core: reimplement assignment type inference and codegen + other minor changes & refactor #483
@ -995,8 +995,10 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
|
||||
ctx.builder.position_at_end(init_bb);
|
||||
|
||||
let Comprehension { target, iter, ifs, .. } = &generators[0];
|
||||
|
||||
let iter_ty = iter.custom.unwrap();
|
||||
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
|
||||
v.to_basic_value_enum(ctx, generator, iter.custom.unwrap())?
|
||||
v.to_basic_value_enum(ctx, generator, iter_ty)?
|
||||
} else {
|
||||
for bb in [test_bb, body_bb, cont_bb] {
|
||||
ctx.builder.position_at_end(bb);
|
||||
@ -1014,96 +1016,120 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
|
||||
ctx.builder.build_store(index, zero_size_t).unwrap();
|
||||
|
||||
let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap());
|
||||
let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
|
||||
let list;
|
||||
|
||||
if is_range {
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
||||
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
|
||||
// add 1 to the length as the value is rounded to zero
|
||||
// the length may be 1 more than the actual length if the division is exact, but the
|
||||
// length is a upper bound only anyway so it does not matter.
|
||||
let length = ctx.builder.build_int_signed_div(diff, step, "div").unwrap();
|
||||
let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1").unwrap();
|
||||
// in case length is non-positive
|
||||
let is_valid =
|
||||
ctx.builder.build_int_compare(IntPredicate::SGT, length, zero_32, "check").unwrap();
|
||||
match &*ctx.unifier.get_ty(iter_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
||||
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
|
||||
// add 1 to the length as the value is rounded to zero
|
||||
// the length may be 1 more than the actual length if the division is exact, but the
|
||||
// length is a upper bound only anyway so it does not matter.
|
||||
let length = ctx.builder.build_int_signed_div(diff, step, "div").unwrap();
|
||||
let length =
|
||||
ctx.builder.build_int_add(length, int32.const_int(1, false), "add1").unwrap();
|
||||
// in case length is non-positive
|
||||
let is_valid =
|
||||
ctx.builder.build_int_compare(IntPredicate::SGT, length, zero_32, "check").unwrap();
|
||||
|
||||
let list_alloc_size = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
is_valid,
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len").unwrap(),
|
||||
zero_size_t,
|
||||
"listcomp.alloc_size",
|
||||
)
|
||||
.unwrap();
|
||||
list = allocate_list(
|
||||
generator,
|
||||
ctx,
|
||||
Some(elem_ty),
|
||||
list_alloc_size.into_int_value(),
|
||||
Some("listcomp.addr"),
|
||||
);
|
||||
let list_alloc_size = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
is_valid,
|
||||
ctx.builder
|
||||
.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len")
|
||||
.unwrap(),
|
||||
zero_size_t,
|
||||
"listcomp.alloc_size",
|
||||
)
|
||||
.unwrap();
|
||||
list = allocate_list(
|
||||
generator,
|
||||
ctx,
|
||||
Some(elem_ty),
|
||||
list_alloc_size.into_int_value(),
|
||||
Some("listcomp.addr"),
|
||||
);
|
||||
|
||||
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
|
||||
ctx.builder
|
||||
.build_store(i, ctx.builder.build_int_sub(start, step, "start_init").unwrap())
|
||||
.unwrap();
|
||||
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
|
||||
ctx.builder
|
||||
.build_store(i, ctx.builder.build_int_sub(start, step, "start_init").unwrap())
|
||||
.unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_conditional_branch(gen_in_range_check(ctx, start, stop, step), test_bb, cont_bb)
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_conditional_branch(
|
||||
gen_in_range_check(ctx, start, stop, step),
|
||||
test_bb,
|
||||
cont_bb,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
ctx.builder.position_at_end(test_bb);
|
||||
// add and test
|
||||
let tmp = ctx
|
||||
.builder
|
||||
.build_int_add(
|
||||
ctx.builder.build_load(i, "i").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
step,
|
||||
"start_loop",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.builder.build_store(i, tmp).unwrap();
|
||||
ctx.builder
|
||||
.build_conditional_branch(gen_in_range_check(ctx, tmp, stop, step), body_bb, cont_bb)
|
||||
.unwrap();
|
||||
ctx.builder.position_at_end(test_bb);
|
||||
// add and test
|
||||
let tmp = ctx
|
||||
.builder
|
||||
.build_int_add(
|
||||
ctx.builder.build_load(i, "i").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
step,
|
||||
"start_loop",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.builder.build_store(i, tmp).unwrap();
|
||||
ctx.builder
|
||||
.build_conditional_branch(
|
||||
gen_in_range_check(ctx, tmp, stop, step),
|
||||
body_bb,
|
||||
cont_bb,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
} else {
|
||||
let length = ctx
|
||||
.build_gep_and_load(
|
||||
iter_val.into_pointer_value(),
|
||||
&[zero_size_t, int32.const_int(1, false)],
|
||||
Some("length"),
|
||||
)
|
||||
.into_int_value();
|
||||
list = allocate_list(generator, ctx, Some(elem_ty), length, Some("listcomp"));
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let length = ctx
|
||||
.build_gep_and_load(
|
||||
iter_val.into_pointer_value(),
|
||||
&[zero_size_t, int32.const_int(1, false)],
|
||||
Some("length"),
|
||||
)
|
||||
.into_int_value();
|
||||
list = allocate_list(generator, ctx, Some(elem_ty), length, Some("listcomp"));
|
||||
|
||||
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
|
||||
// counter = -1
|
||||
ctx.builder.build_store(counter, size_t.const_all_ones()).unwrap();
|
||||
ctx.builder.build_unconditional_branch(test_bb).unwrap();
|
||||
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
|
||||
// counter = -1
|
||||
ctx.builder.build_store(counter, size_t.const_all_ones()).unwrap();
|
||||
ctx.builder.build_unconditional_branch(test_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(test_bb);
|
||||
let tmp = ctx.builder.build_load(counter, "i").map(BasicValueEnum::into_int_value).unwrap();
|
||||
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc").unwrap();
|
||||
ctx.builder.build_store(counter, tmp).unwrap();
|
||||
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp").unwrap();
|
||||
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(test_bb);
|
||||
let tmp =
|
||||
ctx.builder.build_load(counter, "i").map(BasicValueEnum::into_int_value).unwrap();
|
||||
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc").unwrap();
|
||||
ctx.builder.build_store(counter, tmp).unwrap();
|
||||
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp").unwrap();
|
||||
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
let arr_ptr = ctx
|
||||
.build_gep_and_load(
|
||||
iter_val.into_pointer_value(),
|
||||
&[zero_size_t, zero_32],
|
||||
Some("arr.addr"),
|
||||
)
|
||||
.into_pointer_value();
|
||||
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
|
||||
generator.gen_assign(ctx, target, val.into())?;
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
let arr_ptr = ctx
|
||||
.build_gep_and_load(
|
||||
iter_val.into_pointer_value(),
|
||||
&[zero_size_t, zero_32],
|
||||
Some("arr.addr"),
|
||||
)
|
||||
.into_pointer_value();
|
||||
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
|
||||
generator.gen_assign(ctx, target, val.into(), elt.custom.unwrap())?;
|
||||
}
|
||||
_ => {
|
||||
panic!(
|
||||
"unsupported list comprehension iterator type: {}",
|
||||
ctx.unifier.stringify(iter_ty)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Emits the content of `cont_bb`
|
||||
|
@ -123,11 +123,45 @@ pub trait CodeGenerator {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_assign(self, ctx, target, value)
|
||||
gen_assign(self, ctx, target, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for an assignment expression where LHS is a `"target_list"`.
|
||||
///
|
||||
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
|
||||
fn gen_assign_target_list<'ctx>(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
targets: &Vec<Expr<Option<Type>>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_assign_target_list(self, ctx, targets, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for an item assignment.
|
||||
///
|
||||
/// i.e., `target[key] = value`
|
||||
fn gen_setitem<'ctx>(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
key: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_setitem(self, ctx, target, key, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for a while expression.
|
||||
|
@ -10,10 +10,10 @@ use crate::{
|
||||
expr::gen_binop_expr,
|
||||
gen_in_range_check,
|
||||
},
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef},
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::{
|
||||
magic_methods::Binop,
|
||||
typedef::{FunSignature, Type, TypeEnum},
|
||||
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
use inkwell::{
|
||||
@ -23,10 +23,10 @@ use inkwell::{
|
||||
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::{izip, Itertools};
|
||||
use nac3parser::ast::{
|
||||
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
||||
};
|
||||
use std::convert::TryFrom;
|
||||
|
||||
/// See [`CodeGenerator::gen_var_alloc`].
|
||||
pub fn gen_var<'ctx>(
|
||||
@ -97,8 +97,6 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
|
||||
pattern: &Expr<Option<Type>>,
|
||||
name: Option<&str>,
|
||||
) -> Result<Option<PointerValue<'ctx>>, String> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// very similar to gen_expr, but we don't do an extra load at the end
|
||||
// and we flatten nested tuples
|
||||
Ok(Some(match &pattern.node {
|
||||
@ -137,65 +135,6 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
|
||||
}
|
||||
.unwrap()
|
||||
}
|
||||
ExprKind::Subscript { value, slice, .. } => {
|
||||
match ctx.unifier.get_ty_immutable(value.custom.unwrap()).as_ref() {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
|
||||
let v = generator
|
||||
.gen_expr(ctx, value)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
||||
.into_pointer_value();
|
||||
let v = ListValue::from_ptr_val(v, llvm_usize, None);
|
||||
let len = v.load_size(ctx, Some("len"));
|
||||
let raw_index = generator
|
||||
.gen_expr(ctx, slice)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
||||
.into_int_value();
|
||||
let raw_index = ctx
|
||||
.builder
|
||||
.build_int_s_extend(raw_index, generator.get_size_type(ctx.ctx), "sext")
|
||||
.unwrap();
|
||||
// handle negative index
|
||||
let is_negative = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
raw_index,
|
||||
generator.get_size_type(ctx.ctx).const_zero(),
|
||||
"is_neg",
|
||||
)
|
||||
.unwrap();
|
||||
let adjusted = ctx.builder.build_int_add(raw_index, len, "adjusted").unwrap();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_select(is_negative, adjusted, raw_index, "index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
// unsigned less than is enough, because negative index after adjustment is
|
||||
// bigger than the length (for unsigned cmp)
|
||||
let bound_check = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
bound_check,
|
||||
"0:IndexError",
|
||||
"index {0} out of bounds 0:{1}",
|
||||
[Some(raw_index), Some(len), None],
|
||||
slice.location,
|
||||
);
|
||||
v.data().ptr_offset(ctx, generator, &index, name)
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
todo!()
|
||||
}
|
||||
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}))
|
||||
}
|
||||
@ -206,70 +145,20 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// See https://docs.python.org/3/reference/simple_stmts.html#assignment-statements.
|
||||
match &target.node {
|
||||
ExprKind::Tuple { elts, .. } => {
|
||||
let BasicValueEnum::StructValue(v) =
|
||||
value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
for (i, elt) in elts.iter().enumerate() {
|
||||
let v = ctx
|
||||
.builder
|
||||
.build_extract_value(v, u32::try_from(i).unwrap(), "struct_elem")
|
||||
.unwrap();
|
||||
generator.gen_assign(ctx, elt, v.into())?;
|
||||
}
|
||||
ExprKind::Subscript { value: target, slice: key, .. } => {
|
||||
// Handle "slicing" or "subscription"
|
||||
generator.gen_setitem(ctx, target, key, value, value_ty)?;
|
||||
}
|
||||
ExprKind::Subscript { value: ls, slice, .. }
|
||||
if matches!(&slice.node, ExprKind::Slice { .. }) =>
|
||||
{
|
||||
let ExprKind::Slice { lower, upper, step } = &slice.node else { unreachable!() };
|
||||
|
||||
let ls = generator
|
||||
.gen_expr(ctx, ls)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, ls.custom.unwrap())?
|
||||
.into_pointer_value();
|
||||
let ls = ListValue::from_ptr_val(ls, llvm_usize, None);
|
||||
let Some((start, end, step)) =
|
||||
handle_slice_indices(lower, upper, step, ctx, generator, ls.load_size(ctx, None))?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
let value = value
|
||||
.to_basic_value_enum(ctx, generator, target.custom.unwrap())?
|
||||
.into_pointer_value();
|
||||
let value = ListValue::from_ptr_val(value, llvm_usize, None);
|
||||
let ty = match &*ctx.unifier.get_ty_immutable(target.custom.unwrap()) {
|
||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
||||
*params.iter().next().unwrap().1
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
unpack_ndarray_var_tys(&mut ctx.unifier, target.custom.unwrap()).0
|
||||
}
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let ty = ctx.get_llvm_type(generator, ty);
|
||||
let Some(src_ind) = handle_slice_indices(
|
||||
&None,
|
||||
&None,
|
||||
&None,
|
||||
ctx,
|
||||
generator,
|
||||
value.load_size(ctx, None),
|
||||
)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
list_slice_assignment(generator, ctx, ty, ls, (start, end, step), value, src_ind);
|
||||
ExprKind::Tuple { elts, .. } | ExprKind::List { elts, .. } => {
|
||||
// Fold on `"[" [target_list] "]"` and `"(" [target_list] ")"`
|
||||
generator.gen_assign_target_list(ctx, elts, value, value_ty)?;
|
||||
}
|
||||
_ => {
|
||||
// Handle attribute and direct variable assignments.
|
||||
let name = if let ExprKind::Name { id, .. } = &target.node {
|
||||
format!("{id}.addr")
|
||||
} else {
|
||||
@ -293,6 +182,233 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// See [`CodeGenerator::gen_assign_target_list`].
|
||||
pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
targets: &Vec<Expr<Option<Type>>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String> {
|
||||
// Deconstruct the tuple `value`
|
||||
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
|
||||
let TypeEnum::TTuple { ty: tuple_tys } = &*ctx.unifier.get_ty(value_ty) else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
|
||||
|
||||
let tuple = (0..tuple.get_type().count_fields())
|
||||
.map(|i| ctx.builder.build_extract_value(tuple, i, "item").unwrap())
|
||||
.collect_vec();
|
||||
|
||||
// Find the starred target if it exists.
|
||||
let mut starred_target_index: Option<usize> = None; // Index of the "starred" target. If it exists, there may only be one.
|
||||
for (i, target) in targets.iter().enumerate() {
|
||||
if matches!(target.node, ExprKind::Starred { .. }) {
|
||||
assert!(starred_target_index.is_none()); // The typechecker ensures this
|
||||
starred_target_index = Some(i);
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(starred_target_index) = starred_target_index {
|
||||
assert!(tuple_tys.len() >= targets.len() - 1); // The typechecker ensures this
|
||||
|
||||
let a = starred_target_index; // Number of RHS values before the starred target
|
||||
let b = tuple_tys.len() - (targets.len() - 1 - starred_target_index); // Number of RHS values after the starred target
|
||||
// Thus `tuple[a..b]` is assigned to the starred target.
|
||||
|
||||
// Handle assignment before the starred target
|
||||
for (target, val, val_ty) in
|
||||
izip!(&targets[..starred_target_index], &tuple[..a], &tuple_tys[..a])
|
||||
{
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
|
||||
}
|
||||
|
||||
// Handle assignment to the starred target
|
||||
if let ExprKind::Starred { value: target, .. } = &targets[starred_target_index].node {
|
||||
let vals = &tuple[a..b];
|
||||
let val_tys = &tuple_tys[a..b];
|
||||
|
||||
// Create a sub-tuple from `value` for the starred target.
|
||||
let sub_tuple_ty = ctx
|
||||
.ctx
|
||||
.struct_type(&vals.iter().map(BasicValueEnum::get_type).collect_vec(), false);
|
||||
let psub_tuple_val =
|
||||
ctx.builder.build_alloca(sub_tuple_ty, "starred_target_value_ptr").unwrap();
|
||||
for (i, val) in vals.iter().enumerate() {
|
||||
let pitem = ctx
|
||||
.builder
|
||||
.build_struct_gep(psub_tuple_val, i as u32, "starred_target_value_item")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(pitem, *val).unwrap();
|
||||
}
|
||||
let sub_tuple_val =
|
||||
ctx.builder.build_load(psub_tuple_val, "starred_target_value").unwrap();
|
||||
|
||||
// Create the typechecker type of the sub-tuple
|
||||
let sub_tuple_ty = ctx.unifier.add_ty(TypeEnum::TTuple { ty: val_tys.to_vec() });
|
||||
|
||||
// Now assign with that sub-tuple to the starred target.
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
|
||||
} else {
|
||||
unreachable!() // The typechecker ensures this
|
||||
}
|
||||
|
||||
// Handle assignment after the starred target
|
||||
for (target, val, val_ty) in
|
||||
izip!(&targets[starred_target_index + 1..], &tuple[b..], &tuple_tys[b..])
|
||||
{
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
|
||||
}
|
||||
} else {
|
||||
assert_eq!(tuple_tys.len(), targets.len()); // The typechecker ensures this
|
||||
|
||||
for (target, val, val_ty) in izip!(targets, tuple, tuple_tys) {
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(val), *val_ty)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// See [`CodeGenerator::gen_setitem`].
|
||||
pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
key: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String> {
|
||||
let target_ty = target.custom.unwrap();
|
||||
let key_ty = key.custom.unwrap();
|
||||
|
||||
match &*ctx.unifier.get_ty(target_ty) {
|
||||
TypeEnum::TObj { obj_id, params: list_params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle list item assignment
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let target_item_ty = iter_type_vars(list_params).next().unwrap().ty;
|
||||
|
||||
let target = generator
|
||||
.gen_expr(ctx, target)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?
|
||||
.into_pointer_value();
|
||||
let target = ListValue::from_ptr_val(target, llvm_usize, None);
|
||||
|
||||
if let ExprKind::Slice { .. } = &key.node {
|
||||
// Handle assigning to a slice
|
||||
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
|
||||
let Some((start, end, step)) = handle_slice_indices(
|
||||
lower,
|
||||
upper,
|
||||
step,
|
||||
ctx,
|
||||
generator,
|
||||
target.load_size(ctx, None),
|
||||
)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let value =
|
||||
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
|
||||
let value = ListValue::from_ptr_val(value, llvm_usize, None);
|
||||
|
||||
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
|
||||
let Some(src_ind) = handle_slice_indices(
|
||||
&None,
|
||||
&None,
|
||||
&None,
|
||||
ctx,
|
||||
generator,
|
||||
value.load_size(ctx, None),
|
||||
)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
list_slice_assignment(
|
||||
generator,
|
||||
ctx,
|
||||
target_item_ty,
|
||||
target,
|
||||
(start, end, step),
|
||||
value,
|
||||
src_ind,
|
||||
);
|
||||
} else {
|
||||
// Handle assigning to an index
|
||||
let len = target.load_size(ctx, Some("len"));
|
||||
|
||||
let index = generator
|
||||
.gen_expr(ctx, key)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, key_ty)?
|
||||
.into_int_value();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_int_s_extend(index, generator.get_size_type(ctx.ctx), "sext")
|
||||
.unwrap();
|
||||
|
||||
// handle negative index
|
||||
let is_negative = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
index,
|
||||
generator.get_size_type(ctx.ctx).const_zero(),
|
||||
"is_neg",
|
||||
)
|
||||
.unwrap();
|
||||
let adjusted = ctx.builder.build_int_add(index, len, "adjusted").unwrap();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_select(is_negative, adjusted, index, "index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
// unsigned less than is enough, because negative index after adjustment is
|
||||
// bigger than the length (for unsigned cmp)
|
||||
let bound_check = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
bound_check,
|
||||
"0:IndexError",
|
||||
"index {0} out of bounds 0:{1}",
|
||||
[Some(index), Some(len), None],
|
||||
key.location,
|
||||
);
|
||||
|
||||
// Write value to index on list
|
||||
let item_ptr =
|
||||
target.data().ptr_offset(ctx, generator, &index, Some("list_item_ptr"));
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
ctx.builder.build_store(item_ptr, value).unwrap();
|
||||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle NDArray item assignment
|
||||
todo!("ndarray subscript assignment is not yet implemented");
|
||||
}
|
||||
_ => {
|
||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// See [`CodeGenerator::gen_for`].
|
||||
pub fn gen_for<G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
@ -315,9 +431,6 @@ pub fn gen_for<G: CodeGenerator>(
|
||||
let orelse_bb =
|
||||
if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "for.orelse") };
|
||||
|
||||
// Whether the iterable is a range() expression
|
||||
let is_iterable_range_expr = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
|
||||
|
||||
// The BB containing the increment expression
|
||||
let incr_bb = ctx.ctx.append_basic_block(current, "for.incr");
|
||||
// The BB containing the loop condition check
|
||||
@ -326,113 +439,132 @@ pub fn gen_for<G: CodeGenerator>(
|
||||
// store loop bb information and restore it later
|
||||
let loop_bb = ctx.loop_target.replace((incr_bb, cont_bb));
|
||||
|
||||
let iter_ty = iter.custom.unwrap();
|
||||
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
|
||||
v.to_basic_value_enum(ctx, generator, iter.custom.unwrap())?
|
||||
v.to_basic_value_enum(ctx, generator, iter_ty)?
|
||||
} else {
|
||||
return Ok(());
|
||||
};
|
||||
if is_iterable_range_expr {
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
// Internal variable for loop; Cannot be assigned
|
||||
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
||||
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
||||
let Some(target_i) = generator.gen_store_target(ctx, target, Some("for.target.addr"))?
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
||||
|
||||
ctx.builder.build_store(i, start).unwrap();
|
||||
|
||||
// Check "If step is zero, ValueError is raised."
|
||||
let rangenez =
|
||||
ctx.builder.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
rangenez,
|
||||
"ValueError",
|
||||
"range() arg 3 must not be zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
|
||||
match &*ctx.unifier.get_ty(iter_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
ctx.builder.position_at_end(cond_bb);
|
||||
ctx.builder
|
||||
.build_conditional_branch(
|
||||
gen_in_range_check(
|
||||
ctx,
|
||||
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
stop,
|
||||
step,
|
||||
),
|
||||
body_bb,
|
||||
orelse_bb,
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
// Internal variable for loop; Cannot be assigned
|
||||
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
||||
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
||||
let Some(target_i) =
|
||||
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
||||
|
||||
ctx.builder.build_store(i, start).unwrap();
|
||||
|
||||
// Check "If step is zero, ValueError is raised."
|
||||
let rangenez = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
rangenez,
|
||||
"ValueError",
|
||||
"range() arg 3 must not be zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
|
||||
{
|
||||
ctx.builder.position_at_end(cond_bb);
|
||||
ctx.builder
|
||||
.build_conditional_branch(
|
||||
gen_in_range_check(
|
||||
ctx,
|
||||
ctx.builder
|
||||
.build_load(i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap(),
|
||||
stop,
|
||||
step,
|
||||
),
|
||||
body_bb,
|
||||
orelse_bb,
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
ctx.builder.position_at_end(incr_bb);
|
||||
let next_i = ctx
|
||||
.builder
|
||||
.build_int_add(
|
||||
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
step,
|
||||
"inc",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.builder.build_store(i, next_i).unwrap();
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
ctx.builder
|
||||
.build_store(
|
||||
target_i,
|
||||
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
generator.gen_block(ctx, body.iter())?;
|
||||
}
|
||||
TypeEnum::TObj { obj_id, params: list_params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
|
||||
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
|
||||
let len = ctx
|
||||
.build_gep_and_load(
|
||||
iter_val.into_pointer_value(),
|
||||
&[zero, int32.const_int(1, false)],
|
||||
Some("len"),
|
||||
)
|
||||
.into_int_value();
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(incr_bb);
|
||||
let next_i = ctx
|
||||
.builder
|
||||
.build_int_add(
|
||||
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
step,
|
||||
"inc",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.builder.build_store(i, next_i).unwrap();
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
ctx.builder.position_at_end(cond_bb);
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_load(index_addr, "for.index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap();
|
||||
ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
ctx.builder
|
||||
.build_store(
|
||||
target_i,
|
||||
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
generator.gen_block(ctx, body.iter())?;
|
||||
} else {
|
||||
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
|
||||
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
|
||||
let len = ctx
|
||||
.build_gep_and_load(
|
||||
iter_val.into_pointer_value(),
|
||||
&[zero, int32.const_int(1, false)],
|
||||
Some("len"),
|
||||
)
|
||||
.into_int_value();
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
ctx.builder.position_at_end(incr_bb);
|
||||
let index =
|
||||
ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap();
|
||||
let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap();
|
||||
ctx.builder.build_store(index_addr, inc).unwrap();
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(cond_bb);
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_load(index_addr, "for.index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap();
|
||||
ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(incr_bb);
|
||||
let index =
|
||||
ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap();
|
||||
let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap();
|
||||
ctx.builder.build_store(index_addr, inc).unwrap();
|
||||
ctx.builder.build_unconditional_branch(cond_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
let arr_ptr = ctx
|
||||
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr"))
|
||||
.into_pointer_value();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_load(index_addr, "for.index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
|
||||
generator.gen_assign(ctx, target, val.into())?;
|
||||
generator.gen_block(ctx, body.iter())?;
|
||||
ctx.builder.position_at_end(body_bb);
|
||||
let arr_ptr = ctx
|
||||
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr"))
|
||||
.into_pointer_value();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_load(index_addr, "for.index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
|
||||
let val_ty = iter_type_vars(list_params).next().unwrap().ty;
|
||||
generator.gen_assign(ctx, target, val.into(), val_ty)?;
|
||||
generator.gen_block(ctx, body.iter())?;
|
||||
}
|
||||
_ => {
|
||||
panic!("unsupported for loop iterator type: {}", ctx.unifier.stringify(iter_ty));
|
||||
}
|
||||
}
|
||||
|
||||
for (k, (_, _, counter)) in &var_assignment {
|
||||
@ -1588,14 +1720,14 @@ pub fn gen_stmt<G: CodeGenerator>(
|
||||
}
|
||||
StmtKind::AnnAssign { target, value, .. } => {
|
||||
if let Some(value) = value {
|
||||
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
generator.gen_assign(ctx, target, value)?;
|
||||
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
|
||||
}
|
||||
}
|
||||
StmtKind::Assign { targets, value, .. } => {
|
||||
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
for target in targets {
|
||||
generator.gen_assign(ctx, target, value.clone())?;
|
||||
generator.gen_assign(ctx, target, value_enum.clone(), value.custom.unwrap())?;
|
||||
}
|
||||
}
|
||||
StmtKind::Continue { .. } => {
|
||||
@ -1609,15 +1741,16 @@ pub fn gen_stmt<G: CodeGenerator>(
|
||||
StmtKind::For { .. } => generator.gen_for(ctx, stmt)?,
|
||||
StmtKind::With { .. } => generator.gen_with(ctx, stmt)?,
|
||||
StmtKind::AugAssign { target, op, value, .. } => {
|
||||
let value = gen_binop_expr(
|
||||
let value_enum = gen_binop_expr(
|
||||
generator,
|
||||
ctx,
|
||||
target,
|
||||
Binop::aug_assign(*op),
|
||||
value,
|
||||
stmt.location,
|
||||
)?;
|
||||
generator.gen_assign(ctx, target, value.unwrap())?;
|
||||
)?
|
||||
.unwrap();
|
||||
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
|
||||
}
|
||||
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
|
||||
StmtKind::Raise { exc, .. } => {
|
||||
|
@ -34,13 +34,18 @@ impl<'a> Inferencer<'a> {
|
||||
self.should_have_value(pattern)?;
|
||||
Ok(())
|
||||
}
|
||||
ExprKind::Tuple { elts, .. } => {
|
||||
ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
|
||||
for elt in elts {
|
||||
self.check_pattern(elt, defined_identifiers)?;
|
||||
self.should_have_value(elt)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
ExprKind::Starred { value, .. } => {
|
||||
self.check_pattern(value, defined_identifiers)?;
|
||||
self.should_have_value(value)?;
|
||||
Ok(())
|
||||
}
|
||||
ExprKind::Subscript { value, slice, .. } => {
|
||||
self.check_expr(value, defined_identifiers)?;
|
||||
self.should_have_value(value)?;
|
||||
|
File diff suppressed because it is too large
Load Diff
66
nac3standalone/demo/src/assignment.py
Normal file
66
nac3standalone/demo/src/assignment.py
Normal file
@ -0,0 +1,66 @@
|
||||
@extern
|
||||
def output_int32(x: int32):
|
||||
...
|
||||
|
||||
@extern
|
||||
def output_bool(x: bool):
|
||||
...
|
||||
|
||||
def example1():
|
||||
x, *ys, z = (1, 2, 3, 4, 5)
|
||||
output_int32(x)
|
||||
output_int32(ys[0])
|
||||
output_int32(ys[1])
|
||||
output_int32(ys[2])
|
||||
output_int32(z)
|
||||
|
||||
def example2():
|
||||
x, y, *zs = (1, 2, 3, 4, 5)
|
||||
output_int32(x)
|
||||
output_int32(y)
|
||||
output_int32(zs[0])
|
||||
output_int32(zs[1])
|
||||
output_int32(zs[2])
|
||||
|
||||
def example3():
|
||||
*xs, y, z = (1, 2, 3, 4, 5)
|
||||
output_int32(xs[0])
|
||||
output_int32(xs[1])
|
||||
output_int32(xs[2])
|
||||
output_int32(y)
|
||||
output_int32(z)
|
||||
|
||||
def example4():
|
||||
# Example from: https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
|
||||
x = [0, 1]
|
||||
i = 0
|
||||
i, x[i] = 1, 2 # i is updated, then x[i] is updated
|
||||
output_int32(i)
|
||||
output_int32(x[0])
|
||||
output_int32(x[1])
|
||||
|
||||
class A:
|
||||
value: int32
|
||||
def __init__(self):
|
||||
self.value = 1000
|
||||
|
||||
def example5():
|
||||
ws = [88, 7, 8]
|
||||
a = A()
|
||||
x, [y, *ys, a.value], ws[0], (ws[0],) = 1, (2, False, 4, 5), 99, (6,)
|
||||
output_int32(x)
|
||||
output_int32(y)
|
||||
output_bool(ys[0])
|
||||
output_int32(ys[1])
|
||||
output_int32(a.value)
|
||||
output_int32(ws[0])
|
||||
output_int32(ws[1])
|
||||
output_int32(ws[2])
|
||||
|
||||
def run() -> int32:
|
||||
example1()
|
||||
example2()
|
||||
example3()
|
||||
example4()
|
||||
example5()
|
||||
return 0
|
Loading…
Reference in New Issue
Block a user