967 lines
33 KiB
Rust
967 lines
33 KiB
Rust
use crate::context::InferenceContext;
|
|
use crate::inference_core::resolve_call;
|
|
use crate::magic_methods::*;
|
|
use crate::primitives::*;
|
|
use crate::typedef::{Type, TypeEnum::*};
|
|
use rustpython_parser::ast::{
|
|
Comparison, Comprehension, ComprehensionKind, Expression, ExpressionType, Operator,
|
|
UnaryOperator,
|
|
};
|
|
use std::convert::TryInto;
|
|
|
|
type ParserResult = Result<Option<Type>, String>;
|
|
|
|
pub fn infer_expr<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
expr: &'b Expression,
|
|
) -> ParserResult {
|
|
match &expr.node {
|
|
ExpressionType::Number { value } => infer_constant(ctx, value),
|
|
ExpressionType::Identifier { name } => infer_identifier(ctx, name),
|
|
ExpressionType::List { elements } => infer_list(ctx, elements),
|
|
ExpressionType::Tuple { elements } => infer_tuple(ctx, elements),
|
|
ExpressionType::Attribute { value, name } => infer_attribute(ctx, value, name),
|
|
ExpressionType::BoolOp { values, .. } => infer_bool_ops(ctx, values),
|
|
ExpressionType::Binop { a, b, op } => infer_bin_ops(ctx, op, a, b),
|
|
ExpressionType::Unop { op, a } => infer_unary_ops(ctx, op, a),
|
|
ExpressionType::Compare { vals, ops } => infer_compare(ctx, vals, ops),
|
|
ExpressionType::Call {
|
|
args,
|
|
function,
|
|
keywords,
|
|
} => {
|
|
if !keywords.is_empty() {
|
|
Err("keyword is not supported".into())
|
|
} else {
|
|
infer_call(ctx, &args, &function)
|
|
}
|
|
}
|
|
ExpressionType::Subscript { a, b } => infer_subscript(ctx, a, b),
|
|
ExpressionType::IfExpression { test, body, orelse } => {
|
|
infer_if_expr(ctx, &test, &body, orelse)
|
|
}
|
|
ExpressionType::Comprehension { kind, generators } => match kind.as_ref() {
|
|
ComprehensionKind::List { element } => {
|
|
if generators.len() == 1 {
|
|
infer_list_comprehension(ctx, element, &generators[0])
|
|
} else {
|
|
Err("only 1 generator statement is supported".into())
|
|
}
|
|
}
|
|
_ => Err("only list comprehension is supported".into()),
|
|
},
|
|
ExpressionType::True | ExpressionType::False => Ok(Some(ctx.get_primitive(BOOL_TYPE))),
|
|
_ => Err("not supported".into()),
|
|
}
|
|
}
|
|
|
|
fn infer_constant(
|
|
ctx: &mut InferenceContext,
|
|
value: &rustpython_parser::ast::Number,
|
|
) -> ParserResult {
|
|
use rustpython_parser::ast::Number;
|
|
match value {
|
|
Number::Integer { value } => {
|
|
let int32: Result<i32, _> = value.try_into();
|
|
if int32.is_ok() {
|
|
Ok(Some(ctx.get_primitive(INT32_TYPE)))
|
|
} else {
|
|
let int64: Result<i64, _> = value.try_into();
|
|
if int64.is_ok() {
|
|
Ok(Some(ctx.get_primitive(INT64_TYPE)))
|
|
} else {
|
|
Err("integer out of range".into())
|
|
}
|
|
}
|
|
}
|
|
Number::Float { .. } => Ok(Some(ctx.get_primitive(FLOAT_TYPE))),
|
|
_ => Err("not supported".into()),
|
|
}
|
|
}
|
|
|
|
fn infer_identifier(ctx: &mut InferenceContext, name: &str) -> ParserResult {
|
|
Ok(Some(ctx.resolve(name)?))
|
|
}
|
|
|
|
fn infer_list<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
elements: &'b [Expression],
|
|
) -> ParserResult {
|
|
if elements.is_empty() {
|
|
return Ok(Some(ParametricType(LIST_TYPE, vec![BotType.into()]).into()));
|
|
}
|
|
|
|
let mut types = elements.iter().map(|v| infer_expr(ctx, v));
|
|
|
|
let head = types.next().unwrap()?;
|
|
if head.is_none() {
|
|
return Err("list elements must have some type".into());
|
|
}
|
|
for v in types {
|
|
if v? != head {
|
|
return Err("inhomogeneous list is not allowed".into());
|
|
}
|
|
}
|
|
Ok(Some(ParametricType(LIST_TYPE, vec![head.unwrap()]).into()))
|
|
}
|
|
|
|
fn infer_tuple<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
elements: &'b [Expression],
|
|
) -> ParserResult {
|
|
let types: Result<Option<Vec<_>>, String> =
|
|
elements.iter().map(|v| infer_expr(ctx, v)).collect();
|
|
if let Some(t) = types? {
|
|
Ok(Some(ParametricType(TUPLE_TYPE, t).into()))
|
|
} else {
|
|
Err("tuple elements must have some type".into())
|
|
}
|
|
}
|
|
|
|
fn infer_attribute<'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
value: &'a Expression,
|
|
name: &str,
|
|
) -> ParserResult {
|
|
let value = infer_expr(ctx, value)?.ok_or_else(|| "no value".to_string())?;
|
|
if let TypeVariable(id) = value.as_ref() {
|
|
let v = ctx.get_variable_def(*id);
|
|
if v.bound.is_empty() {
|
|
return Err("no fields on unbounded type variable".into());
|
|
}
|
|
let ty = v.bound[0].get_base(ctx).and_then(|v| v.fields.get(name));
|
|
if ty.is_none() {
|
|
return Err("unknown field".into());
|
|
}
|
|
for x in v.bound[1..].iter() {
|
|
let ty1 = x.get_base(ctx).and_then(|v| v.fields.get(name));
|
|
if ty1 != ty {
|
|
return Err("unknown field (type mismatch between variants)".into());
|
|
}
|
|
}
|
|
return Ok(Some(ty.unwrap().clone()));
|
|
}
|
|
|
|
match value.get_base(ctx) {
|
|
Some(b) => match b.fields.get(name) {
|
|
Some(t) => Ok(Some(t.clone())),
|
|
None => Err("no such field".into()),
|
|
},
|
|
None => Err("this object has no fields".into()),
|
|
}
|
|
}
|
|
|
|
fn infer_bool_ops<'a>(ctx: &mut InferenceContext<'a>, values: &'a [Expression]) -> ParserResult {
|
|
assert_eq!(values.len(), 2);
|
|
let left = infer_expr(ctx, &values[0])?.ok_or_else(|| "no value".to_string())?;
|
|
let right = infer_expr(ctx, &values[1])?.ok_or_else(|| "no value".to_string())?;
|
|
|
|
let b = ctx.get_primitive(BOOL_TYPE);
|
|
if left == b && right == b {
|
|
Ok(Some(b))
|
|
} else {
|
|
Err("bool operands must be bool".into())
|
|
}
|
|
}
|
|
|
|
fn infer_bin_ops<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
op: &Operator,
|
|
left: &'b Expression,
|
|
right: &'b Expression,
|
|
) -> ParserResult {
|
|
let left = infer_expr(ctx, left)?.ok_or_else(|| "no value".to_string())?;
|
|
let right = infer_expr(ctx, right)?.ok_or_else(|| "no value".to_string())?;
|
|
let fun = binop_name(op);
|
|
resolve_call(ctx, Some(left), fun, &[right])
|
|
}
|
|
|
|
fn infer_unary_ops<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
op: &UnaryOperator,
|
|
obj: &'b Expression,
|
|
) -> ParserResult {
|
|
let ty = infer_expr(ctx, obj)?.ok_or_else(|| "no value".to_string())?;
|
|
if let UnaryOperator::Not = op {
|
|
if ty == ctx.get_primitive(BOOL_TYPE) {
|
|
Ok(Some(ty))
|
|
} else {
|
|
Err("logical not must be applied to bool".into())
|
|
}
|
|
} else {
|
|
resolve_call(ctx, Some(ty), unaryop_name(op), &[])
|
|
}
|
|
}
|
|
|
|
fn infer_compare<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
vals: &'b [Expression],
|
|
ops: &'b [Comparison],
|
|
) -> ParserResult {
|
|
let types: Result<Option<Vec<_>>, _> = vals.iter().map(|v| infer_expr(ctx, v)).collect();
|
|
let types = types?;
|
|
if types.is_none() {
|
|
return Err("comparison operands must have type".into());
|
|
}
|
|
let types = types.unwrap();
|
|
let boolean = ctx.get_primitive(BOOL_TYPE);
|
|
let left = &types[..types.len() - 1];
|
|
let right = &types[1..];
|
|
|
|
for ((a, b), op) in left.iter().zip(right.iter()).zip(ops.iter()) {
|
|
let fun = comparison_name(op).ok_or_else(|| "unsupported comparison".to_string())?;
|
|
let ty = resolve_call(ctx, Some(a.clone()), fun, &[b.clone()])?;
|
|
if ty.is_none() || ty.unwrap() != boolean {
|
|
return Err("comparison result must be boolean".into());
|
|
}
|
|
}
|
|
Ok(Some(boolean))
|
|
}
|
|
|
|
fn infer_call<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
args: &'b [Expression],
|
|
function: &'b Expression,
|
|
) -> ParserResult {
|
|
let types: Result<Option<Vec<_>>, _> = args.iter().map(|v| infer_expr(ctx, v)).collect();
|
|
let types = types?;
|
|
if types.is_none() {
|
|
return Err("function params must have type".into());
|
|
}
|
|
|
|
let (obj, fun) = match &function.node {
|
|
ExpressionType::Identifier { name } => (None, name),
|
|
ExpressionType::Attribute { value, name } => (
|
|
Some(infer_expr(ctx, &value)?.ok_or_else(|| "no value".to_string())?),
|
|
name,
|
|
),
|
|
_ => return Err("not supported".into()),
|
|
};
|
|
resolve_call(ctx, obj, fun.as_str(), &types.unwrap())
|
|
}
|
|
|
|
fn infer_subscript<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
a: &'b Expression,
|
|
b: &'b Expression,
|
|
) -> ParserResult {
|
|
let a = infer_expr(ctx, a)?.ok_or_else(|| "no value".to_string())?;
|
|
let t = if let ParametricType(LIST_TYPE, ls) = a.as_ref() {
|
|
ls[0].clone()
|
|
} else {
|
|
return Err("subscript is not supported for types other than list".into());
|
|
};
|
|
|
|
match &b.node {
|
|
ExpressionType::Slice { elements } => {
|
|
let int32 = ctx.get_primitive(INT32_TYPE);
|
|
let types: Result<Option<Vec<_>>, _> = elements
|
|
.iter()
|
|
.map(|v| {
|
|
if let ExpressionType::None = v.node {
|
|
Ok(Some(int32.clone()))
|
|
} else {
|
|
infer_expr(ctx, v)
|
|
}
|
|
})
|
|
.collect();
|
|
let types = types?.ok_or_else(|| "slice must have type".to_string())?;
|
|
if types.iter().all(|v| v == &int32) {
|
|
Ok(Some(a))
|
|
} else {
|
|
Err("slice must be int32 type".into())
|
|
}
|
|
}
|
|
_ => {
|
|
let b = infer_expr(ctx, b)?.ok_or_else(|| "no value".to_string())?;
|
|
if b == ctx.get_primitive(INT32_TYPE) {
|
|
Ok(Some(t))
|
|
} else {
|
|
Err("index must be either slice or int32".into())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn infer_if_expr<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
test: &'b Expression,
|
|
body: &'b Expression,
|
|
orelse: &'b Expression,
|
|
) -> ParserResult {
|
|
let test = infer_expr(ctx, test)?.ok_or_else(|| "no value".to_string())?;
|
|
if test != ctx.get_primitive(BOOL_TYPE) {
|
|
return Err("test should be bool".into());
|
|
}
|
|
|
|
let body = infer_expr(ctx, body)?;
|
|
let orelse = infer_expr(ctx, orelse)?;
|
|
if body.as_ref() == orelse.as_ref() {
|
|
Ok(body)
|
|
} else {
|
|
Err("divergent type".into())
|
|
}
|
|
}
|
|
|
|
fn infer_simple_binding<'a: 'b, 'b>(
|
|
ctx: &mut InferenceContext<'b>,
|
|
name: &'a Expression,
|
|
ty: Type,
|
|
) -> Result<(), String> {
|
|
match &name.node {
|
|
ExpressionType::Identifier { name } => {
|
|
if name == "_" {
|
|
Ok(())
|
|
} else if ctx.defined(name.as_str()) {
|
|
Err("duplicated naming".into())
|
|
} else {
|
|
ctx.assign(name.as_str(), ty)?;
|
|
Ok(())
|
|
}
|
|
}
|
|
ExpressionType::Tuple { elements } => {
|
|
if let ParametricType(TUPLE_TYPE, ls) = ty.as_ref() {
|
|
if elements.len() == ls.len() {
|
|
for (a, b) in elements.iter().zip(ls.iter()) {
|
|
infer_simple_binding(ctx, a, b.clone())?;
|
|
}
|
|
Ok(())
|
|
} else {
|
|
Err("different length".into())
|
|
}
|
|
} else {
|
|
Err("not supported".into())
|
|
}
|
|
}
|
|
_ => Err("not supported".into()),
|
|
}
|
|
}
|
|
|
|
fn infer_list_comprehension<'b: 'a, 'a>(
|
|
ctx: &mut InferenceContext<'a>,
|
|
element: &'b Expression,
|
|
comprehension: &'b Comprehension,
|
|
) -> ParserResult {
|
|
if comprehension.is_async {
|
|
return Err("async is not supported".into());
|
|
}
|
|
|
|
let iter = infer_expr(ctx, &comprehension.iter)?.ok_or_else(|| "no value".to_string())?;
|
|
if let ParametricType(LIST_TYPE, ls) = iter.as_ref() {
|
|
ctx.with_scope(|ctx| {
|
|
infer_simple_binding(ctx, &comprehension.target, ls[0].clone())?;
|
|
|
|
let boolean = ctx.get_primitive(BOOL_TYPE);
|
|
for test in comprehension.ifs.iter() {
|
|
let result =
|
|
infer_expr(ctx, test)?.ok_or_else(|| "no value in test".to_string())?;
|
|
if result != boolean {
|
|
return Err("test must be bool".into());
|
|
}
|
|
}
|
|
let result = infer_expr(ctx, element)?.ok_or_else(|| "no value")?;
|
|
Ok(Some(ParametricType(LIST_TYPE, vec![result]).into()))
|
|
})
|
|
.1
|
|
} else {
|
|
Err("iteration is supported for list only".into())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use crate::context::*;
|
|
use crate::typedef::*;
|
|
use rustpython_parser::parser::parse_expression;
|
|
use std::collections::HashMap;
|
|
use std::rc::Rc;
|
|
|
|
fn get_inference_context(ctx: TopLevelContext) -> InferenceContext {
|
|
InferenceContext::new(ctx, Box::new(|_| Err("unbounded identifier".into())))
|
|
}
|
|
|
|
#[test]
|
|
fn test_constants() {
|
|
let ctx = basic_ctx();
|
|
let mut ctx = get_inference_context(ctx);
|
|
|
|
let ast = parse_expression("123").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("2147483647").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("2147483648").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT64_TYPE));
|
|
|
|
let ast = parse_expression("9223372036854775807").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT64_TYPE));
|
|
|
|
let ast = parse_expression("9223372036854775808").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("integer out of range".into()));
|
|
|
|
let ast = parse_expression("123.456").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(FLOAT_TYPE));
|
|
|
|
let ast = parse_expression("True").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(BOOL_TYPE));
|
|
|
|
let ast = parse_expression("False").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(BOOL_TYPE));
|
|
}
|
|
|
|
#[test]
|
|
fn test_identifier() {
|
|
let ctx = basic_ctx();
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("abc", ctx.get_primitive(INT32_TYPE)).unwrap();
|
|
|
|
let ast = parse_expression("abc").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("ab").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("unbounded identifier".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_list() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"foo",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("abc", ctx.get_primitive(INT32_TYPE)).unwrap();
|
|
// def is reserved...
|
|
ctx.assign("efg", ctx.get_primitive(INT32_TYPE)).unwrap();
|
|
ctx.assign("xyz", ctx.get_primitive(FLOAT_TYPE)).unwrap();
|
|
|
|
let ast = parse_expression("[]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result.unwrap().unwrap(),
|
|
ParametricType(LIST_TYPE, vec![BotType.into()]).into()
|
|
);
|
|
|
|
let ast = parse_expression("[abc]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result.unwrap().unwrap(),
|
|
ParametricType(LIST_TYPE, vec![ctx.get_primitive(INT32_TYPE)]).into()
|
|
);
|
|
|
|
let ast = parse_expression("[abc, efg]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result.unwrap().unwrap(),
|
|
ParametricType(LIST_TYPE, vec![ctx.get_primitive(INT32_TYPE)]).into()
|
|
);
|
|
|
|
let ast = parse_expression("[abc, efg, xyz]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("inhomogeneous list is not allowed".into()));
|
|
|
|
let ast = parse_expression("[foo()]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("list elements must have some type".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_tuple() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"foo",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("abc", ctx.get_primitive(INT32_TYPE)).unwrap();
|
|
ctx.assign("efg", ctx.get_primitive(FLOAT_TYPE)).unwrap();
|
|
|
|
let ast = parse_expression("(abc, efg)").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result.unwrap().unwrap(),
|
|
ParametricType(
|
|
TUPLE_TYPE,
|
|
vec![ctx.get_primitive(INT32_TYPE), ctx.get_primitive(FLOAT_TYPE)]
|
|
)
|
|
.into()
|
|
);
|
|
|
|
let ast = parse_expression("(abc, efg, foo())").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("tuple elements must have some type".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_attribute() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"none",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
let int32 = ctx.get_primitive(INT32_TYPE);
|
|
let float = ctx.get_primitive(FLOAT_TYPE);
|
|
|
|
let foo = ctx.add_class(ClassDef {
|
|
base: TypeDef {
|
|
name: "Foo",
|
|
fields: HashMap::new(),
|
|
methods: HashMap::new(),
|
|
},
|
|
parents: vec![],
|
|
});
|
|
let foo_def = ctx.get_class_def_mut(foo);
|
|
foo_def.base.fields.insert("a", int32.clone());
|
|
foo_def.base.fields.insert("b", ClassType(foo).into());
|
|
foo_def.base.fields.insert("c", int32.clone());
|
|
|
|
let bar = ctx.add_class(ClassDef {
|
|
base: TypeDef {
|
|
name: "Bar",
|
|
fields: HashMap::new(),
|
|
methods: HashMap::new(),
|
|
},
|
|
parents: vec![],
|
|
});
|
|
let bar_def = ctx.get_class_def_mut(bar);
|
|
bar_def.base.fields.insert("a", int32);
|
|
bar_def.base.fields.insert("b", ClassType(bar).into());
|
|
bar_def.base.fields.insert("c", float);
|
|
|
|
let v0 = ctx.add_variable(VarDef {
|
|
name: "v0",
|
|
bound: vec![],
|
|
});
|
|
|
|
let v1 = ctx.add_variable(VarDef {
|
|
name: "v1",
|
|
bound: vec![ClassType(foo).into(), ClassType(bar).into()],
|
|
});
|
|
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("foo", Rc::new(ClassType(foo))).unwrap();
|
|
ctx.assign("bar", Rc::new(ClassType(bar))).unwrap();
|
|
ctx.assign("foobar", Rc::new(VirtualClassType(foo)))
|
|
.unwrap();
|
|
ctx.assign("v0", ctx.get_variable(v0)).unwrap();
|
|
ctx.assign("v1", ctx.get_variable(v1)).unwrap();
|
|
ctx.assign("bot", Rc::new(BotType)).unwrap();
|
|
|
|
let ast = parse_expression("foo.a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("foo.d").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no such field".into()));
|
|
|
|
let ast = parse_expression("foobar.a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("v0.a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no fields on unbounded type variable".into()));
|
|
|
|
let ast = parse_expression("v1.a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
// shall we support this?
|
|
let ast = parse_expression("v1.b").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result,
|
|
Err("unknown field (type mismatch between variants)".into())
|
|
);
|
|
// assert_eq!(result.unwrap().unwrap(), TypeVariable(v1).into());
|
|
|
|
let ast = parse_expression("v1.c").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result,
|
|
Err("unknown field (type mismatch between variants)".into())
|
|
);
|
|
|
|
let ast = parse_expression("v1.d").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("unknown field".into()));
|
|
|
|
let ast = parse_expression("none().a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no value".into()));
|
|
|
|
let ast = parse_expression("bot.a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("this object has no fields".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_bool_ops() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"none",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
let mut ctx = get_inference_context(ctx);
|
|
|
|
let ast = parse_expression("True and False").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(BOOL_TYPE));
|
|
|
|
let ast = parse_expression("True and none()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no value".into()));
|
|
|
|
let ast = parse_expression("True and 123").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("bool operands must be bool".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_bin_ops() {
|
|
let mut ctx = basic_ctx();
|
|
let v0 = ctx.add_variable(VarDef {
|
|
name: "v0",
|
|
bound: vec![ctx.get_primitive(INT32_TYPE), ctx.get_primitive(INT64_TYPE)],
|
|
});
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("a", TypeVariable(v0).into()).unwrap();
|
|
|
|
let ast = parse_expression("1 + 2 + 3").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("a + a + a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), TypeVariable(v0).into());
|
|
}
|
|
|
|
#[test]
|
|
fn test_unary_ops() {
|
|
let mut ctx = basic_ctx();
|
|
let v0 = ctx.add_variable(VarDef {
|
|
name: "v0",
|
|
bound: vec![ctx.get_primitive(INT32_TYPE), ctx.get_primitive(INT64_TYPE)],
|
|
});
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("a", TypeVariable(v0).into()).unwrap();
|
|
|
|
let ast = parse_expression("-(123)").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("-a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), TypeVariable(v0).into());
|
|
|
|
let ast = parse_expression("not True").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(BOOL_TYPE));
|
|
|
|
let ast = parse_expression("not (1)").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("logical not must be applied to bool".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_compare() {
|
|
let mut ctx = basic_ctx();
|
|
let v0 = ctx.add_variable(VarDef {
|
|
name: "v0",
|
|
bound: vec![ctx.get_primitive(INT32_TYPE), ctx.get_primitive(INT64_TYPE)],
|
|
});
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("a", TypeVariable(v0).into()).unwrap();
|
|
|
|
let ast = parse_expression("a == a == a").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(BOOL_TYPE));
|
|
|
|
let ast = parse_expression("a == a == 1").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("not equal".into()));
|
|
|
|
let ast = parse_expression("True > False").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no such function".into()));
|
|
|
|
let ast = parse_expression("True in False").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("unsupported comparison".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_call() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"none",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
|
|
let foo = ctx.add_class(ClassDef {
|
|
base: TypeDef {
|
|
name: "Foo",
|
|
fields: HashMap::new(),
|
|
methods: HashMap::new(),
|
|
},
|
|
parents: vec![],
|
|
});
|
|
let foo_def = ctx.get_class_def_mut(foo);
|
|
foo_def.base.methods.insert(
|
|
"a",
|
|
FnDef {
|
|
args: vec![],
|
|
result: Some(Rc::new(ClassType(foo))),
|
|
},
|
|
);
|
|
|
|
let bar = ctx.add_class(ClassDef {
|
|
base: TypeDef {
|
|
name: "Bar",
|
|
fields: HashMap::new(),
|
|
methods: HashMap::new(),
|
|
},
|
|
parents: vec![],
|
|
});
|
|
let bar_def = ctx.get_class_def_mut(bar);
|
|
bar_def.base.methods.insert(
|
|
"a",
|
|
FnDef {
|
|
args: vec![],
|
|
result: Some(Rc::new(ClassType(bar))),
|
|
},
|
|
);
|
|
|
|
let v0 = ctx.add_variable(VarDef {
|
|
name: "v0",
|
|
bound: vec![],
|
|
});
|
|
let v1 = ctx.add_variable(VarDef {
|
|
name: "v1",
|
|
bound: vec![ClassType(foo).into(), ClassType(bar).into()],
|
|
});
|
|
let v2 = ctx.add_variable(VarDef {
|
|
name: "v2",
|
|
bound: vec![
|
|
ClassType(foo).into(),
|
|
ClassType(bar).into(),
|
|
ctx.get_primitive(INT32_TYPE),
|
|
],
|
|
});
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("foo", Rc::new(ClassType(foo))).unwrap();
|
|
ctx.assign("bar", Rc::new(ClassType(bar))).unwrap();
|
|
ctx.assign("foobar", Rc::new(VirtualClassType(foo)))
|
|
.unwrap();
|
|
ctx.assign("v0", ctx.get_variable(v0)).unwrap();
|
|
ctx.assign("v1", ctx.get_variable(v1)).unwrap();
|
|
ctx.assign("v2", ctx.get_variable(v2)).unwrap();
|
|
ctx.assign("bot", Rc::new(BotType)).unwrap();
|
|
|
|
let ast = parse_expression("foo.a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ClassType(foo).into());
|
|
|
|
let ast = parse_expression("v1.a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), TypeVariable(v1).into());
|
|
|
|
let ast = parse_expression("foobar.a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ClassType(foo).into());
|
|
|
|
let ast = parse_expression("none().a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no value".into()));
|
|
|
|
let ast = parse_expression("bot.a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("not supported".into()));
|
|
|
|
let ast = parse_expression("[][0].a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("not supported".into()));
|
|
|
|
let ast = parse_expression("v0.a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("unbounded type var".into()));
|
|
|
|
let ast = parse_expression("v2.a()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no such function".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn infer_subscript() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"none",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
let mut ctx = get_inference_context(ctx);
|
|
|
|
let ast = parse_expression("[1, 2, 3][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("[[1]][0][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("[1, 2, 3][1:2]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result.unwrap().unwrap(),
|
|
ParametricType(LIST_TYPE, vec![ctx.get_primitive(INT32_TYPE)]).into()
|
|
);
|
|
|
|
let ast = parse_expression("[1, 2, 3][1:2:2]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result.unwrap().unwrap(),
|
|
ParametricType(LIST_TYPE, vec![ctx.get_primitive(INT32_TYPE)]).into()
|
|
);
|
|
|
|
let ast = parse_expression("[1, 2, 3][1:1.2]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("slice must be int32 type".into()));
|
|
|
|
let ast = parse_expression("[1, 2, 3][1:none()]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("slice must have type".into()));
|
|
|
|
let ast = parse_expression("[1, 2, 3][1.2]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("index must be either slice or int32".into()));
|
|
|
|
let ast = parse_expression("[1, 2, 3][none()]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no value".into()));
|
|
|
|
let ast = parse_expression("none()[1.2]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no value".into()));
|
|
|
|
let ast = parse_expression("123[1]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result,
|
|
Err("subscript is not supported for types other than list".into())
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_if_expr() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"none",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
let mut ctx = get_inference_context(ctx);
|
|
|
|
let ast = parse_expression("1 if True else 0").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), ctx.get_primitive(INT32_TYPE));
|
|
|
|
let ast = parse_expression("none() if True else none()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap(), None);
|
|
|
|
let ast = parse_expression("none() if 1 else none()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("test should be bool".into()));
|
|
|
|
let ast = parse_expression("1 if True else none()").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("divergent type".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_list_comp() {
|
|
let mut ctx = basic_ctx();
|
|
ctx.add_fn(
|
|
"none",
|
|
FnDef {
|
|
args: vec![],
|
|
result: None,
|
|
},
|
|
);
|
|
let int32 = ctx.get_primitive(INT32_TYPE);
|
|
let mut ctx = get_inference_context(ctx);
|
|
ctx.assign("z", int32.clone()).unwrap();
|
|
|
|
let ast = parse_expression("[x for x in [(1, 2), (2, 3), (3, 4)]][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result.unwrap().unwrap(),
|
|
ParametricType(TUPLE_TYPE, vec![int32.clone(), int32.clone()]).into()
|
|
);
|
|
|
|
let ast = parse_expression("[x for (x, y) in [(1, 2), (2, 3), (3, 4)]][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), int32);
|
|
|
|
let ast =
|
|
parse_expression("[x for (x, y) in [(1, 2), (2, 3), (3, 4)] if x > 0][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result.unwrap().unwrap(), int32);
|
|
|
|
let ast = parse_expression("[x for (x, y) in [(1, 2), (2, 3), (3, 4)] if x][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("test must be bool".into()));
|
|
|
|
let ast = parse_expression("[y for x in []][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("unbounded identifier".into()));
|
|
|
|
let ast = parse_expression("[none() for x in []][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("no value".into()));
|
|
|
|
let ast = parse_expression("[z for z in []][0]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(result, Err("duplicated naming".into()));
|
|
|
|
let ast = parse_expression("[x for x in [] for y in []]").unwrap();
|
|
let result = infer_expr(&mut ctx, &ast);
|
|
assert_eq!(
|
|
result,
|
|
Err("only 1 generator statement is supported".into())
|
|
);
|
|
}
|
|
}
|