NDArray with strides + NDArrayObject + Models + Exceptions in IRRT. #506
@ -2,6 +2,7 @@
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
#include <irrt/ndarray/array.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/ndarray/indexing.hpp>
|
||||
|
157
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
157
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
@ -0,0 +1,157 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace array
|
||||
{
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
|
||||
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0], [3.0]])`)
|
||||
*
|
||||
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the responsibility to
|
||||
* allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because of implementation details.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||
{
|
||||
if (shape[axis] == -1)
|
||||
{
|
||||
// Dimension is unspecified. Set it.
|
||||
shape[axis] = list->len;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Dimension is specified. Check.
|
||||
if (shape[axis] != list->len)
|
||||
{
|
||||
// Mismatch, throw an error.
|
||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"The requested array has an inhomogenous shape "
|
||||
"after {0} dimension(s).",
|
||||
axis, shape[axis], list->len);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndims)
|
||||
{
|
||||
// `list` has type `list[ItemType]`
|
||||
// Do nothing
|
||||
}
|
||||
else
|
||||
{
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||
for (SizeT i = 0; i < list->len; i++)
|
||||
{
|
||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `set_and_validate_list_shape_helper`.
|
||||
*/
|
||||
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||
{
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||
}
|
||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
|
||||
*
|
||||
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
|
||||
*
|
||||
* # Notes on `ndarray`
|
||||
* The caller is responsible for allocating space for `ndarray`.
|
||||
* Here is what this function expects from `ndarray` when called:
|
||||
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
|
||||
* - `ndarray->itemsize` has to be initialized.
|
||||
* - `ndarray->ndims` has to be initialized.
|
||||
* - `ndarray->shape` has to be initialized.
|
||||
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
|
||||
* When this function call ends:
|
||||
* - `ndarray->data` is written with contents from `<list>`.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||
{
|
||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||
if (IRRT_DEBUG_ASSERT_BOOL)
|
||||
{
|
||||
if (!ndarray::basic::is_c_contiguous(ndarray))
|
||||
{
|
||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndarray->ndims)
|
||||
{
|
||||
// `list` has type `list[scalar]`
|
||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
|
||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||
*index += list->len;
|
||||
}
|
||||
else
|
||||
{
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||
|
||||
for (SizeT i = 0; i < list->len; i++)
|
||||
{
|
||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `write_list_to_array_helper`.
|
||||
*/
|
||||
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||
{
|
||||
SizeT index = 0;
|
||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||
}
|
||||
} // namespace array
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::array;
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
|
||||
{
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
|
||||
{
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
|
||||
{
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
|
||||
{
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
}
|
@ -7,7 +7,10 @@ use super::{
|
||||
},
|
||||
llvm_intrinsics,
|
||||
model::*,
|
||||
object::ndarray::{indexing::NDIndex, nditer::NDIter, NDArray},
|
||||
object::{
|
||||
list::List,
|
||||
ndarray::{indexing::NDIndex, nditer::NDIter, NDArray},
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::codegen::classes::TypedArrayLikeAccessor;
|
||||
@ -1136,3 +1139,32 @@ pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
||||
.arg(dst_ndarray)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||
ndims: Instance<'ctx, Int<SizeT>>,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_set_and_validate_list_shape",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_write_list_to_array",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
|
||||
}
|
||||
|
@ -178,6 +178,15 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
|
||||
Ptr(new_item).pointer_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
/// Cast this pointer to `uint8_t*`
|
||||
pub fn cast_to_pi8<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||
Ptr(Int(Byte)).pointer_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
|
||||
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
||||
let value = ctx.builder.build_is_null(self.value, "").unwrap();
|
||||
|
@ -12,6 +12,7 @@ use crate::{
|
||||
call_ndarray_calc_size,
|
||||
},
|
||||
llvm_intrinsics::{self, call_memcpy_generic},
|
||||
model::*,
|
||||
object::{
|
||||
any::AnyObject,
|
||||
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
|
||||
@ -21,13 +22,13 @@ use crate::{
|
||||
},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{
|
||||
helper::{extract_ndims, PrimDef},
|
||||
helper::extract_ndims,
|
||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||
DefinitionId,
|
||||
},
|
||||
typecheck::{
|
||||
magic_methods::Binop,
|
||||
typedef::{FunSignature, Type, TypeEnum},
|
||||
typedef::{FunSignature, Type},
|
||||
},
|
||||
};
|
||||
use inkwell::{
|
||||
@ -1839,26 +1840,6 @@ pub fn gen_ndarray_array<'ctx>(
|
||||
assert!(matches!(args.len(), 1..=3));
|
||||
|
||||
let obj_ty = fun.0.args[0].ty;
|
||||
let obj_elem_ty = match &*context.unifier.get_ty(obj_ty) {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
unpack_ndarray_var_tys(&mut context.unifier, obj_ty).0
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
||||
let mut ty = *params.iter().next().unwrap().1;
|
||||
while let TypeEnum::TObj { obj_id, params, .. } = &*context.unifier.get_ty_immutable(ty)
|
||||
{
|
||||
if *obj_id != PrimDef::List.id() {
|
||||
break;
|
||||
}
|
||||
|
||||
ty = *params.iter().next().unwrap().1;
|
||||
}
|
||||
ty
|
||||
}
|
||||
|
||||
_ => obj_ty,
|
||||
};
|
||||
let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?;
|
||||
|
||||
let copy_arg = if let Some(arg) =
|
||||
@ -1874,28 +1855,18 @@ pub fn gen_ndarray_array<'ctx>(
|
||||
)
|
||||
};
|
||||
|
||||
let ndmin_arg = if let Some(arg) =
|
||||
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
|
||||
{
|
||||
let ndmin_ty = fun.0.args[2].ty;
|
||||
arg.1.clone().to_basic_value_enum(context, generator, ndmin_ty)?
|
||||
} else {
|
||||
context.gen_symbol_val(
|
||||
generator,
|
||||
fun.0.args[2].default_value.as_ref().unwrap(),
|
||||
fun.0.args[2].ty,
|
||||
)
|
||||
};
|
||||
// The ndmin argument is ignored. We can simply force the ndarray's number of dimensions to be
|
||||
// the `ndims` of the function return type.
|
||||
let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
let ndims = extract_ndims(&context.unifier, ndims);
|
||||
|
||||
call_ndarray_array_impl(
|
||||
generator,
|
||||
context,
|
||||
obj_elem_ty,
|
||||
obj_arg,
|
||||
copy_arg.into_int_value(),
|
||||
ndmin_arg.into_int_value(),
|
||||
)
|
||||
.map(NDArrayValue::into)
|
||||
let object = AnyObject { value: obj_arg, ty: obj_ty };
|
||||
// NAC3 booleans are i8.
|
||||
let copy = Int(Bool).truncate(generator, context, copy_arg.into_int_value());
|
||||
let ndarray = NDArrayObject::make_np_array(generator, context, object, copy)
|
||||
.atleast_nd(generator, context, ndims);
|
||||
|
||||
Ok(ndarray.instance.value)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.eye`.
|
||||
|
@ -31,6 +31,17 @@ impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Struct<List<Item>>>> {
|
||||
/// Cast the items pointer to `uint8_t*`.
|
||||
pub fn with_pi8_items<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
|
||||
self.pointer_cast(generator, ctx, Struct(List { item: Int(Byte) }))
|
||||
}
|
||||
}
|
||||
|
||||
/// A NAC3 Python List object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ListObject<'ctx> {
|
||||
|
184
nac3core/src/codegen/object/ndarray/array.rs
Normal file
184
nac3core/src/codegen/object/ndarray/array.rs
Normal file
@ -0,0 +1,184 @@
|
||||
use super::NDArrayObject;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_array_set_and_validate_list_shape,
|
||||
call_nac3_ndarray_array_write_list_to_array,
|
||||
},
|
||||
model::*,
|
||||
object::{any::AnyObject, list::ListObject},
|
||||
stmt::gen_if_else_expr_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(list)`.
|
||||
fn get_list_object_dtype_and_ndims<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> (Type, u64) {
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
|
||||
|
||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
|
||||
let ndims = ndims + 1; // To count `list` itself.
|
||||
|
||||
(dtype, ndims)
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Implementation of `np_array(<list>, copy=True)`
|
||||
fn make_np_array_list_copy_true_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
let list_value = list.instance.with_pi8_items(generator, ctx);
|
||||
|
||||
// Validate `list` has a consistent shape.
|
||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
|
||||
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
call_nac3_ndarray_array_set_and_validate_list_shape(
|
||||
generator, ctx, list_value, ndims, shape,
|
||||
);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.create_data(generator, ctx);
|
||||
|
||||
// Copy all contents from the list.
|
||||
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=None)`
|
||||
fn make_np_array_list_copy_none_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
// np_array without copying is only possible `list` is not nested.
|
||||
//
|
||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||
// to the array pointer of `list`.
|
||||
//
|
||||
// If `list` is `list[list[T]]` or worse, copy.
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
if ndims == 1 {
|
||||
// `list` is not nested
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
|
||||
|
||||
// Set data
|
||||
let data = list.instance.get(generator, ctx, |f| f.items).cast_to_pi8(generator, ctx);
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
// ndarray->shape[0] = list->len;
|
||||
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
let list_len = list.instance.get(generator, ctx, |f| f.len);
|
||||
shape.set_index_const(ctx, 0, list_len);
|
||||
|
||||
// Set strides, the `data` is contiguous
|
||||
ndarray.set_strides_contiguous(generator, ctx);
|
||||
|
||||
ndarray
|
||||
} else {
|
||||
// `list` is nested, copy
|
||||
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=copy)`
|
||||
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray =
|
||||
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray =
|
||||
NDArrayObject::make_np_array_list_copy_none_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<ndarray>, copy=copy)`.
|
||||
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No need to copy. Return `ndarray` itself.
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_val,
|
||||
ndarray.dtype,
|
||||
ndarray.ndims,
|
||||
)
|
||||
}
|
||||
|
||||
/// Create a new ndarray like `np.array()`.
|
||||
///
|
||||
/// NOTE: The `ndmin` argument is not here. You may want to
|
||||
/// do [`NDArrayObject::atleast_nd`] to achieve that.
|
||||
pub fn make_np_array<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
|
||||
}
|
||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
|
||||
}
|
||||
}
|
||||
}
|
@ -1,3 +1,4 @@
|
||||
pub mod array;
|
||||
pub mod factory;
|
||||
pub mod indexing;
|
||||
pub mod nditer;
|
||||
@ -74,8 +75,19 @@ impl<'ctx> NDArrayObject<'ctx> {
|
||||
) -> NDArrayObject<'ctx> {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
|
||||
}
|
||||
|
||||
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, object.value).unwrap();
|
||||
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
|
||||
/// `dtype` and `ndims`.
|
||||
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: V,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
|
||||
NDArrayObject { dtype, ndims, instance: value }
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user