core: Miscellaneous fixes. #534
|
@ -1550,36 +1550,29 @@ impl<'a> Inferencer<'a> {
|
|||
}
|
||||
// 2-argument ndarray n-dimensional creation functions
|
||||
if id == &"np_full".into() && args.len() == 2 {
|
||||
let ExprKind::List { elts, .. } = &args[0].node else {
|
||||
return report_error(
|
||||
format!(
|
||||
"Expected List literal for first argument of {id}, got {}",
|
||||
args[0].node.name()
|
||||
)
|
||||
.as_str(),
|
||||
args[0].location,
|
||||
);
|
||||
};
|
||||
// Parse arguments
|
||||
let shape_expr = args.remove(0);
|
||||
let (ndims, shape) =
|
||||
self.fold_numpy_function_call_shape_argument(*id, 0, shape_expr)?; // Special handling for `shape`
|
||||
|
||||
let ndims = elts.len() as u64;
|
||||
let fill_value = self.fold_expr(args.remove(0))?;
|
||||
|
||||
let arg0 = self.fold_expr(args.remove(0))?;
|
||||
let arg1 = self.fold_expr(args.remove(0))?;
|
||||
|
||||
let ty = arg1.custom.unwrap();
|
||||
// Build the return type
|
||||
let dtype = fill_value.custom.unwrap();
|
||||
let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None);
|
||||
let ret = make_ndarray_ty(self.unifier, self.primitives, Some(ty), Some(ndims));
|
||||
let ret = make_ndarray_ty(self.unifier, self.primitives, Some(dtype), Some(ndims));
|
||||
|
||||
let custom = self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||
args: vec![
|
||||
FuncArg {
|
||||
name: "shape".into(),
|
||||
ty: arg0.custom.unwrap(),
|
||||
ty: shape.custom.unwrap(),
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg {
|
||||
name: "fill_value".into(),
|
||||
ty: arg1.custom.unwrap(),
|
||||
ty: fill_value.custom.unwrap(),
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
|
@ -1597,7 +1590,7 @@ impl<'a> Inferencer<'a> {
|
|||
location: func.location,
|
||||
node: ExprKind::Name { id: *id, ctx: *ctx },
|
||||
}),
|
||||
args: vec![arg0, arg1],
|
||||
args: vec![shape, fill_value],
|
||||
keywords: vec![],
|
||||
},
|
||||
}));
|
||||
|
|
|
@ -670,8 +670,8 @@ impl Unifier {
|
|||
let num_args = posargs.len() + kwargs.len();
|
||||
|
||||
// Now we check the arguments against the parameters,
|
||||
// and depending on what `call_info` is, we might change how the behavior `unify_call()`
|
||||
// in hopes to improve user error messages when type checking fails.
|
||||
// and depending on what `call_info` is, we might change how `unify_call()` behaves
|
||||
// to improve user error messages when type checking fails.
|
||||
match operator_info {
|
||||
Some(OperatorInfo::IsBinaryOp { self_type, operator }) => {
|
||||
// The call is written in the form of (say) `a + b`.
|
||||
|
|
|
@ -114,12 +114,22 @@ def test_ndarray_ones():
|
|||
n: ndarray[float, 1] = np_ones([1])
|
||||
output_ndarray_float_1(n)
|
||||
|
||||
dim = (1,)
|
||||
n_tup: ndarray[float, 1] = np_ones(dim)
|
||||
output_ndarray_float_1(n_tup)
|
||||
|
||||
def test_ndarray_full():
|
||||
n_float: ndarray[float, 1] = np_full([1], 2.0)
|
||||
output_ndarray_float_1(n_float)
|
||||
n_i32: ndarray[int32, 1] = np_full([1], 2)
|
||||
output_ndarray_int32_1(n_i32)
|
||||
|
||||
dim = (1,)
|
||||
n_float_tup: ndarray[float, 1] = np_full(dim, 2.0)
|
||||
output_ndarray_float_1(n_float_tup)
|
||||
n_i32_tup: ndarray[int32, 1] = np_full(dim, 2)
|
||||
output_ndarray_int32_1(n_i32_tup)
|
||||
|
||||
def test_ndarray_eye():
|
||||
n: ndarray[float, 2] = np_eye(2)
|
||||
output_ndarray_float_2(n)
|
||||
|
|
Loading…
Reference in New Issue