ndstrides: [10] Reimplement binops, unary ops, and cmpops. #520
@ -8,7 +8,10 @@ use std::{
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
types::{AnyType, BasicType, BasicTypeEnum},
|
||||
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue, StructValue},
|
||||
values::{
|
||||
BasicValue, BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue,
|
||||
StructValue,
|
||||
},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::{chain, izip, Either, Itertools};
|
||||
@ -34,7 +37,10 @@ use super::{
|
||||
need_sret, numpy,
|
||||
object::{
|
||||
any::AnyObject,
|
||||
ndarray::{indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject},
|
||||
ndarray::{
|
||||
indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject, NDArrayOut,
|
||||
ScalarOrNDArray,
|
||||
},
|
||||
},
|
||||
stmt::{
|
||||
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
||||
@ -1549,99 +1555,71 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
|
||||
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let left =
|
||||
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty1, value: left_val });
|
||||
let right =
|
||||
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty2, value: right_val });
|
||||
|
||||
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
||||
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
||||
// Inhomogeneous binary operations are not supported.
|
||||
assert!(ctx.unifier.unioned(left.get_dtype(), right.get_dtype()));
|
||||
|
||||
if is_ndarray1 && is_ndarray2 {
|
||||
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
|
||||
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
|
||||
let common_dtype = left.get_dtype();
|
||||
|
||||
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
||||
let out = match op.variant {
|
||||
BinopVariant::Normal => NDArrayOut::NewNDArray { dtype: common_dtype },
|
||||
BinopVariant::AugAssign => {
|
||||
// If this is an augmented assignment.
|
||||
// `left` has to be an ndarray. If it were a scalar then NAC3 simply doesn't support it.
|
||||
if let ScalarOrNDArray::NDArray(out_ndarray) = left {
|
||||
NDArrayOut::WriteToNDArray { ndarray: out_ndarray }
|
||||
} else {
|
||||
panic!("left must be an ndarray")
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let left_val =
|
||||
NDArrayValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None);
|
||||
let right_val =
|
||||
NDArrayValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None);
|
||||
|
||||
let res = if op.base == Operator::MatMult {
|
||||
// MatMult is the only binop which is not an elementwise op
|
||||
numpy::ndarray_matmul_2d(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_dtype1,
|
||||
match op.variant {
|
||||
BinopVariant::Normal => None,
|
||||
BinopVariant::AugAssign => Some(left_val),
|
||||
},
|
||||
left_val,
|
||||
right_val,
|
||||
)?
|
||||
} else {
|
||||
numpy::ndarray_elementwise_binop_impl(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_dtype1,
|
||||
match op.variant {
|
||||
BinopVariant::Normal => None,
|
||||
BinopVariant::AugAssign => Some(left_val),
|
||||
},
|
||||
(left_val.as_base_value().into(), false),
|
||||
(right_val.as_base_value().into(), false),
|
||||
|generator, ctx, (lhs, rhs)| {
|
||||
gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(ndarray_dtype1), lhs),
|
||||
op,
|
||||
(&Some(ndarray_dtype2), rhs),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(
|
||||
ctx,
|
||||
generator,
|
||||
ndarray_dtype1,
|
||||
)
|
||||
},
|
||||
)?
|
||||
};
|
||||
|
||||
Ok(Some(res.as_base_value().into()))
|
||||
if op.base == Operator::MatMult {
|
||||
// Handle matrix multiplication.
|
||||
todo!()
|
||||
} else {
|
||||
let (ndarray_dtype, _) =
|
||||
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
|
||||
let ndarray_val = NDArrayValue::from_ptr_val(
|
||||
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
let res = numpy::ndarray_elementwise_binop_impl(
|
||||
// For other operations, they are all elementwise operations.
|
||||
|
||||
// There are only three cases:
|
||||
// - LHS is a scalar, RHS is an ndarray.
|
||||
// - LHS is an ndarray, RHS is a scalar.
|
||||
// - LHS is an ndarray, RHS is an ndarray.
|
||||
//
|
||||
// For all cases, the scalar operand is promoted to an ndarray,
|
||||
// the two are then broadcasted, and starmapped through.
|
||||
|
||||
let left = left.to_ndarray(generator, ctx);
|
||||
let right = right.to_ndarray(generator, ctx);
|
||||
|
||||
let result = NDArrayObject::broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_dtype,
|
||||
match op.variant {
|
||||
BinopVariant::Normal => None,
|
||||
BinopVariant::AugAssign => Some(ndarray_val),
|
||||
},
|
||||
(left_val, !is_ndarray1),
|
||||
(right_val, !is_ndarray2),
|
||||
|generator, ctx, (lhs, rhs)| {
|
||||
gen_binop_expr_with_values(
|
||||
&[left, right],
|
||||
out,
|
||||
|generator, ctx, scalars| {
|
||||
let left_value = scalars[0];
|
||||
let right_value = scalars[1];
|
||||
|
||||
let result = gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(ndarray_dtype), lhs),
|
||||
(&Some(left.dtype), left_value),
|
||||
op,
|
||||
(&Some(ndarray_dtype), rhs),
|
||||
(&Some(right.dtype), right_value),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
||||
},
|
||||
)?;
|
||||
.to_basic_value_enum(ctx, generator, common_dtype)?;
|
||||
|
||||
Ok(Some(res.as_base_value().into()))
|
||||
Ok(result)
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
Ok(Some(ValueEnum::Dynamic(result.instance.value.as_basic_value_enum())))
|
||||
}
|
||||
} else {
|
||||
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
||||
|
Loading…
Reference in New Issue
Block a user