core: support tuple and int32 input for np_empty, np_ones, and more #434
|
@ -880,7 +880,7 @@ impl<'a> Inferencer<'a> {
|
|||
// Check `shape_ty` to see if its a list of int32s, a tuple of int32s, or just int32.
|
||||
// Otherwise throw an error as that would mean the user wrote an ill-typed `shape_expr`.
|
||||
//
|
||||
// Here, we also take the opportunity to deduce `ndims` statically for 2. and 3.
|
||||
// Here, we also take the opportunity to deduce `ndims` statically.
|
||||
let shape_ty_enum = &*self.unifier.get_ty(shape_ty);
|
||||
let ndims = match shape_ty_enum {
|
||||
TypeEnum::TList { ty } => {
|
||||
|
@ -1292,7 +1292,7 @@ impl<'a> Inferencer<'a> {
|
|||
{
|
||||
let shape_expr = args.remove(0);
|
||||
let (ndims, shape) =
|
||||
self.fold_numpy_function_call_shape_argument(*id, 0, shape_expr)?; // Special handling the `shape`
|
||||
self.fold_numpy_function_call_shape_argument(*id, 0, shape_expr)?; // Special handling for `shape`
|
||||
|
||||
let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None);
|
||||
let ret = make_ndarray_ty(
|
||||
|
|
Loading…
Reference in New Issue