1192 lines
52 KiB
Rust
1192 lines
52 KiB
Rust
use std::{
|
|
borrow::BorrowMut,
|
|
collections::{HashMap, HashSet},
|
|
fmt::Debug,
|
|
iter::FromIterator,
|
|
ops::{Deref, DerefMut},
|
|
sync::Arc,
|
|
};
|
|
|
|
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
use super::typecheck::typedef::{FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier};
|
|
use crate::{
|
|
symbol_resolver::SymbolResolver,
|
|
typecheck::{type_inferencer::CodeLocation, typedef::CallId},
|
|
};
|
|
use itertools::{izip, Itertools};
|
|
use parking_lot::RwLock;
|
|
use rustpython_parser::ast::{self, Stmt};
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
|
|
pub struct DefinitionId(pub usize);
|
|
|
|
mod type_annotation;
|
|
use type_annotation::*;
|
|
mod helper;
|
|
#[cfg(test)]
|
|
mod test;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct FunInstance {
|
|
pub body: Vec<Stmt<Option<Type>>>,
|
|
pub calls: HashMap<CodeLocation, CallId>,
|
|
pub subst: HashMap<u32, Type>,
|
|
pub unifier_id: usize,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub enum TopLevelDef {
|
|
Class {
|
|
// name for error messages and symbols
|
|
name: String,
|
|
// object ID used for TypeEnum
|
|
object_id: DefinitionId,
|
|
/// type variables bounded to the class.
|
|
type_vars: Vec<Type>,
|
|
// class fields
|
|
fields: Vec<(String, Type)>,
|
|
// class methods, pointing to the corresponding function definition.
|
|
methods: Vec<(String, Type, DefinitionId)>,
|
|
// ancestor classes, including itself.
|
|
ancestors: Vec<TypeAnnotation>,
|
|
// symbol resolver of the module defined the class, none if it is built-in type
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Function {
|
|
// prefix for symbol, should be unique globally, and not ending with numbers
|
|
name: String,
|
|
// function signature.
|
|
signature: Type,
|
|
// instantiated type variable IDs
|
|
var_id: Vec<u32>,
|
|
/// Function instance to symbol mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class.
|
|
/// Value: function symbol name.
|
|
instance_to_symbol: HashMap<String, String>,
|
|
/// Function instances to annotated AST mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class. Excluding rigid type
|
|
/// variables.
|
|
/// rigid type variables that would be substituted when the function is instantiated.
|
|
instance_to_stmt: HashMap<String, FunInstance>,
|
|
// symbol resolver of the module defined the class
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Initializer {
|
|
class_id: DefinitionId,
|
|
},
|
|
}
|
|
|
|
pub struct TopLevelContext {
|
|
pub definitions: Arc<RwLock<Vec<Arc<RwLock<TopLevelDef>>>>>,
|
|
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
|
|
}
|
|
|
|
pub struct TopLevelComposer {
|
|
// list of top level definitions, same as top level context
|
|
pub definition_ast_list: Vec<(Arc<RwLock<TopLevelDef>>, Option<ast::Stmt<()>>)>,
|
|
// start as a primitive unifier, will add more top_level defs inside
|
|
pub unifier: Unifier,
|
|
// primitive store
|
|
pub primitives_ty: PrimitiveStore,
|
|
// keyword list to prevent same user-defined name
|
|
pub keyword_list: HashSet<String>,
|
|
// to prevent duplicate definition
|
|
pub defined_class_name: HashSet<String>,
|
|
pub defined_class_method_name: HashSet<String>,
|
|
pub defined_function_name: HashSet<String>,
|
|
}
|
|
|
|
impl Default for TopLevelComposer {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl TopLevelComposer {
|
|
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
|
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
|
pub fn new() -> Self {
|
|
let primitives = Self::make_primitives();
|
|
|
|
TopLevelComposer {
|
|
definition_ast_list: {
|
|
let top_level_def_list = vec![
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(0, None, "int32"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(1, None, "int64"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(2, None, "float"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(3, None, "bool"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(4, None, "none"))),
|
|
];
|
|
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
|
izip!(top_level_def_list, ast_list).collect_vec()
|
|
},
|
|
primitives_ty: primitives.0,
|
|
unifier: primitives.1,
|
|
keyword_list: HashSet::from_iter(vec![
|
|
"Generic".into(),
|
|
"virtual".into(),
|
|
"list".into(),
|
|
"tuple".into(),
|
|
"int32".into(),
|
|
"int64".into(),
|
|
"float".into(),
|
|
"bool".into(),
|
|
"none".into(),
|
|
"None".into(),
|
|
]),
|
|
defined_class_method_name: Default::default(),
|
|
defined_class_name: Default::default(),
|
|
defined_function_name: Default::default(),
|
|
}
|
|
}
|
|
|
|
pub fn make_top_level_context(self) -> TopLevelContext {
|
|
TopLevelContext {
|
|
definitions: RwLock::new(
|
|
self.definition_ast_list.into_iter().map(|(x, ..)| x).collect_vec(),
|
|
)
|
|
.into(),
|
|
// FIXME: all the big unifier or?
|
|
unifiers: Default::default(),
|
|
}
|
|
}
|
|
|
|
fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
|
|
self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec()
|
|
}
|
|
|
|
/// register, just remeber the names of top level classes/function
|
|
/// and check duplicate class/method/function definition
|
|
pub fn register_top_level(
|
|
&mut self,
|
|
ast: ast::Stmt<()>,
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> Result<(String, DefinitionId), String> {
|
|
let defined_class_name = &mut self.defined_class_name;
|
|
let defined_class_method_name = &mut self.defined_class_method_name;
|
|
let defined_function_name = &mut self.defined_function_name;
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef { name, body, .. } => {
|
|
if self.keyword_list.contains(name) {
|
|
return Err("cannot use keyword as a class name".into());
|
|
}
|
|
if !defined_class_name.insert(name.clone()) {
|
|
return Err("duplicate definition of class".into());
|
|
}
|
|
|
|
let class_name = name.to_string();
|
|
let class_def_id = self.definition_ast_list.len();
|
|
|
|
// since later when registering class method, ast will still be used,
|
|
// here push None temporarly, later will move the ast inside
|
|
let mut class_def_ast = (
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(
|
|
class_def_id,
|
|
resolver.clone(),
|
|
name,
|
|
))),
|
|
None,
|
|
);
|
|
|
|
// parse class def body and register class methods into the def list.
|
|
// module's symbol resolver would not know the name of the class methods,
|
|
// thus cannot return their definition_id
|
|
let mut class_method_name_def_ids: Vec<(
|
|
// the simple method name without class name
|
|
String,
|
|
// in this top level def, method name is prefixed with the class name
|
|
Arc<RwLock<TopLevelDef>>,
|
|
DefinitionId,
|
|
Type,
|
|
)> = Vec::new();
|
|
// we do not push anything to the def list, so we keep track of the index
|
|
// and then push in the correct order after the for loop
|
|
let mut class_method_index_offset = 0;
|
|
let mut has_init = false;
|
|
for b in body {
|
|
if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node {
|
|
if self.keyword_list.contains(name) {
|
|
return Err("cannot use keyword as a method name".into());
|
|
}
|
|
let global_class_method_name =
|
|
Self::make_class_method_name(class_name.clone(), method_name);
|
|
if !defined_class_method_name.insert(global_class_method_name.clone()) {
|
|
return Err("duplicate class method definition".into());
|
|
}
|
|
if method_name == "__init__" {
|
|
has_init = true;
|
|
}
|
|
let method_def_id = self.definition_ast_list.len() + {
|
|
// plus 1 here since we already have the class def
|
|
class_method_index_offset += 1;
|
|
class_method_index_offset
|
|
};
|
|
|
|
// dummy method define here
|
|
let dummy_method_type = self.unifier.get_fresh_var();
|
|
class_method_name_def_ids.push((
|
|
method_name.clone(),
|
|
RwLock::new(Self::make_top_level_function_def(
|
|
global_class_method_name,
|
|
// later unify with parsed type
|
|
dummy_method_type.0,
|
|
resolver.clone(),
|
|
))
|
|
.into(),
|
|
DefinitionId(method_def_id),
|
|
dummy_method_type.0,
|
|
));
|
|
} else {
|
|
// do nothing
|
|
continue;
|
|
}
|
|
}
|
|
if !has_init {
|
|
return Err("class def must have __init__ method defined".into());
|
|
}
|
|
|
|
// move the ast to the entry of the class in the ast_list
|
|
class_def_ast.1 = Some(ast);
|
|
// get the methods into the top level class_def
|
|
for (name, _, id, ty) in &class_method_name_def_ids {
|
|
let mut class_def = class_def_ast.0.write();
|
|
if let TopLevelDef::Class { methods, .. } = class_def.deref_mut() {
|
|
methods.push((name.clone(), *ty, *id))
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
// now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order
|
|
self.definition_ast_list.push(class_def_ast);
|
|
for (_, def, ..) in class_method_name_def_ids {
|
|
self.definition_ast_list.push((def, None));
|
|
}
|
|
|
|
// put the constructor into the def_list
|
|
self.definition_ast_list.push((
|
|
RwLock::new(TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) })
|
|
.into(),
|
|
None,
|
|
));
|
|
|
|
Ok((class_name, DefinitionId(class_def_id)))
|
|
}
|
|
|
|
ast::StmtKind::FunctionDef { name, .. } => {
|
|
if self.keyword_list.contains(name) {
|
|
return Err("cannot use keyword as a top level function name".into());
|
|
}
|
|
let fun_name = name.to_string();
|
|
if !defined_function_name.insert(name.to_string()) {
|
|
return Err("duplicate top level function define".into());
|
|
}
|
|
|
|
// add to the definition list
|
|
self.definition_ast_list.push((
|
|
RwLock::new(Self::make_top_level_function_def(
|
|
name.into(),
|
|
// dummy here, unify with correct type later
|
|
self.unifier.get_fresh_var().0,
|
|
resolver,
|
|
))
|
|
.into(),
|
|
Some(ast),
|
|
));
|
|
|
|
// return
|
|
Ok((fun_name, DefinitionId(self.definition_ast_list.len() - 1)))
|
|
}
|
|
|
|
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
|
}
|
|
}
|
|
|
|
pub fn start_analysis(&mut self) -> Result<(), String> {
|
|
self.analyze_top_level_class_type_var()?;
|
|
self.analyze_top_level_class_bases()?;
|
|
self.analyze_top_level_class_fields_methods()?;
|
|
self.analyze_top_level_function()?;
|
|
Ok(())
|
|
}
|
|
|
|
/// step 1, analyze the type vars associated with top level class
|
|
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
|
let def_list = &self.definition_ast_list;
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
let primitives_store = &self.primitives_ty;
|
|
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, class_ast) in def_list.iter().skip(5) {
|
|
// only deal with class def here
|
|
let mut class_def = class_def.write();
|
|
let (class_bases_ast, class_def_type_vars, class_resolver) = {
|
|
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() {
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(bases, type_vars, resolver)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.deref();
|
|
|
|
let mut is_generic = false;
|
|
for b in class_bases_ast {
|
|
match &b.node {
|
|
// analyze typevars bounded to the class,
|
|
// only support things like `class A(Generic[T, V])`,
|
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
|
// i.e. only simple names are allowed in the subscript
|
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
|
ast::ExprKind::Subscript { value, slice, .. }
|
|
if {
|
|
matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name { id, .. } if id == "Generic"
|
|
)
|
|
} =>
|
|
{
|
|
if !is_generic {
|
|
is_generic = true;
|
|
} else {
|
|
return Err("Only single Generic[...] can be in bases".into());
|
|
}
|
|
|
|
let type_var_list: Vec<&ast::Expr<()>>;
|
|
// if `class A(Generic[T, V, G])`
|
|
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
|
type_var_list = elts.iter().collect_vec();
|
|
// `class A(Generic[T])`
|
|
} else {
|
|
type_var_list = vec![slice.deref()];
|
|
}
|
|
|
|
// parse the type vars
|
|
let type_vars = type_var_list
|
|
.into_iter()
|
|
.map(|e| {
|
|
class_resolver.parse_type_annotation(
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives_store,
|
|
e,
|
|
)
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// check if all are unique type vars
|
|
let all_unique_type_var = {
|
|
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
|
|
type_vars.iter().all(|x| {
|
|
let ty = unifier.get_ty(*x);
|
|
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
|
|
occured_type_var_id.insert(*id)
|
|
} else {
|
|
false
|
|
}
|
|
})
|
|
};
|
|
if !all_unique_type_var {
|
|
return Err("expect unique type variables".into());
|
|
}
|
|
|
|
// add to TopLevelDef
|
|
class_def_type_vars.extend(type_vars);
|
|
}
|
|
|
|
// if others, do nothing in this function
|
|
_ => continue,
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 2, base classes.
|
|
/// now that the type vars of all classes are done, handle base classes and
|
|
/// put Self class into the ancestors list. We only allow single inheritance
|
|
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
|
|
// first, only push direct parent into the list
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, class_ast) in self.definition_ast_list.iter_mut().skip(5) {
|
|
let mut class_def = class_def.write();
|
|
let (class_bases, class_ancestors, class_resolver) = {
|
|
if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.deref_mut() {
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(bases, ancestors, resolver)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.deref();
|
|
|
|
let mut has_base = false;
|
|
for b in class_bases {
|
|
// type vars have already been handled, so skip on `Generic[...]`
|
|
if matches!(
|
|
&b.node,
|
|
ast::ExprKind::Subscript { value, .. }
|
|
if matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name { id, .. } if id == "Generic"
|
|
)
|
|
) {
|
|
continue;
|
|
}
|
|
|
|
if has_base {
|
|
return Err("a class def can only have at most one base class \
|
|
declaration and one generic declaration"
|
|
.into());
|
|
}
|
|
has_base = true;
|
|
|
|
// the function parse_ast_to make sure that no type var occured in
|
|
// bast_ty if it is a CustomClassKind
|
|
let base_ty = parse_ast_to_type_annotation_kinds(
|
|
class_resolver.as_ref(),
|
|
&temp_def_list,
|
|
unifier,
|
|
&self.primitives_ty,
|
|
b,
|
|
)?;
|
|
|
|
if let TypeAnnotation::CustomClassKind { .. } = &base_ty {
|
|
class_ancestors.push(base_ty);
|
|
} else {
|
|
return Err("class base declaration can only be custom class".into());
|
|
}
|
|
}
|
|
}
|
|
|
|
// second, get all ancestors
|
|
let mut ancestors_store: HashMap<DefinitionId, Vec<TypeAnnotation>> = Default::default();
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, _) in self.definition_ast_list.iter().skip(5) {
|
|
let class_def = class_def.read();
|
|
let (class_ancestors, class_id) = {
|
|
if let TopLevelDef::Class { ancestors, object_id, .. } = class_def.deref() {
|
|
(ancestors, *object_id)
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
ancestors_store.insert(
|
|
class_id,
|
|
// if class has direct parents, get all ancestors of its parents. Else just empty
|
|
if class_ancestors.is_empty() {
|
|
vec![]
|
|
} else {
|
|
Self::get_all_ancestors_helper(&class_ancestors[0], temp_def_list.as_slice())?
|
|
},
|
|
);
|
|
}
|
|
|
|
// insert the ancestors to the def list
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, _) in self.definition_ast_list.iter_mut().skip(5) {
|
|
let mut class_def = class_def.write();
|
|
let (class_ancestors, class_id, class_type_vars) = {
|
|
if let TopLevelDef::Class { ancestors, object_id, type_vars, .. } =
|
|
class_def.deref_mut()
|
|
{
|
|
(ancestors, *object_id, type_vars)
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
|
|
let ans = ancestors_store.get_mut(&class_id).unwrap();
|
|
class_ancestors.append(ans);
|
|
|
|
// insert self type annotation to the front of the vector to maintain the order
|
|
class_ancestors
|
|
.insert(0, make_self_type_annotation(class_type_vars.as_slice(), class_id));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// step 3, class fields and methods
|
|
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
|
|
let temp_def_list = self.extract_def_list();
|
|
let primitives = &self.primitives_ty;
|
|
let def_ast_list = &self.definition_ast_list;
|
|
let unifier = self.unifier.borrow_mut();
|
|
|
|
let mut type_var_to_concrete_def: HashMap<Type, TypeAnnotation> = HashMap::new();
|
|
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, class_ast) in def_ast_list.iter().skip(5) {
|
|
if matches!(&*class_def.read(), TopLevelDef::Class { .. }) {
|
|
Self::analyze_single_class_methods_fields(
|
|
class_def.clone(),
|
|
&class_ast.as_ref().unwrap().node,
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
&mut type_var_to_concrete_def,
|
|
&self.keyword_list,
|
|
)?
|
|
}
|
|
}
|
|
|
|
println!("type_var_to_concrete_def1: {:?}", type_var_to_concrete_def);
|
|
|
|
// handle the inheritanced methods and fields
|
|
let mut current_ancestor_depth: usize = 2;
|
|
loop {
|
|
let mut finished = true;
|
|
|
|
for (class_def, _) in def_ast_list.iter().skip(5) {
|
|
let mut class_def = class_def.write();
|
|
if let TopLevelDef::Class { ancestors, .. } = class_def.deref() {
|
|
// if the length of the ancestor is equal to the current depth
|
|
// it means that all the ancestors of the class is handled
|
|
if ancestors.len() == current_ancestor_depth {
|
|
finished = false;
|
|
Self::analyze_single_class_ancestors(
|
|
class_def.deref_mut(),
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
&mut type_var_to_concrete_def,
|
|
)?;
|
|
}
|
|
}
|
|
}
|
|
|
|
if finished {
|
|
break;
|
|
} else {
|
|
current_ancestor_depth += 1;
|
|
}
|
|
|
|
if current_ancestor_depth > def_ast_list.len() + 1 {
|
|
unreachable!("cannot be longer than the whole top level def list")
|
|
}
|
|
}
|
|
|
|
// println!("type_var_to_concrete_def2: {:?}", type_var_to_concrete_def);
|
|
|
|
// unification of previously assigned typevar
|
|
println!("type_var_to_concrete_def3: {:?}\n", type_var_to_concrete_def);
|
|
let mut ddddd: Vec<(Type, Type)> = Vec::new();
|
|
for (ty, def) in type_var_to_concrete_def {
|
|
println!(
|
|
"{:?}_{} -> {:?}\n",
|
|
ty,
|
|
unifier.stringify(ty,
|
|
&mut |id| format!("class{}", id),
|
|
&mut |id| format!("tvar{}", id)
|
|
),
|
|
def
|
|
);
|
|
let target_ty =
|
|
get_type_from_type_annotation_kinds(&temp_def_list, unifier, primitives, &def)?;
|
|
unifier.unify(ty, target_ty)?;
|
|
ddddd.push((ty, target_ty));
|
|
}
|
|
|
|
for (ty, tar_ty) in ddddd {
|
|
println!(
|
|
"{:?}_{} -> {:?}_{}",
|
|
ty,
|
|
unifier.stringify(ty,
|
|
&mut |id| format!("class{}", id),
|
|
&mut |id| format!("tvar{}", id)
|
|
),
|
|
tar_ty,
|
|
unifier.stringify(tar_ty,
|
|
&mut |id| format!("class{}", id),
|
|
&mut |id| format!("tvar{}", id)
|
|
),
|
|
)
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// step 4, after class methods are done, top level functions have nothing unknown
|
|
fn analyze_top_level_function(&mut self) -> Result<(), String> {
|
|
let def_list = &self.definition_ast_list;
|
|
let keyword_list = &self.keyword_list;
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
let primitives_store = &self.primitives_ty;
|
|
|
|
// skip 5 to skip analyzing the primitives
|
|
for (function_def, function_ast) in def_list.iter().skip(5) {
|
|
let mut function_def = function_def.write();
|
|
let function_def = function_def.deref_mut();
|
|
let function_ast = if let Some(function_ast) = function_ast {
|
|
function_ast
|
|
} else {
|
|
// no ast, class method, continue
|
|
continue;
|
|
};
|
|
|
|
if let TopLevelDef::Function { signature: dummy_ty, resolver, var_id, .. } =
|
|
function_def
|
|
{
|
|
if let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node {
|
|
let resolver = resolver.as_ref();
|
|
let resolver = resolver.unwrap();
|
|
let resolver = resolver.deref();
|
|
|
|
let mut function_var_map: HashMap<u32, Type> = HashMap::new();
|
|
let arg_types = {
|
|
// make sure no duplicate parameter
|
|
let mut defined_paramter_name: HashSet<String> = HashSet::new();
|
|
let have_unique_fuction_parameter_name = args.args.iter().all(|x| {
|
|
defined_paramter_name.insert(x.node.arg.clone())
|
|
&& !keyword_list.contains(&x.node.arg)
|
|
&& "self" != x.node.arg
|
|
});
|
|
if !have_unique_fuction_parameter_name {
|
|
return Err("top level function must have unique parameter names \
|
|
and names thould not be the same as the keywords"
|
|
.into());
|
|
}
|
|
|
|
args.args
|
|
.iter()
|
|
.map(|x| -> Result<FuncArg, String> {
|
|
let annotation = x
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| {
|
|
"function parameter type annotation needed".to_string()
|
|
})?
|
|
.as_ref();
|
|
|
|
let type_annotation = parse_ast_to_type_annotation_kinds(
|
|
resolver.as_ref(),
|
|
temp_def_list.as_slice(),
|
|
unifier,
|
|
primitives_store,
|
|
annotation,
|
|
)?;
|
|
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&type_annotation)
|
|
.into_iter()
|
|
.map(|x| -> Result<(u32, Type), String> {
|
|
if let TypeAnnotation::TypeVarKind(ty) = x {
|
|
Ok((Self::get_var_id(ty, unifier)?, ty))
|
|
} else {
|
|
unreachable!("must be type var annotation kind")
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
for (id, ty) in type_vars_within {
|
|
if let Some(prev_ty) = function_var_map.insert(id, ty) {
|
|
// if already have the type inserted, make sure they are the same thing
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
}
|
|
|
|
let ty = get_type_from_type_annotation_kinds(
|
|
temp_def_list.as_ref(),
|
|
unifier,
|
|
primitives_store,
|
|
&type_annotation,
|
|
)?;
|
|
|
|
Ok(FuncArg {
|
|
name: x.node.arg.clone(),
|
|
ty,
|
|
default_value: Default::default(),
|
|
})
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?
|
|
};
|
|
|
|
let return_ty = {
|
|
if let Some(returns) = returns {
|
|
let return_ty_annotation = {
|
|
let return_annotation = returns.as_ref();
|
|
parse_ast_to_type_annotation_kinds(
|
|
resolver.as_ref(),
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives_store,
|
|
return_annotation,
|
|
)?
|
|
};
|
|
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&return_ty_annotation)
|
|
.into_iter()
|
|
.map(|x| -> Result<(u32, Type), String> {
|
|
if let TypeAnnotation::TypeVarKind(ty) = x {
|
|
Ok((Self::get_var_id(ty, unifier)?, ty))
|
|
} else {
|
|
unreachable!("must be type var here")
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
for (id, ty) in type_vars_within {
|
|
if let Some(prev_ty) = function_var_map.insert(id, ty) {
|
|
// if already have the type inserted, make sure they are the same thing
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
}
|
|
|
|
get_type_from_type_annotation_kinds(
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives_store,
|
|
&return_ty_annotation,
|
|
)?
|
|
} else {
|
|
primitives_store.none
|
|
}
|
|
};
|
|
var_id.extend_from_slice(
|
|
function_var_map.keys().into_iter().copied().collect_vec().as_slice(),
|
|
);
|
|
let function_ty = unifier.add_ty(TypeEnum::TFunc(
|
|
FunSignature { args: arg_types, ret: return_ty, vars: function_var_map }
|
|
.into(),
|
|
));
|
|
unifier.unify(*dummy_ty, function_ty)?;
|
|
} else {
|
|
unreachable!("must be both function");
|
|
}
|
|
} else {
|
|
// not top level function def, skip
|
|
continue;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn analyze_single_class_methods_fields(
|
|
class_def: Arc<RwLock<TopLevelDef>>,
|
|
class_ast: &ast::StmtKind<()>,
|
|
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
|
|
unifier: &mut Unifier,
|
|
primitives: &PrimitiveStore,
|
|
type_var_to_concrete_def: &mut HashMap<Type, TypeAnnotation>,
|
|
keyword_list: &HashSet<String>,
|
|
) -> Result<(), String> {
|
|
let mut class_def = class_def.write();
|
|
let (
|
|
class_id,
|
|
_class_name,
|
|
_class_bases_ast,
|
|
class_body_ast,
|
|
_class_ancestor_def,
|
|
class_fields_def,
|
|
class_methods_def,
|
|
class_type_vars_def,
|
|
class_resolver,
|
|
) = if let TopLevelDef::Class {
|
|
object_id,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
resolver,
|
|
type_vars,
|
|
..
|
|
} = class_def.deref_mut()
|
|
{
|
|
if let ast::StmtKind::ClassDef { name, bases, body, .. } = &class_ast {
|
|
(
|
|
*object_id,
|
|
name.clone(),
|
|
bases,
|
|
body,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
type_vars,
|
|
resolver,
|
|
)
|
|
} else {
|
|
unreachable!("here must be class def ast");
|
|
}
|
|
} else {
|
|
unreachable!("here must be class def ast");
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.as_ref();
|
|
|
|
for b in class_body_ast {
|
|
if let ast::StmtKind::FunctionDef { args, returns, name, body, .. } = &b.node {
|
|
let (method_dummy_ty, method_id) =
|
|
Self::get_class_method_def_info(class_methods_def, name)?;
|
|
|
|
// the method var map can surely include the class's generic parameters
|
|
let mut method_var_map: HashMap<u32, Type> = class_type_vars_def
|
|
.iter()
|
|
.map(|ty| {
|
|
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
|
|
(*id, *ty)
|
|
} else {
|
|
unreachable!("must be type var here")
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
let arg_types: Vec<FuncArg> = {
|
|
// check method parameters cannot have same name
|
|
let mut defined_paramter_name: HashSet<String> = HashSet::new();
|
|
let have_unique_fuction_parameter_name = args.args.iter().all(|x| {
|
|
defined_paramter_name.insert(x.node.arg.clone())
|
|
&& !keyword_list.contains(&x.node.arg)
|
|
});
|
|
if !have_unique_fuction_parameter_name {
|
|
return Err("class method must have unique parameter names \
|
|
and names thould not be the same as the keywords"
|
|
.into());
|
|
}
|
|
if name == "__init__" && !defined_paramter_name.contains("self") {
|
|
return Err(
|
|
"class __init__ function must contain the `self` parameter".into()
|
|
);
|
|
}
|
|
|
|
let mut result = Vec::new();
|
|
for x in &args.args {
|
|
let name = x.node.arg.clone();
|
|
if name != "self" {
|
|
let type_ann = {
|
|
let annotation_expr = x
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| "type annotation needed".to_string())?
|
|
.as_ref();
|
|
parse_ast_to_type_annotation_kinds(
|
|
class_resolver.as_ref(),
|
|
temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
annotation_expr,
|
|
)?
|
|
};
|
|
|
|
// find type vars within this method parameter type annotation
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&type_ann);
|
|
// handle the class type var and the method type var
|
|
for type_var_within in type_vars_within {
|
|
if let TypeAnnotation::TypeVarKind(ty) = type_var_within {
|
|
let id = Self::get_var_id(ty, unifier)?;
|
|
if let Some(prev_ty) = method_var_map.insert(id, ty) {
|
|
// if already in the list, make sure they are the same?
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
} else {
|
|
unreachable!("must be type var annotation");
|
|
}
|
|
}
|
|
|
|
// finish handling type vars
|
|
let dummy_func_arg = FuncArg {
|
|
name,
|
|
ty: unifier.get_fresh_var().0,
|
|
// TODO: symbol default value?
|
|
default_value: None,
|
|
};
|
|
// push the dummy type and the type annotation
|
|
// into the list for later unification
|
|
type_var_to_concrete_def.insert(dummy_func_arg.ty, type_ann.clone());
|
|
result.push(dummy_func_arg)
|
|
} else {
|
|
// if the parameter name is self
|
|
// python does not seem to enforce the name
|
|
// representing the self class object to be
|
|
// `self`??, but we do it here
|
|
let dummy_func_arg = FuncArg {
|
|
name: "self".into(),
|
|
ty: unifier.get_fresh_var().0,
|
|
default_value: None,
|
|
};
|
|
type_var_to_concrete_def.insert(
|
|
dummy_func_arg.ty,
|
|
make_self_type_annotation(class_type_vars_def.as_slice(), class_id),
|
|
);
|
|
result.push(dummy_func_arg);
|
|
}
|
|
}
|
|
result
|
|
};
|
|
|
|
let ret_type = {
|
|
if name != "__init__" {
|
|
if let Some(result) = returns {
|
|
let result = result.as_ref();
|
|
let annotation = parse_ast_to_type_annotation_kinds(
|
|
class_resolver.as_ref(),
|
|
temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
result,
|
|
)?;
|
|
|
|
// find type vars within this return type annotation
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&annotation);
|
|
// handle the class type var and the method type var
|
|
for type_var_within in type_vars_within {
|
|
if let TypeAnnotation::TypeVarKind(ty) = type_var_within {
|
|
let id = Self::get_var_id(ty, unifier)?;
|
|
if let Some(prev_ty) = method_var_map.insert(id, ty) {
|
|
// if already in the list, make sure they are the same?
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
} else {
|
|
unreachable!("must be type var annotation");
|
|
}
|
|
}
|
|
|
|
let dummy_return_type = unifier.get_fresh_var().0;
|
|
type_var_to_concrete_def.insert(dummy_return_type, annotation.clone());
|
|
dummy_return_type
|
|
} else {
|
|
// if do not have return annotation, return none
|
|
// for uniform handling, still use type annoatation
|
|
let dummy_return_type = unifier.get_fresh_var().0;
|
|
type_var_to_concrete_def.insert(
|
|
dummy_return_type,
|
|
TypeAnnotation::PrimitiveKind(primitives.none),
|
|
);
|
|
dummy_return_type
|
|
}
|
|
} else {
|
|
// if is the "__init__" function, the return type is self
|
|
let dummy_return_type = unifier.get_fresh_var().0;
|
|
type_var_to_concrete_def.insert(
|
|
dummy_return_type,
|
|
make_self_type_annotation(class_type_vars_def.as_slice(), class_id),
|
|
);
|
|
dummy_return_type
|
|
}
|
|
};
|
|
|
|
if let TopLevelDef::Function { var_id, .. } =
|
|
temp_def_list.get(method_id.0).unwrap().write().deref_mut()
|
|
{
|
|
var_id.extend_from_slice(
|
|
method_var_map.keys().into_iter().copied().collect_vec().as_slice(),
|
|
);
|
|
}
|
|
let method_type = unifier.add_ty(TypeEnum::TFunc(
|
|
FunSignature { args: arg_types, ret: ret_type, vars: method_var_map }.into(),
|
|
));
|
|
|
|
// NOTE: unify now since function type is not in type annotation define
|
|
// which is fine since type within method_type will be subst later
|
|
unifier.unify(method_dummy_ty, method_type)?;
|
|
|
|
// class fields
|
|
if name == "__init__" {
|
|
for b in body {
|
|
let mut defined_fields: HashSet<String> = HashSet::new();
|
|
// TODO: check the type of value, field instantiation check?
|
|
if let ast::StmtKind::AnnAssign { annotation, target, value: _, .. } =
|
|
&b.node
|
|
{
|
|
if let ast::ExprKind::Attribute { value, attr, .. } = &target.node {
|
|
if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "self")
|
|
{
|
|
if defined_fields.insert(attr.to_string()) {
|
|
let dummy_field_type = unifier.get_fresh_var().0;
|
|
class_fields_def.push((attr.to_string(), dummy_field_type));
|
|
|
|
let annotation = parse_ast_to_type_annotation_kinds(
|
|
class_resolver.as_ref(),
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
annotation.as_ref(),
|
|
)?;
|
|
|
|
// find type vars within this return type annotation
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&annotation);
|
|
// handle the class type var and the method type var
|
|
for type_var_within in type_vars_within {
|
|
if let TypeAnnotation::TypeVarKind(t) = type_var_within
|
|
{
|
|
if !class_type_vars_def.contains(&t) {
|
|
return Err("class fields can only use type \
|
|
vars declared as class generic type vars"
|
|
.into());
|
|
}
|
|
} else {
|
|
unreachable!("must be type var annotation");
|
|
}
|
|
}
|
|
|
|
type_var_to_concrete_def
|
|
.insert(dummy_field_type, annotation);
|
|
} else {
|
|
return Err("same class fields defined twice".into());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn analyze_single_class_ancestors(
|
|
class_def: &mut TopLevelDef,
|
|
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
|
|
unifier: &mut Unifier,
|
|
_primitives: &PrimitiveStore,
|
|
type_var_to_concrete_def: &mut HashMap<Type, TypeAnnotation>,
|
|
) -> Result<(), String> {
|
|
let (
|
|
_class_id,
|
|
class_ancestor_def,
|
|
class_fields_def,
|
|
class_methods_def,
|
|
_class_type_vars_def,
|
|
_class_resolver,
|
|
) = if let TopLevelDef::Class {
|
|
object_id,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
resolver,
|
|
type_vars,
|
|
..
|
|
} = class_def
|
|
{
|
|
(*object_id, ancestors, fields, methods, type_vars, resolver)
|
|
} else {
|
|
unreachable!("here must be class def ast");
|
|
};
|
|
|
|
// since when this function is called, the ancestors of the direct parent
|
|
// are supposed to be already handled, so we only need to deal with the direct parent
|
|
let base = class_ancestor_def.get(1).unwrap();
|
|
if let TypeAnnotation::CustomClassKind { id, params: _ } = base {
|
|
let base = temp_def_list.get(id.0).unwrap();
|
|
let base = base.read();
|
|
if let TopLevelDef::Class { methods, fields, .. } = &*base {
|
|
// handle methods override
|
|
// since we need to maintain the order, create a new list
|
|
let mut new_child_methods: Vec<(String, Type, DefinitionId)> = Vec::new();
|
|
let mut is_override: HashSet<String> = HashSet::new();
|
|
for (anc_method_name, anc_method_ty, anc_method_def_id) in methods {
|
|
// find if there is a method with same name in the child class
|
|
let mut to_be_added =
|
|
(anc_method_name.to_string(), *anc_method_ty, *anc_method_def_id);
|
|
for (class_method_name, class_method_ty, class_method_defid) in
|
|
class_methods_def.iter()
|
|
{
|
|
if class_method_name == anc_method_name {
|
|
// ignore and handle self
|
|
// if is __init__ method, no need to check return type
|
|
let ok = class_method_name == "__init__"
|
|
|| Self::check_overload_function_type(
|
|
*class_method_ty,
|
|
*anc_method_ty,
|
|
unifier,
|
|
type_var_to_concrete_def,
|
|
);
|
|
if !ok {
|
|
return Err("method has same name as ancestors' method, but incompatible type".into());
|
|
}
|
|
// mark it as added
|
|
is_override.insert(class_method_name.to_string());
|
|
to_be_added = (
|
|
class_method_name.to_string(),
|
|
*class_method_ty,
|
|
*class_method_defid,
|
|
);
|
|
break;
|
|
}
|
|
}
|
|
new_child_methods.push(to_be_added);
|
|
}
|
|
// add those that are not overriding method to the new_child_methods
|
|
for (class_method_name, class_method_ty, class_method_defid) in
|
|
class_methods_def.iter()
|
|
{
|
|
if !is_override.contains(class_method_name) {
|
|
new_child_methods.push((
|
|
class_method_name.to_string(),
|
|
*class_method_ty,
|
|
*class_method_defid,
|
|
));
|
|
}
|
|
}
|
|
// use the new_child_methods to replace all the elements in `class_methods_def`
|
|
class_methods_def.drain(..);
|
|
class_methods_def.extend(new_child_methods);
|
|
|
|
// handle class fields
|
|
let mut new_child_fields: Vec<(String, Type)> = Vec::new();
|
|
let mut is_override: HashSet<String> = HashSet::new();
|
|
for (anc_field_name, anc_field_ty) in fields {
|
|
let mut to_be_added = (anc_field_name.to_string(), *anc_field_ty);
|
|
// find if there is a fields with the same name in the child class
|
|
for (class_field_name, class_field_ty) in class_fields_def.iter() {
|
|
if class_field_name == anc_field_name {
|
|
let ok = Self::check_overload_field_type(
|
|
*class_field_ty,
|
|
*anc_field_ty,
|
|
unifier,
|
|
type_var_to_concrete_def,
|
|
);
|
|
if !ok {
|
|
return Err("fields has same name as ancestors' field, but incompatible type".into());
|
|
}
|
|
// mark it as added
|
|
is_override.insert(class_field_name.to_string());
|
|
to_be_added = (class_field_name.to_string(), *class_field_ty);
|
|
break;
|
|
}
|
|
}
|
|
new_child_fields.push(to_be_added);
|
|
}
|
|
for (class_field_name, class_field_ty) in class_fields_def.iter() {
|
|
if !is_override.contains(class_field_name) {
|
|
new_child_fields.push((class_field_name.to_string(), *class_field_ty));
|
|
}
|
|
}
|
|
class_fields_def.drain(..);
|
|
class_fields_def.extend(new_child_fields);
|
|
} else {
|
|
unreachable!("must be top level class def")
|
|
}
|
|
} else {
|
|
unreachable!("must be class type annotation")
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|