Implement/Fix support for tuple-indexing into ndarrays #429
|
@ -1586,6 +1586,7 @@ impl<'a> Inferencer<'a> {
|
|||
fn infer_subscript_ndarray(
|
||||
&mut self,
|
||||
value: &ast::Expr<Option<Type>>,
|
||||
slice: &ast::Expr<Option<Type>>,
|
||||
dummy_tvar: Type,
|
||||
ndims: Type,
|
||||
) -> InferenceResult {
|
||||
|
@ -1604,48 +1605,66 @@ impl<'a> Inferencer<'a> {
|
|||
|
||||
let ndims = values
|
||||
.iter()
|
||||
.map(|ndim| match *ndim {
|
||||
SymbolValue::U64(v) => Ok(v),
|
||||
SymbolValue::U32(v) => Ok(u64::from(v)),
|
||||
SymbolValue::I32(v) => u64::try_from(v).map_err(|_| {
|
||||
HashSet::from([format!(
|
||||
"Expected non-negative literal for ndarray.ndims, got {v}"
|
||||
)])
|
||||
}),
|
||||
SymbolValue::I64(v) => u64::try_from(v).map_err(|_| {
|
||||
HashSet::from([format!(
|
||||
"Expected non-negative literal for ndarray.ndims, got {v}"
|
||||
)])
|
||||
}),
|
||||
_ => unreachable!(),
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
.map(|ndim| u64::try_from(ndim.clone()).map_err(|()| ndim.clone()))
|
||||
.collect::<Result<Vec<_>, _>>()
|
||||
.map_err(|val| {
|
||||
HashSet::from([format!(
|
||||
"Expected non-negative literal for ndarray.ndims, got {}",
|
||||
i128::try_from(val).unwrap()
|
||||
)])
|
||||
})?;
|
||||
|
||||
assert!(!ndims.is_empty());
|
||||
|
||||
if ndims.len() == 1 && ndims[0] == 1 {
|
||||
// ndarray[T, Literal[1]] - Index always returns an object of type T
|
||||
// The number of dimensions subscripted by the index expression.
|
||||
// Slicing a ndarray will yield the same number of dimensions, whereas indexing into a
|
||||
// dimension will remove a dimension.
|
||||
let subscripted_dims = match &slice.node {
|
||||
ExprKind::Tuple { elts, .. } => elts.iter().fold(0, |acc, value_subexpr| {
|
||||
if let ExprKind::Slice { .. } = &value_subexpr.node {
|
||||
acc
|
||||
} else {
|
||||
acc + 1
|
||||
}
|
||||
}),
|
||||
|
||||
ExprKind::Slice { .. } => 0,
|
||||
_ => 1,
|
||||
};
|
||||
|
||||
if ndims.len() == 1 && ndims[0] - subscripted_dims == 0 {
|
||||
// ndarray[T, Literal[1]] - Non-Slice index always returns an object of type T
|
||||
|
||||
assert_ne!(ndims[0], 0);
|
||||
|
||||
Ok(dummy_tvar)
|
||||
} else {
|
||||
// ndarray[T, Literal[N]] where N != 1 - Index returns an object of type ndarray[T, Literal[N - 1]]
|
||||
// Otherwise - Index returns an object of type ndarray[T, Literal[N - subscripted_dims]]
|
||||
|
||||
if ndims.iter().any(|v| *v == 0) {
|
||||
// Disallow subscripting if any Literal value will subscript on an element
|
||||
let new_ndims = ndims
|
||||
.into_iter()
|
||||
.map(|v| {
|
||||
let v = i128::from(v) - i128::from(subscripted_dims);
|
||||
u64::try_from(v)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()
|
||||
.map_err(|_| {
|
||||
HashSet::from([format!(
|
||||
"Cannot subscript {} by {subscripted_dims} dimensions",
|
||||
self.unifier.stringify(value.custom.unwrap()),
|
||||
)])
|
||||
})?;
|
||||
|
||||
if new_ndims.iter().any(|v| *v == 0) {
|
||||
unimplemented!("Inference for ndarray subscript operator with Literal[0, ...] bound unimplemented")
|
||||
}
|
||||
|
||||
let ndims_min_one_ty = self.unifier.get_fresh_literal(
|
||||
ndims.into_iter().map(|v| SymbolValue::U64(v - 1)).collect(),
|
||||
None,
|
||||
);
|
||||
let subscripted_ty = make_ndarray_ty(
|
||||
self.unifier,
|
||||
self.primitives,
|
||||
Some(dummy_tvar),
|
||||
Some(ndims_min_one_ty),
|
||||
);
|
||||
let ndims_ty = self
|
||||
.unifier
|
||||
.get_fresh_literal(new_ndims.into_iter().map(SymbolValue::U64).collect(), None);
|
||||
let subscripted_ty =
|
||||
make_ndarray_ty(self.unifier, self.primitives, Some(dummy_tvar), Some(ndims_ty));
|
||||
|
||||
Ok(subscripted_ty)
|
||||
}
|
||||
|
@ -1682,7 +1701,7 @@ impl<'a> Inferencer<'a> {
|
|||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (_, ndims) =
|
||||
unpack_ndarray_var_tys(self.unifier, value.custom.unwrap());
|
||||
self.infer_subscript_ndarray(value, ty, ndims)
|
||||
self.infer_subscript_ndarray(value, slice, ty, ndims)
|
||||
}
|
||||
_ => {
|
||||
// the index is a constant, so value can be a sequence.
|
||||
|
@ -1725,10 +1744,7 @@ impl<'a> Inferencer<'a> {
|
|||
}
|
||||
|
||||
let (_, ndims) = unpack_ndarray_var_tys(self.unifier, value.custom.unwrap());
|
||||
let ndarray_ty =
|
||||
make_ndarray_ty(self.unifier, self.primitives, Some(ty), Some(ndims));
|
||||
self.constrain(value.custom.unwrap(), ndarray_ty, &value.location)?;
|
||||
Ok(ndarray_ty)
|
||||
self.infer_subscript_ndarray(value, slice, ty, ndims)
|
||||
}
|
||||
_ => {
|
||||
if let TypeEnum::TTuple { .. } = &*self.unifier.get_ty(value.custom.unwrap()) {
|
||||
|
@ -1763,7 +1779,7 @@ impl<'a> Inferencer<'a> {
|
|||
.get_fresh_var_with_range(valid_index_tys.as_slice(), None, None)
|
||||
.ty;
|
||||
self.constrain(slice.custom.unwrap(), valid_index_ty, &slice.location)?;
|
||||
self.infer_subscript_ndarray(value, ty, ndims)
|
||||
self.infer_subscript_ndarray(value, slice, ty, ndims)
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue