nac3/nac3parser/src/fstring.rs
David Mak fe06b2806f [meta] Reorganize order of use declarations
Use declarations are now grouped into 4 groups:

- Declarations from the standard library
- Declarations from external crates
- Declarations from other crates in this project
- Declarations from within this module

Furthermore, all use declarations are grouped together to enhance
readability. super::super is also replaced by an equivalent crate::
declaration.
2024-10-04 12:52:01 +08:00

394 lines
14 KiB
Rust

use std::{iter, mem, str};
use self::FStringErrorType::*;
use crate::{
ast::{Constant, ConversionFlag, Expr, ExprKind, Location},
error::{FStringError, FStringErrorType, ParseError},
parser::parse_expression,
};
struct FStringParser<'a> {
chars: iter::Peekable<str::Chars<'a>>,
str_location: Location,
}
impl<'a> FStringParser<'a> {
fn new(source: &'a str, str_location: Location) -> Self {
Self { chars: source.chars().peekable(), str_location }
}
#[inline]
fn expr(&self, node: ExprKind) -> Expr {
Expr::new(self.str_location, node)
}
fn parse_formatted_value(&mut self) -> Result<Vec<Expr>, FStringErrorType> {
let mut expression = String::new();
let mut spec = None;
let mut delims = Vec::new();
let mut conversion = None;
let mut pred_expression_text = String::new();
let mut trailing_seq = String::new();
while let Some(ch) = self.chars.next() {
match ch {
// can be integrated better with the remainign code, but as a starting point ok
// in general I would do here a tokenizing of the fstrings to omit this peeking.
'!' if self.chars.peek() == Some(&'=') => {
expression.push_str("!=");
self.chars.next();
}
'=' if self.chars.peek() == Some(&'=') => {
expression.push_str("==");
self.chars.next();
}
'>' if self.chars.peek() == Some(&'=') => {
expression.push_str(">=");
self.chars.next();
}
'<' if self.chars.peek() == Some(&'=') => {
expression.push_str("<=");
self.chars.next();
}
'!' if delims.is_empty() && self.chars.peek() != Some(&'=') => {
if expression.trim().is_empty() {
return Err(EmptyExpression);
}
conversion = Some(match self.chars.next() {
Some('s') => ConversionFlag::Str,
Some('a') => ConversionFlag::Ascii,
Some('r') => ConversionFlag::Repr,
Some(_) => {
return Err(InvalidConversionFlag);
}
None => {
return Err(ExpectedRbrace);
}
});
if let Some(&peek) = self.chars.peek() {
if peek != '}' && peek != ':' {
return Err(ExpectedRbrace);
}
} else {
return Err(ExpectedRbrace);
}
}
// match a python 3.8 self documenting expression
// format '{' PYTHON_EXPRESSION '=' FORMAT_SPECIFIER? '}'
'=' if self.chars.peek() != Some(&'=') && delims.is_empty() => {
pred_expression_text = expression.to_string(); // safe expression before = to print it
}
':' if delims.is_empty() => {
let mut nested = false;
let mut in_nested = false;
let mut spec_expression = String::new();
while let Some(&next) = self.chars.peek() {
match next {
'{' => {
if in_nested {
return Err(ExpressionNestedTooDeeply);
}
in_nested = true;
nested = true;
self.chars.next();
continue;
}
'}' => {
if in_nested {
in_nested = false;
self.chars.next();
}
break;
}
_ => (),
}
spec_expression.push(next);
self.chars.next();
}
if in_nested {
return Err(UnclosedLbrace);
}
spec = Some(if nested {
Box::new(
self.expr(ExprKind::FormattedValue {
value: Box::new(
parse_fstring_expr(&spec_expression)
.map_err(|e| InvalidExpression(Box::new(e.error)))?,
),
conversion: None,
format_spec: None,
}),
)
} else {
Box::new(self.expr(ExprKind::Constant {
value: spec_expression.clone().into(),
kind: None,
}))
});
}
'(' | '{' | '[' => {
expression.push(ch);
delims.push(ch);
}
')' => {
if delims.pop() != Some('(') {
return Err(MismatchedDelimiter);
}
expression.push(ch);
}
']' => {
if delims.pop() != Some('[') {
return Err(MismatchedDelimiter);
}
expression.push(ch);
}
'}' if !delims.is_empty() => {
if delims.pop() != Some('{') {
return Err(MismatchedDelimiter);
}
expression.push(ch);
}
'}' => {
if expression.is_empty() {
return Err(EmptyExpression);
}
let ret = if pred_expression_text.is_empty() {
vec![self.expr(ExprKind::FormattedValue {
value: Box::new(
parse_fstring_expr(&expression)
.map_err(|e| InvalidExpression(Box::new(e.error)))?,
),
conversion,
format_spec: spec,
})]
} else {
vec![
self.expr(ExprKind::Constant {
value: Constant::Str(pred_expression_text + "="),
kind: None,
}),
self.expr(ExprKind::Constant {
value: trailing_seq.into(),
kind: None,
}),
self.expr(ExprKind::FormattedValue {
value: Box::new(
parse_fstring_expr(&expression)
.map_err(|e| InvalidExpression(Box::new(e.error)))?,
),
conversion,
format_spec: spec,
}),
]
};
return Ok(ret);
}
'"' | '\'' => {
expression.push(ch);
for next in &mut self.chars {
expression.push(next);
if next == ch {
break;
}
}
}
' ' if !pred_expression_text.is_empty() => {
trailing_seq.push(ch);
}
_ => {
expression.push(ch);
}
}
}
Err(UnclosedLbrace)
}
fn parse(mut self) -> Result<Expr, FStringErrorType> {
let mut content = String::new();
let mut values = vec![];
while let Some(ch) = self.chars.next() {
match ch {
'{' => {
if let Some('{') = self.chars.peek() {
self.chars.next();
content.push('{');
} else {
if !content.is_empty() {
values.push(self.expr(ExprKind::Constant {
value: mem::take(&mut content).into(),
kind: None,
}));
}
values.extend(self.parse_formatted_value()?);
}
}
'}' => {
if let Some('}') = self.chars.peek() {
self.chars.next();
content.push('}');
} else {
return Err(UnopenedRbrace);
}
}
_ => {
content.push(ch);
}
}
}
if !content.is_empty() {
values.push(self.expr(ExprKind::Constant { value: content.into(), kind: None }));
}
let s = match values.len() {
0 => self.expr(ExprKind::Constant { value: String::new().into(), kind: None }),
1 => values.into_iter().next().unwrap(),
_ => self.expr(ExprKind::JoinedStr { values }),
};
Ok(s)
}
}
fn parse_fstring_expr(source: &str) -> Result<Expr, ParseError> {
let fstring_body = format!("({source})");
parse_expression(&fstring_body)
}
/// Parse an fstring from a string, located at a certain position in the sourcecode.
/// In case of errors, we will get the location and the error returned.
pub fn parse_located_fstring(source: &str, location: Location) -> Result<Expr, FStringError> {
FStringParser::new(source, location).parse().map_err(|error| FStringError { error, location })
}
#[cfg(test)]
mod tests {
use super::*;
fn parse_fstring(source: &str) -> Result<Expr, FStringErrorType> {
FStringParser::new(source, Location::default()).parse()
}
#[test]
fn test_parse_fstring() {
let source = "{a}{ b }{{foo}}";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_nested_spec() {
let source = "{foo:{spec}}";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_not_nested_spec() {
let source = "{foo:spec}";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_empty_fstring() {
insta::assert_debug_snapshot!(parse_fstring("").unwrap());
}
#[test]
fn test_fstring_parse_selfdocumenting_base() {
let src = "{user=}";
let parse_ast = parse_fstring(src).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_parse_selfdocumenting_base_more() {
let src = "mix {user=} with text and {second=}";
let parse_ast = parse_fstring(src).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_fstring_parse_selfdocumenting_format() {
let src = "{user=:>10}";
let parse_ast = parse_fstring(src).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_invalid_fstring() {
assert_eq!(parse_fstring("{5!a"), Err(ExpectedRbrace));
assert_eq!(parse_fstring("{5!a1}"), Err(ExpectedRbrace));
assert_eq!(parse_fstring("{5!"), Err(ExpectedRbrace));
assert_eq!(parse_fstring("abc{!a 'cat'}"), Err(EmptyExpression));
assert_eq!(parse_fstring("{!a"), Err(EmptyExpression));
assert_eq!(parse_fstring("{ !a}"), Err(EmptyExpression));
assert_eq!(parse_fstring("{5!}"), Err(InvalidConversionFlag));
assert_eq!(parse_fstring("{5!x}"), Err(InvalidConversionFlag));
assert_eq!(parse_fstring("{a:{a:{b}}"), Err(ExpressionNestedTooDeeply));
assert_eq!(parse_fstring("{a:b}}"), Err(UnopenedRbrace));
assert_eq!(parse_fstring("}"), Err(UnopenedRbrace));
assert_eq!(parse_fstring("{a:{b}"), Err(UnclosedLbrace));
assert_eq!(parse_fstring("{"), Err(UnclosedLbrace));
assert_eq!(parse_fstring("{}"), Err(EmptyExpression));
// TODO: check for InvalidExpression enum?
assert!(parse_fstring("{class}").is_err());
}
#[test]
fn test_parse_fstring_not_equals() {
let source = "{1 != 2}";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_equals() {
let source = "{42 == 42}";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_selfdoc_prec_space() {
let source = "{x =}";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_selfdoc_trailing_space() {
let source = "{x= }";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_yield_expr() {
let source = "{yield}";
let parse_ast = parse_fstring(source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
}