hm-inference #6
|
@ -1,3 +1,4 @@
|
|||
use std::borrow::Borrow;
|
||||
use std::{collections::HashMap, sync::Arc};
|
||||
|
||||
use super::typecheck::type_inferencer::PrimitiveStore;
|
||||
|
@ -78,13 +79,19 @@ pub struct CodeGenContext<'ctx> {
|
|||
pub loop_bb: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>,
|
||||
}
|
||||
|
||||
|
||||
pub fn name_mangling(mut class_name: String, method_name: &str) -> String { // need to further extend to more name mangling like instantiations of typevar
|
||||
class_name.push_str(method_name);
|
||||
class_name
|
||||
}
|
||||
|
||||
pub struct TopLevelDefInfo<'a> {
|
||||
// like adding some info on top of the TopLevelDef for later parsing the class bases, method,
|
||||
// and function sigatures
|
||||
def: TopLevelDef, // the definition entry
|
||||
ty: Type, // the entry in the top_level unifier
|
||||
ast: Option<ast::Stmt<()>>, // the ast submitted by applications
|
||||
resolver: Option<&'a dyn SymbolResolver>, // the resolver
|
||||
def: TopLevelDef, // the definition entry
|
||||
ty: Type, // the entry in the top_level unifier
|
||||
ast: Option<ast::Stmt<()>>, // the ast submitted by applications, primitives and class methods will have None value here
|
||||
resolver: Option<&'a dyn SymbolResolver> // the resolver
|
||||
}
|
||||
|
||||
pub struct TopLevelComposer<'a> {
|
||||
|
@ -163,13 +170,14 @@ impl<'a> TopLevelComposer<'a> {
|
|||
TopLevelComposer { definition_list, primitives: primitives.0, unifier: primitives.1 }
|
||||
}
|
||||
|
||||
/// already include the definition_id of itself inside the ancestors vector
|
||||
pub fn make_top_level_class_def(index: usize) -> TopLevelDef {
|
||||
TopLevelDef::Class {
|
||||
object_id: DefinitionId(index),
|
||||
type_vars: Default::default(),
|
||||
fields: Default::default(),
|
||||
methods: Default::default(),
|
||||
ancestors: Default::default(),
|
||||
ancestors: vec![DefinitionId(index)],
|
||||
}
|
||||
}
|
||||
pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef {
|
||||
|
@ -186,10 +194,10 @@ impl<'a> TopLevelComposer<'a> {
|
|||
pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> {
|
||||
vec![
|
||||
("int32".into(), DefinitionId(0), self.primitives.int32),
|
||||
("int64".into(), DefinitionId(0), self.primitives.int32),
|
||||
("float".into(), DefinitionId(0), self.primitives.int32),
|
||||
("bool".into(), DefinitionId(0), self.primitives.int32),
|
||||
("none".into(), DefinitionId(0), self.primitives.int32),
|
||||
("int64".into(), DefinitionId(1), self.primitives.int64),
|
||||
("float".into(), DefinitionId(2), self.primitives.float),
|
||||
("bool".into(), DefinitionId(3), self.primitives.bool),
|
||||
("none".into(), DefinitionId(4), self.primitives.none),
|
||||
]
|
||||
}
|
||||
|
||||
|
@ -201,29 +209,67 @@ impl<'a> TopLevelComposer<'a> {
|
|||
match &ast.node {
|
||||
ast::StmtKind::ClassDef { name, body, .. } => {
|
||||
let class_name = name.to_string();
|
||||
let def_id = self.definition_list.len();
|
||||
let class_def_id = self.definition_list.len();
|
||||
|
||||
// add the class to the unifier
|
||||
let ty = self.unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id: DefinitionId(def_id),
|
||||
obj_id: DefinitionId(class_def_id),
|
||||
fields: Default::default(),
|
||||
params: Default::default(),
|
||||
});
|
||||
|
||||
let mut ret_vector: Vec<(String, DefinitionId, Type)> = vec![(class_name.clone(), DefinitionId(class_def_id), ty)];
|
||||
// parse class def body and register class methods into the def list
|
||||
// NOTE: module's symbol resolver would not know the name of the class methods, thus cannot return their definition_id? so we have to manage it ourselves?
|
||||
// or do we return the class method list of (method_name, def_id, type) to application to be used to build symbol resolver? <- current implementation
|
||||
for b in body {
|
||||
if let ast::StmtKind::FunctionDef {name, ..} = &b.node {
|
||||
let fun_name = name_mangling(class_name.clone(), name);
|
||||
let def_id = self.definition_list.len();
|
||||
// add to unifier
|
||||
let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none,
|
||||
vars: Default::default()
|
||||
}));
|
||||
// add to the definition list
|
||||
self.definition_list.push(
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_function_def(fun_name.clone(), ty),
|
||||
resolver: Some(resolver),
|
||||
ty,
|
||||
ast: None // since it is inside the class def body statments
|
||||
}
|
||||
);
|
||||
ret_vector.push((fun_name, DefinitionId(def_id), ty));
|
||||
|
||||
if name == "__init__" { // if it is the contructor, special handling is needed. In the above handling, we still add __init__ function to the class method
|
||||
self.definition_list.push(
|
||||
TopLevelDefInfo {
|
||||
def: TopLevelDef::Initializer {
|
||||
class_id: DefinitionId(class_def_id) // FIXME: None if have no parameter, Some if same as __init__?
|
||||
},
|
||||
ty: self.primitives.none, // arbitary picked one
|
||||
ast: None, // it is inside the class def body statments
|
||||
resolver: Some(resolver)
|
||||
}
|
||||
)
|
||||
// FIXME: should we return this to the symbol resolver?
|
||||
}
|
||||
} else { } // else do nothing
|
||||
}
|
||||
// add to the definition list
|
||||
self.definition_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(def_id),
|
||||
resolver: Some(resolver),
|
||||
ast: Some(ast),
|
||||
ty,
|
||||
});
|
||||
self.definition_list.push(
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(class_def_id),
|
||||
resolver: Some(resolver),
|
||||
ast: Some(ast),
|
||||
ty,
|
||||
}
|
||||
);
|
||||
|
||||
// TODO: parse class def body and register class methods into the def list?
|
||||
// FIXME: module's symbol resolver would not know the name of the class methods,
|
||||
// thus cannot return their definition_id? so we have to manage it ourselves? or
|
||||
// do we return the class method list of (method_name, def_id, type) to application
|
||||
// to be used to build symbol resolver? <- current implementation
|
||||
|
||||
Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def
|
||||
}
|
||||
Ok(ret_vector)
|
||||
},
|
||||
|
||||
ast::StmtKind::FunctionDef { name, .. } => {
|
||||
let fun_name = name.to_string();
|
||||
|
@ -232,18 +278,18 @@ impl<'a> TopLevelComposer<'a> {
|
|||
let ty =
|
||||
self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none, // NOTE: this needs to be changed later
|
||||
vars: Default::default(),
|
||||
}));
|
||||
ret: self.primitives.none,
|
||||
vars: Default::default()
|
||||
}));
|
||||
// add to the definition list
|
||||
self.definition_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_function_def(
|
||||
name.into(),
|
||||
self.primitives.none, // NOTE: this needs to be changed later
|
||||
),
|
||||
resolver: Some(resolver),
|
||||
ast: Some(ast),
|
||||
ty,
|
||||
def: Self::make_top_level_function_def(
|
||||
name.into(),
|
||||
self.primitives.none
|
||||
),
|
||||
resolver: Some(resolver),
|
||||
ast: Some(ast),
|
||||
ty,
|
||||
});
|
||||
|
||||
Ok(vec![(fun_name, DefinitionId(def_id), ty)])
|
||||
|
@ -259,50 +305,137 @@ impl<'a> TopLevelComposer<'a> {
|
|||
if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) {
|
||||
match &ast.node {
|
||||
ast::StmtKind::ClassDef {
|
||||
name,
|
||||
bases,
|
||||
body,
|
||||
..
|
||||
} => {
|
||||
// get the mutable reference of the entry in the definition list, get the `TopLevelDef`
|
||||
let (_,
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
type_vars
|
||||
) = if let TopLevelDef::Class {
|
||||
object_id,
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
type_vars
|
||||
} = &mut d.def {
|
||||
(object_id, ancestors, fields, methods, type_vars)
|
||||
} else { unreachable!() };
|
||||
|
||||
// try to get mutable reference of the entry in the unification table, get the `TypeEnum`
|
||||
let (params,
|
||||
fields
|
||||
) = if let TypeEnum::TObj {
|
||||
params, // FIXME: this params is immutable, even if this is mutable, what should the key be, get the original typevar's var_id?
|
||||
fields,
|
||||
..
|
||||
} = self.unifier.get_ty(d.ty).borrow() {
|
||||
(params, fields)
|
||||
} else { unreachable!() };
|
||||
|
||||
// ancestors and typevars associate with the class are analyzed by looking
|
||||
// into the `bases` ast node
|
||||
for b in bases {
|
||||
match &b.node {
|
||||
// base class, name directly available inside the module, can use
|
||||
// this module's symbol resolver
|
||||
// typevars bounded to the class, things like `class A(Generic[T, V, ImportedModule.T])`
|
||||
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
||||
ast::ExprKind::Subscript {value, slice, ..} if {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
id == "Generic"
|
||||
} else { false }
|
||||
} => {
|
||||
match &slice.node {
|
||||
// `class Foo(Generic[T, V, P, ImportedModule.T]):`
|
||||
ast::ExprKind::Tuple {elts, ..} => {
|
||||
for e in elts {
|
||||
// TODO: I'd better parse the node to get the Type of the type vars(can have things like: A.B.C.typevar?)
|
||||
match &e.node {
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
// the def_list
|
||||
type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?);
|
||||
|
||||
// the TypeEnum of the class
|
||||
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
|
||||
unimplemented!()
|
||||
},
|
||||
|
||||
_ => unimplemented!()
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
// `class Foo(Generic[T]):`
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
// the def_list
|
||||
type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?);
|
||||
|
||||
// the TypeEnum of the class
|
||||
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
|
||||
unimplemented!()
|
||||
},
|
||||
|
||||
// `class Foo(Generic[ImportedModule.T])`
|
||||
ast::ExprKind::Attribute {value, attr, ..} => {
|
||||
// TODO:
|
||||
unimplemented!()
|
||||
},
|
||||
|
||||
_ => return Err("not supported".into()) // NOTE: it is really all the supported cases?
|
||||
};
|
||||
},
|
||||
|
||||
// base class, name directly available inside the
|
||||
// module, can use this module's symbol resolver
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
let def_id = resolver.get_identifier_def(id);
|
||||
unimplemented!()
|
||||
// the definition list
|
||||
ancestors.push(def_id);
|
||||
},
|
||||
// things can be like `class A(BaseModule.Base)`, here we have to
|
||||
// get the symbol resolver of the module `BaseModule`?
|
||||
|
||||
// base class, things can be like `class A(BaseModule.Base)`, here we have to get the
|
||||
// symbol resolver of the module `BaseModule`?
|
||||
ast::ExprKind::Attribute {value, attr, ..} => {
|
||||
// need to change symbol resolver in order to get the symbol
|
||||
// resolver of the imported module
|
||||
unimplemented!()
|
||||
},
|
||||
// typevars bounded to the class, things like
|
||||
// `class A(Generic[T, V])`
|
||||
ast::ExprKind::Subscript {value, slice, ..} => {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
if id == "Generic" {
|
||||
// TODO: get typevars
|
||||
unimplemented!()
|
||||
} else {
|
||||
return Err("unknown type var".into())
|
||||
}
|
||||
}
|
||||
if let Some(base_module_resolver) = resolver.get_module_resolver(id) {
|
||||
let def_id = base_module_resolver.get_identifier_def(attr);
|
||||
// the definition list
|
||||
ancestors.push(def_id);
|
||||
} else { return Err("unkown imported module".into()) }
|
||||
} else { return Err("unkown imported module".into()) }
|
||||
},
|
||||
|
||||
// `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables
|
||||
ast::ExprKind::Subscript {value, slice, ..} => {
|
||||
unimplemented!()
|
||||
},
|
||||
_ => return Err("not supported".into())
|
||||
}
|
||||
}
|
||||
|
||||
// class method and field are analyzed by looking into the class body ast node
|
||||
// ----------- class method and field are analyzed by looking into the class body ast node -----------
|
||||
for stmt in body {
|
||||
unimplemented!()
|
||||
if let ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
..
|
||||
} = &stmt.node {
|
||||
|
||||
} else { }
|
||||
// do nothing. we do not care about things like this?
|
||||
// class A:
|
||||
// a = 3
|
||||
// b = [2, 3]
|
||||
|
||||
|
||||
}
|
||||
},
|
||||
|
||||
// top level function definition
|
||||
ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
|
@ -320,3 +453,33 @@ impl<'a> TopLevelComposer<'a> {
|
|||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
pub fn parse_type_var<T>(input: &ast::Expr<T>, resolver: &dyn SymbolResolver) -> Result<Type, String> {
|
||||
match &input.node {
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable identifer".to_string())
|
||||
},
|
||||
|
||||
ast::ExprKind::Attribute {value, attr, ..} => {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
let next_resolver = resolver.get_module_resolver(id).ok_or_else(|| "unknown imported module".to_string())?;
|
||||
next_resolver.get_symbol_type(attr).ok_or_else(|| "unknown type variable identifer".to_string())
|
||||
} else {
|
||||
unimplemented!()
|
||||
// recursively resolve attr thing, FIXME: new problem: how do we handle this?
|
||||
// # A.py
|
||||
// class A:
|
||||
// T = TypeVar('T', int, bool)
|
||||
// pass
|
||||
// # B.py
|
||||
// import A
|
||||
// class B(Generic[A.A.T]):
|
||||
// pass
|
||||
}
|
||||
},
|
||||
|
||||
_ => Err("not supported".into())
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue