02 19:26:35 +08:00
{
/// Computes the tridiagonalization of the symmetric matrix `m`.
///
/// Only the lower-triangular part (including the diagonal) of `m` is read.
pub fn new(mut m: MatrixN<N, D>) -> Self {
let dim = m.data.shape().0;
2019-03-12 20:15:02 +08:00
println!("Input m: {}", m.index((0.., 0..)));
2018-02-02 19:26:35 +08:00
assert!(
m.is_square(),
"Unable to compute the symmetric tridiagonal decomposition of a non-square matrix."
);
assert!(
dim.value() != 0,
"Unable to compute the symmetric tridiagonal decomposition of an empty matrix."
);
let mut off_diagonal = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
2018-02-02 19:26:35 +08:00
let mut p = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
2018-02-02 19:26:35 +08:00
for i in 0..dim.value() - 1 {
let mut m = m.rows_range_mut(i + 1..);
let (mut axis, mut m) = m.columns_range_pair_mut(i, i + 1..);
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
off_diagonal[i] = norm;
if not_zero {
2018-02-02 19:26:35 +08:00
let mut p = p.rows_range_mut(i..);
2019-03-12 20:15:02 +08:00
p.cgemv_symm(::convert(2.0), &m, &axis, N::zero());
let dot = axis.cdot(&p);
// p.axpy(-dot, &axis.conjugate(), N::one());
m.ger_symm(-N::one(), &p, &axis.conjugate(), N::one());
2019-03-12 20:15:02 +08:00
m.ger_symm(-N::one(), &axis, &p.conjugate(), N::one());
m.ger_symm(dot * ::convert(2.0), &axis, &axis.conjugate(), N::one());
}
}
Self {
2018-02-02 19:26:35 +08:00
tri: m,
off_diagonal,
}
}
#[doc(hidden)]
// For debugging.
pub fn internal_tri(&self) -> &MatrixN<N, D> {
&self.tri
}
/// Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this
/// decomposition.
pub fn unpack(self) -> (MatrixN<N, D>, VectorN<N, D>, VectorN<N, DimDiff<D, U1>>)
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D> {
let diag = self.diagonal();
2018-02-02 19:26:35 +08:00
let q = self.q();
(q, diag, self.off_diagonal)
}
/// Retrieve the diagonal, and off diagonal elements of this decomposition.
pub fn unpack_tridiagonal(self) -> (VectorN<N, D>, VectorN<N, DimDiff<D, U1>>)
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D> {
let diag = self.diagonal();
(diag, self.off_diagonal)
}
/// The diagonal components of this decomposition.
pub fn diagonal(&self) -> VectorN<N, D>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D> {
self.tri.diagonal()
}
/// The off-diagonal components of this decomposition.
pub fn off_diagonal(&self) -> &VectorN<N, DimDiff<D, U1>>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D> {
&self.off_diagonal
}
/// Computes the orthogonal matrix `Q` of this decomposition.
pub fn q(&self) -> MatrixN<N, D> {
householder::assemble_q(&self.tri)
}
/// Recomputes the original symmetric matrix.
pub fn recompose(mut self) -> MatrixN<N, D> {
let q = self.q();
self.tri.fill_lower_triangle(N::zero(), 2);
self.tri.fill_upper_triangle(N::zero(), 2);
2018-02-02 19:26:35 +08:00
for i in 0..self.off_diagonal.len() {
self.tri[(i + 1, i)] = self.off_diagonal[i];
self.tri[(i, i + 1)] = self.off_diagonal[i].conjugate();
}
&q * self.tri * q.conjugate_transpose()
}
}
impl<N: Complex, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
2018-02-02 19:26:35 +08:00
{
/// Computes the tridiagonalization of this symmetric matrix.
///
/// Only the lower-triangular part (including the diagonal) of `m` is read.
pub fn symmetric_tridiagonalize(self) -> SymmetricTridiagonal<N, D> {
SymmetricTridiagonal::new(self.into_owned())
}
}