use std::borrow::BorrowMut; use std::ops::{Deref, DerefMut}; use std::{collections::HashMap, collections::HashSet, sync::Arc}; use super::typecheck::type_inferencer::PrimitiveStore; use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier}; use crate::typecheck::typedef::{FunSignature, FuncArg}; use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Mapping}; use itertools::Itertools; use parking_lot::{Mutex, RwLock}; use rustpython_parser::ast::{self, Stmt}; #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)] pub struct DefinitionId(pub usize); pub enum TopLevelDef { Class { // object ID used for TypeEnum object_id: DefinitionId, // type variables bounded to the class. type_vars: Vec, // class fields fields: Vec<(String, Type)>, // class methods, pointing to the corresponding function definition. methods: Vec<(String, Type, DefinitionId)>, // ancestor classes, including itself. ancestors: Vec, // symbol resolver of the module defined the class, none if it is built-in type resolver: Option>>, }, Function { // prefix for symbol, should be unique globally, and not ending with numbers name: String, // function signature. signature: Type, /// Function instance to symbol mapping /// Key: string representation of type variable values, sorted by variable ID in ascending /// order, including type variables associated with the class. /// Value: function symbol name. instance_to_symbol: HashMap, /// Function instances to annotated AST mapping /// Key: string representation of type variable values, sorted by variable ID in ascending /// order, including type variables associated with the class. Excluding rigid type /// variables. /// Value: AST annotated with types together with a unification table index. Could contain /// rigid type variables that would be substituted when the function is instantiated. instance_to_stmt: HashMap>, usize)>, // symbol resolver of the module defined the class resolver: Option>>, }, Initializer { class_id: DefinitionId, }, } impl TopLevelDef { fn get_function_type(&self) -> Result { if let Self::Function { signature, .. } = self { Ok(*signature) } else { Err("only expect function def here".into()) } } } pub struct TopLevelContext { pub definitions: Arc>>>>, pub unifiers: Arc>>, } pub struct TopLevelComposer { // list of top level definitions, same as top level context pub definition_ast_list: Arc>, Option>)>>>, // start as a primitive unifier, will add more top_level defs inside pub unifier: Unifier, // primitive store pub primitives: PrimitiveStore, // mangled class method name to def_id pub class_method_to_def_id: HashMap, // record the def id of the classes whoses fields and methods are to be analyzed pub to_be_analyzed_class: Vec, } impl TopLevelComposer { pub fn to_top_level_context(&self) -> TopLevelContext { let def_list = self.definition_ast_list.read().iter().map(|(x, _)| x.clone()).collect::>(); TopLevelContext { definitions: RwLock::new(def_list).into(), // FIXME: all the big unifier or? unifiers: Default::default(), } } fn name_mangling(mut class_name: String, method_name: &str) -> String { class_name.push_str(method_name); class_name } pub fn make_primitives() -> (PrimitiveStore, Unifier) { let mut unifier = Unifier::new(); let int32 = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(0), fields: HashMap::new().into(), params: HashMap::new().into(), }); let int64 = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(1), fields: HashMap::new().into(), params: HashMap::new().into(), }); let float = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(2), fields: HashMap::new().into(), params: HashMap::new().into(), }); let bool = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(3), fields: HashMap::new().into(), params: HashMap::new().into(), }); let none = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(4), fields: HashMap::new().into(), params: HashMap::new().into(), }); let primitives = PrimitiveStore { int32, int64, float, bool, none }; crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier); (primitives, unifier) } /// return a composer and things to make a "primitive" symbol resolver, so that the symbol /// resolver can later figure out primitive type definitions when passed a primitive type name pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) { let primitives = Self::make_primitives(); let top_level_def_list = vec![ Arc::new(RwLock::new(Self::make_top_level_class_def(0, None))), Arc::new(RwLock::new(Self::make_top_level_class_def(1, None))), Arc::new(RwLock::new(Self::make_top_level_class_def(2, None))), Arc::new(RwLock::new(Self::make_top_level_class_def(3, None))), Arc::new(RwLock::new(Self::make_top_level_class_def(4, None))), ]; let ast_list: Vec>> = vec![None, None, None, None, None]; let composer = TopLevelComposer { definition_ast_list: RwLock::new( top_level_def_list.into_iter().zip(ast_list).collect_vec(), ) .into(), primitives: primitives.0, unifier: primitives.1, class_method_to_def_id: Default::default(), to_be_analyzed_class: Default::default(), }; ( vec![ ("int32".into(), DefinitionId(0), composer.primitives.int32), ("int64".into(), DefinitionId(1), composer.primitives.int64), ("float".into(), DefinitionId(2), composer.primitives.float), ("bool".into(), DefinitionId(3), composer.primitives.bool), ("none".into(), DefinitionId(4), composer.primitives.none), ], composer, ) } /// already include the definition_id of itself inside the ancestors vector /// when first regitering, the type_vars, fields, methods, ancestors are invalid pub fn make_top_level_class_def( index: usize, resolver: Option>>, ) -> TopLevelDef { TopLevelDef::Class { object_id: DefinitionId(index), type_vars: Default::default(), fields: Default::default(), methods: Default::default(), ancestors: vec![DefinitionId(index)], resolver, } } /// when first registering, the type is a invalid value pub fn make_top_level_function_def( name: String, ty: Type, resolver: Option>>, ) -> TopLevelDef { TopLevelDef::Function { name, signature: ty, instance_to_symbol: Default::default(), instance_to_stmt: Default::default(), resolver, } } /// step 0, register, just remeber the names of top level classes/function pub fn register_top_level( &mut self, ast: ast::Stmt<()>, resolver: Option>>, ) -> Result<(String, DefinitionId), String> { let mut def_list = self.definition_ast_list.write(); match &ast.node { ast::StmtKind::ClassDef { name, body, .. } => { let class_name = name.to_string(); let class_def_id = def_list.len(); // add the class to the definition lists // since later when registering class method, ast will still be used, // here push None temporarly, later will move the ast inside let mut class_def_ast = ( Arc::new(RwLock::new(Self::make_top_level_class_def( class_def_id, resolver.clone(), ))), None, ); // parse class def body and register class methods into the def list. // module's symbol resolver would not know the name of the class methods, // thus cannot return their definition_id let mut class_method_name_def_ids: Vec<( String, Arc>, DefinitionId, )> = Vec::new(); let mut class_method_index_offset = 0; for b in body { if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node { let method_name = Self::name_mangling(class_name.clone(), method_name); let method_def_id = def_list.len() + { class_method_index_offset += 1; class_method_index_offset }; // dummy method define here // the ast of class method is in the class, push None in to the list here class_method_name_def_ids.push(( method_name.clone(), RwLock::new(Self::make_top_level_function_def( method_name.clone(), self.primitives.none, resolver.clone(), )) .into(), DefinitionId(method_def_id), )); } } // move the ast to the entry of the class in the ast_list class_def_ast.1 = Some(ast); // now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order def_list.push(class_def_ast); for (name, def, id) in class_method_name_def_ids { def_list.push((def, None)); self.class_method_to_def_id.insert(name, id); } // put the constructor into the def_list def_list.push(( RwLock::new(TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }) .into(), None, )); // class, put its def_id into the to be analyzed set self.to_be_analyzed_class.push(DefinitionId(class_def_id)); Ok((class_name, DefinitionId(class_def_id))) } ast::StmtKind::FunctionDef { name, .. } => { let fun_name = name.to_string(); // add to the definition list def_list.push(( RwLock::new(Self::make_top_level_function_def( name.into(), self.primitives.none, resolver, )) .into(), Some(ast), )); // return Ok((fun_name, DefinitionId(def_list.len() - 1))) } _ => Err("only registrations of top level classes/functions are supprted".into()), } } /// step 1, analyze the type vars associated with top level class fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> { let mut def_list = self.definition_ast_list.write(); let converted_top_level = &self.to_top_level_context(); let primitives = &self.primitives; let unifier = &mut self.unifier; for (class_def, class_ast) in def_list.iter_mut() { // only deal with class def here let mut class_def = class_def.write(); let (class_bases_ast, class_def_type_vars, class_resolver) = { if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() { if let Some(ast::Located { node: ast::StmtKind::ClassDef { bases, .. }, .. }) = class_ast { (bases, type_vars, resolver) } else { unreachable!("must be both class") } } else { continue; } }; let class_resolver = class_resolver.as_ref().unwrap().lock(); let mut is_generic = false; for b in class_bases_ast { match &b.node { // analyze typevars bounded to the class, // only support things like `class A(Generic[T, V])`, // things like `class A(Generic[T, V, ImportedModule.T])` is not supported // i.e. only simple names are allowed in the subscript // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params ast::ExprKind::Subscript { value, slice, .. } if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "Generic") => { if !is_generic { is_generic = true; } else { return Err("Only single Generic[...] can be in bases".into()); } // if `class A(Generic[T, V, G])` if let ast::ExprKind::Tuple { elts, .. } = &slice.node { // parse the type vars let type_vars = elts .iter() .map(|e| { class_resolver.parse_type_annotation( converted_top_level, unifier.borrow_mut(), primitives, e, ) }) .collect::, _>>()?; // check if all are unique type vars let mut occured_type_var_id: HashSet = HashSet::new(); let all_unique_type_var = type_vars.iter().all(|x| { let ty = unifier.get_ty(*x); if let TypeEnum::TVar { id, .. } = ty.as_ref() { occured_type_var_id.insert(*id) } else { false } }); if !all_unique_type_var { return Err("expect unique type variables".into()); } // add to TopLevelDef class_def_type_vars.extend(type_vars); // `class A(Generic[T])` } else { let ty = class_resolver.parse_type_annotation( converted_top_level, unifier.borrow_mut(), primitives, &slice, )?; // check if it is type var let is_type_var = matches!(unifier.get_ty(ty).as_ref(), &TypeEnum::TVar { .. }); if !is_type_var { return Err("expect type variable here".into()); } // add to TopLevelDef class_def_type_vars.push(ty); } } // if others, do nothing in this function _ => continue, } } } Ok(()) } /// step 2, base classes. Need to separate step1 and step2 for this reason: /// `class B(Generic[T, V]); /// class A(B[int, bool])` /// if the type var associated with class `B` has not been handled properly, /// the parse of type annotation of `B[int, bool]` will fail fn analyze_top_level_class_bases(&mut self) -> Result<(), String> { let mut def_list = self.definition_ast_list.write(); let converted_top_level = &self.to_top_level_context(); let primitives = &self.primitives; let unifier = &mut self.unifier; for (class_def, class_ast) in def_list.iter_mut() { let mut class_def = class_def.write(); let (class_bases, class_ancestors, class_resolver) = { if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.deref_mut() { if let Some(ast::Located { node: ast::StmtKind::ClassDef { bases, .. }, .. }) = class_ast { (bases, ancestors, resolver) } else { unreachable!("must be both class") } } else { continue; } }; let class_resolver = class_resolver.as_ref().unwrap().lock(); for b in class_bases { // type vars have already been handled, so skip on `Generic[...]` if let ast::ExprKind::Subscript { value, .. } = &b.node { if let ast::ExprKind::Name { id, .. } = &value.node { if id == "Generic" { continue; } } } // get the def id of the base class let base_ty = class_resolver.parse_type_annotation( converted_top_level, unifier.borrow_mut(), primitives, b, )?; let base_id = if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(base_ty).as_ref() { *obj_id } else { return Err("expect concrete class/type to be base class".into()); }; // write to the class ancestors, make sure the uniqueness if !class_ancestors.contains(&base_id) { class_ancestors.push(base_id); } else { return Err("cannot specify the same base class twice".into()); } } } Ok(()) } /// step 3, class fields and methods // FIXME: analyze base classes here // FIXME: deal with self type // NOTE: prevent cycles only roughly done fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> { let mut def_ast_list = self.definition_ast_list.write(); let converted_top_level = &self.to_top_level_context(); let primitives = &self.primitives; let to_be_analyzed_class = &mut self.to_be_analyzed_class; let unifier = &mut self.unifier; // NOTE: roughly prevent infinite loop let mut max_iter = to_be_analyzed_class.len() * 4; 'class: loop { if to_be_analyzed_class.is_empty() && { max_iter -= 1; max_iter > 0 } { break; } let class_ind = to_be_analyzed_class.remove(0).0; let (class_name, class_body_ast, class_bases_ast, class_resolver, class_ancestors ) = { let (class_def, class_ast) = &mut def_ast_list[class_ind]; if let Some(ast::Located { node: ast::StmtKind::ClassDef { name, body, bases, .. }, .. }) = class_ast.as_ref() { if let TopLevelDef::Class { resolver, ancestors, .. } = class_def.write().deref() { (name, body, bases, resolver.as_ref().unwrap().clone(), ancestors.clone()) } else { unreachable!() } } else { unreachable!("should be class def ast") } }; let all_base_class_analyzed = { let not_yet_analyzed = to_be_analyzed_class.clone().into_iter().collect::>(); let base = class_ancestors.clone().into_iter().collect::>(); let intersection = not_yet_analyzed.intersection(&base).collect_vec(); intersection.is_empty() }; if !all_base_class_analyzed { to_be_analyzed_class.push(DefinitionId(class_ind)); continue 'class; } // get the bases type, can directly do this since it // already pass the check in the previous stages let class_bases_ty = class_bases_ast .iter() .filter_map(|x| { class_resolver.as_ref().lock().parse_type_annotation( converted_top_level, unifier.borrow_mut(), primitives, x).ok() }) .collect_vec(); // need these vectors to check re-defining methods, class fields // and store the parsed result in case some method cannot be typed for now let mut class_methods_parsing_result: Vec<(String, Type, DefinitionId)> = vec![]; let mut class_fields_parsing_result: Vec<(String, Type)> = vec![]; for b in class_body_ast { if let ast::StmtKind::FunctionDef { args: method_args_ast, body: method_body_ast, name: method_name, returns: method_returns_ast, .. } = &b.node { let arg_name_tys: Vec<(String, Type)> = { let mut result = vec![]; for a in &method_args_ast.args { if a.node.arg != "self" { let annotation = a .node .annotation .as_ref() .ok_or_else(|| { "type annotation for function parameter is needed" .to_string() })? .as_ref(); let ty = class_resolver.as_ref().lock().parse_type_annotation( converted_top_level, unifier.borrow_mut(), primitives, annotation, )?; if !Self::check_ty_analyzed(ty, unifier, to_be_analyzed_class) { to_be_analyzed_class.push(DefinitionId(class_ind)); continue 'class; } result.push((a.node.arg.to_string(), ty)); } else { // TODO: handle self, how unimplemented!() } } result }; let method_type_var = arg_name_tys .iter() .filter_map(|(_, ty)| { let ty_enum = unifier.get_ty(*ty); if let TypeEnum::TVar { id, .. } = ty_enum.as_ref() { Some((*id, *ty)) } else { None } }) .collect::>(); let ret_ty = { if method_name != "__init__" { let ty = method_returns_ast .as_ref() .map(|x| { class_resolver.as_ref().lock().parse_type_annotation( converted_top_level, unifier.borrow_mut(), primitives, x.as_ref(), ) }) .ok_or_else(|| "return type annotation error".to_string())??; if !Self::check_ty_analyzed(ty, unifier, to_be_analyzed_class) { to_be_analyzed_class.push(DefinitionId(class_ind)); continue 'class; } else { ty } } else { // TODO: __init__ function, self type, how unimplemented!() } }; // handle fields let class_field_name_tys: Option> = if method_name == "__init__" { let mut result: Vec<(String, Type)> = vec![]; for body in method_body_ast { match &body.node { ast::StmtKind::AnnAssign { target, annotation, .. } if { if let ast::ExprKind::Attribute { value, .. } = &target.node { matches!( &value.node, ast::ExprKind::Name { id, .. } if id == "self") } else { false } } => { let field_ty = class_resolver.as_ref().lock().parse_type_annotation( converted_top_level, unifier.borrow_mut(), primitives, annotation.as_ref(), )?; if !Self::check_ty_analyzed( field_ty, unifier, to_be_analyzed_class, ) { to_be_analyzed_class.push(DefinitionId(class_ind)); continue 'class; } else { result.push(( if let ast::ExprKind::Attribute { attr, .. } = &target.node { attr.to_string() } else { unreachable!() }, field_ty, )) } } // exclude those without type annotation ast::StmtKind::Assign { targets, .. } if { if let ast::ExprKind::Attribute { value, .. } = &targets[0].node { matches!( &value.node, ast::ExprKind::Name {id, ..} if id == "self") } else { false } } => { return Err("class fields type annotation needed".into()) } // do nothing _ => {} } } Some(result) } else { None }; // current method all type ok, put the current method into the list if class_methods_parsing_result.iter().any(|(name, _, _)| name == method_name) { return Err("duplicate method definition".into()); } else { class_methods_parsing_result.push(( method_name.clone(), unifier.add_ty(TypeEnum::TFunc( FunSignature { ret: ret_ty, args: arg_name_tys .into_iter() .map(|(name, ty)| FuncArg { name, ty, default_value: None }) .collect_vec(), vars: method_type_var, } .into(), )), *self .class_method_to_def_id .get(&Self::name_mangling(class_name.clone(), method_name)) .unwrap(), )) } // put the fiedlds inside if let Some(class_field_name_tys) = class_field_name_tys { assert!(class_fields_parsing_result.is_empty()); class_fields_parsing_result.extend(class_field_name_tys); } } else { // what should we do with `class A: a = 3`? // do nothing, continue the for loop to iterate class ast continue; } } // now it should be confirmed that every // methods and fields of the class can be correctly typed, put the results // into the actual class def method and fields field let (class_def, _) = &def_ast_list[class_ind]; let mut class_def = class_def.write(); if let TopLevelDef::Class { fields, methods, .. } = class_def.deref_mut() { for (ref n, ref t) in class_fields_parsing_result { fields.push((n.clone(), *t)); } for (n, t, id) in &class_methods_parsing_result { methods.push((n.clone(), *t, *id)); } } else { unreachable!() } // change the signature field of the class methods for (_, ty, id) in &class_methods_parsing_result { let (method_def, _) = &def_ast_list[id.0]; let mut method_def = method_def.write(); if let TopLevelDef::Function { signature, .. } = method_def.deref_mut() { *signature = *ty; } } } Ok(()) } fn analyze_top_level_function(&mut self) -> Result<(), String> { unimplemented!() } fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> { unimplemented!() } fn check_ty_analyzed(ty: Type, unifier: &mut Unifier, to_be_analyzed: &[DefinitionId]) -> bool { let type_enum = unifier.get_ty(ty); match type_enum.as_ref() { TypeEnum::TObj { obj_id, .. } => !to_be_analyzed.contains(obj_id), TypeEnum::TVirtual { ty } => { if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(*ty).as_ref() { !to_be_analyzed.contains(obj_id) } else { unreachable!() } } TypeEnum::TVar { .. } => true, _ => unreachable!(), } } }