core: Change RHS operand of bitshift operators to int32 #349
|
@ -298,8 +298,40 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
|||
(Operator::BitOr, _) => self.builder.build_or(lhs, rhs, "or").into(),
|
||||
(Operator::BitXor, _) => self.builder.build_xor(lhs, rhs, "xor").into(),
|
||||
(Operator::BitAnd, _) => self.builder.build_and(lhs, rhs, "and").into(),
|
||||
(Operator::LShift, _) => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
|
||||
(Operator::RShift, _) => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
|
||||
|
||||
|
||||
// Sign-ness of bitshift operators are always determined by the left operand
|
||||
(Operator::LShift, signed) | (Operator::RShift, signed) => {
|
||||
sb10q
commented
RHS is always 32, no? RHS is always 32, no?
|
||||
// RHS operand is always 32 bits
|
||||
assert_eq!(rhs.get_type().get_bit_width(), 32);
|
||||
sb10q
commented
AFAICT this will break silently with negative shifts. Python disallows them:
So the RHS type should perhaps be uint32 below instead of int32, and we should check that the compiler reports a sensible error if the user enters a negative value there. But I worry that uint32 would require explicit casts and a lot of typing, e.g. Alternatively we can simply support negative shifts since this is just a strict superset of Python as far as I can tell. But the zero-extend here should be replaced with a sign extend. AFAICT this will break silently with negative shifts.
Python disallows them:
```
>>> 1 << (-1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: negative shift count
```
So the RHS type should perhaps be uint32 below instead of int32, and we should check that the compiler reports a sensible error if the user enters a negative value there.
But I worry that uint32 would require explicit casts and a lot of typing, e.g. ``1 << uint32(1)`` instead of just ``1 << 1``?
Alternatively we can simply support negative shifts since this is just a strict superset of Python as far as I can tell. But the zero-extend here should be replaced with a sign extend.
|
||||
|
||||
let common_type = lhs.get_type();
|
||||
let rhs = if common_type.get_bit_width() > 32 {
|
||||
if signed {
|
||||
self.builder.build_int_s_extend(rhs, common_type, "")
|
||||
sb10q
commented
Do we ever do this? Are there any int types smaller than 32-bit? Do we ever do this? Are there any int types smaller than 32-bit?
|
||||
} else {
|
||||
self.builder.build_int_z_extend(rhs, common_type, "")
|
||||
}
|
||||
sb10q
commented
Is LLVM able to optimize this away when the RHS is uint32? Is LLVM able to optimize this away when the RHS is uint32?
sb10q
commented
Or a constant? Or a constant?
derppening
commented
Yes, all test cases can be constant-folded using optimizations. Yes, all test cases can be constant-folded using optimizations.
|
||||
} else {
|
||||
rhs
|
||||
};
|
||||
|
||||
let rhs_gez = self.builder.build_int_compare(IntPredicate::SGE, rhs, common_type.const_zero(), "");
|
||||
self.make_assert(
|
||||
generator,
|
||||
rhs_gez,
|
||||
"ValueError",
|
||||
"negative shift count",
|
||||
[None, None, None],
|
||||
self.current_loc
|
||||
);
|
||||
|
||||
match *op {
|
||||
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
|
||||
Operator::RShift => self.builder.build_right_shift(lhs, rhs, signed, "rshift").into(),
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
(Operator::FloorDiv, true) => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
|
||||
(Operator::FloorDiv, false) => self.builder.build_int_unsigned_div(lhs, rhs, "floordiv").into(),
|
||||
(Operator::Pow, s) => integer_power(generator, self, lhs, rhs, s).into(),
|
||||
|
@ -1085,6 +1117,9 @@ pub fn gen_binop_expr<'ctx, 'a, G: CodeGenerator>(
|
|||
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, true).into()))
|
||||
} else if ty1 == ty2 && [ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty1) {
|
||||
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, false).into()))
|
||||
} else if [Operator::LShift, Operator::RShift].contains(op) {
|
||||
let signed = [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1);
|
||||
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, signed).into()))
|
||||
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
|
||||
Ok(Some(ctx.gen_float_ops(op, left_val, right_val).into()))
|
||||
} else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 {
|
||||
|
|
|
@ -2,7 +2,7 @@ use crate::typecheck::typedef::TypeEnum;
|
|||
|
||||
use super::type_inferencer::Inferencer;
|
||||
use super::typedef::Type;
|
||||
use nac3parser::ast::{self, Expr, ExprKind, Stmt, StmtKind, StrRef};
|
||||
use nac3parser::ast::{self, Constant, Expr, ExprKind, Operator::{LShift, RShift}, Stmt, StmtKind, StrRef};
|
||||
use std::{collections::HashSet, iter::once};
|
||||
|
||||
impl<'a> Inferencer<'a> {
|
||||
|
@ -107,11 +107,28 @@ impl<'a> Inferencer<'a> {
|
|||
self.check_expr(value, defined_identifiers)?;
|
||||
self.should_have_value(value)?;
|
||||
}
|
||||
ExprKind::BinOp { left, right, .. } => {
|
||||
ExprKind::BinOp { left, op, right } => {
|
||||
self.check_expr(left, defined_identifiers)?;
|
||||
self.check_expr(right, defined_identifiers)?;
|
||||
self.should_have_value(left)?;
|
||||
self.should_have_value(right)?;
|
||||
|
||||
// Check whether a bitwise shift has a negative RHS constant value
|
||||
if *op == LShift || *op == RShift {
|
||||
if let ExprKind::Constant { value, .. } = &right.node {
|
||||
let rhs_val = match value {
|
||||
Constant::Int(v) => v,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
if *rhs_val < 0 {
|
||||
return Err(format!(
|
||||
"shift count is negative at {}",
|
||||
right.location
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ExprKind::UnaryOp { operand, .. } => {
|
||||
self.check_expr(operand, defined_identifiers)?;
|
||||
|
|
|
@ -96,11 +96,13 @@ pub fn impl_binop(
|
|||
let (ty, var_id) = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
|
||||
(ty, Some(var_id))
|
||||
};
|
||||
|
||||
let function_vars = if let Some(var_id) = other_var_id {
|
||||
vec![(var_id, other_ty)].into_iter().collect::<HashMap<_, _>>()
|
||||
} else {
|
||||
HashMap::new()
|
||||
};
|
||||
|
||||
for op in ops {
|
||||
fields.insert(binop_name(op).into(), {
|
||||
(
|
||||
|
@ -224,7 +226,7 @@ pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty
|
|||
|
||||
/// LShift, RShift
|
||||
pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
|
||||
impl_binop(unifier, store, ty, &[ty], ty, &[ast::Operator::LShift, ast::Operator::RShift])
|
||||
impl_binop(unifier, store, ty, &[store.int32, store.uint32], ty, &[ast::Operator::LShift, ast::Operator::RShift]);
|
||||
}
|
||||
|
||||
/// Div
|
||||
|
@ -295,6 +297,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
|||
uint64: uint64_t,
|
||||
..
|
||||
} = *store;
|
||||
|
||||
/* int ======== */
|
||||
for t in [int32_t, int64_t, uint32_t, uint64_t] {
|
||||
impl_basic_arithmetic(unifier, store, t, &[t], t);
|
||||
|
|
|
@ -116,6 +116,7 @@ impl RecordField {
|
|||
}
|
||||
}
|
||||
|
||||
/// Category of variable and value types.
|
||||
#[derive(Clone)]
|
||||
pub enum TypeEnum {
|
||||
TRigidVar {
|
||||
|
@ -123,6 +124,8 @@ pub enum TypeEnum {
|
|||
name: Option<StrRef>,
|
||||
loc: Option<Location>,
|
||||
},
|
||||
|
||||
/// A type variable.
|
||||
TVar {
|
||||
id: u32,
|
||||
// empty indicates this is not a struct/tuple/list
|
||||
|
@ -132,21 +135,41 @@ pub enum TypeEnum {
|
|||
name: Option<StrRef>,
|
||||
loc: Option<Location>,
|
||||
},
|
||||
|
||||
/// A tuple type.
|
||||
TTuple {
|
||||
/// The types of elements present in this tuple.
|
||||
ty: Vec<Type>,
|
||||
},
|
||||
|
||||
/// A list type.
|
||||
TList {
|
||||
/// The type of elements present in this list.
|
||||
ty: Type,
|
||||
},
|
||||
|
||||
/// An object type.
|
||||
TObj {
|
||||
/// The [DefintionId] of this object type.
|
||||
obj_id: DefinitionId,
|
||||
|
||||
/// The fields present in this object type.
|
||||
///
|
||||
/// The key of the [Mapping] is the identifier of the field, while the value is a tuple
|
||||
/// containing the [Type] of the field, and a `bool` indicating whether the field is a
|
||||
/// variable (as opposed to a function).
|
||||
fields: Mapping<StrRef, (Type, bool)>,
|
||||
|
||||
/// Mapping between the ID of type variables and the [Type] representing the type variables
|
||||
/// of this object type.
|
||||
params: VarMap,
|
||||
},
|
||||
TVirtual {
|
||||
ty: Type,
|
||||
},
|
||||
TCall(Vec<CallId>),
|
||||
|
||||
/// A function type.
|
||||
TFunc(FunSignature),
|
||||
}
|
||||
|
||||
|
@ -294,11 +317,16 @@ impl Unifier {
|
|||
self.get_fresh_var_with_range(&[], None, None)
|
||||
}
|
||||
|
||||
/// Returns a fresh [type variable][TypeEnum::TVar] with no associated range.
|
||||
///
|
||||
/// This type variable can be instantiated by any type.
|
||||
pub fn get_fresh_var(&mut self, name: Option<StrRef>, loc: Option<Location>) -> (Type, u32) {
|
||||
self.get_fresh_var_with_range(&[], name, loc)
|
||||
}
|
||||
|
||||
/// Get a fresh type variable.
|
||||
/// Returns a fresh [type variable][TypeEnum::TVar] with the range specified by `range`.
|
||||
///
|
||||
/// This type variable can be instantiated by any type present in `range`.
|
||||
pub fn get_fresh_var_with_range(
|
||||
&mut self,
|
||||
range: &[Type],
|
||||
|
|
|
@ -41,10 +41,10 @@ def u64_max() -> uint64:
|
|||
return ~uint64(0)
|
||||
|
||||
def i64_min() -> int64:
|
||||
return int64(1) << int64(63)
|
||||
return int64(1) << 63
|
||||
|
||||
def i64_max() -> int64:
|
||||
return ~(int64(1) << int64(63))
|
||||
return ~(int64(1) << 63)
|
||||
|
||||
def test_u32_bnot():
|
||||
output_uint32(~uint32(0))
|
||||
|
|
|
@ -37,7 +37,9 @@ def test_int32():
|
|||
output_int32(a ^ b)
|
||||
output_int32(a & b)
|
||||
output_int32(a << b)
|
||||
output_int32(a << uint32(b))
|
||||
output_int32(a >> b)
|
||||
output_int32(a >> uint32(b))
|
||||
output_float64(a / b)
|
||||
a += b
|
||||
output_int32(a)
|
||||
|
@ -74,7 +76,9 @@ def test_uint32():
|
|||
output_uint32(a ^ b)
|
||||
output_uint32(a & b)
|
||||
output_uint32(a << b)
|
||||
output_uint32(a << int32(b))
|
||||
output_uint32(a >> b)
|
||||
output_uint32(a >> int32(b))
|
||||
output_float64(a / b)
|
||||
a += b
|
||||
output_uint32(a)
|
||||
|
@ -108,8 +112,10 @@ def test_int64():
|
|||
output_int64(a | b)
|
||||
output_int64(a ^ b)
|
||||
output_int64(a & b)
|
||||
output_int64(a << b)
|
||||
output_int64(a >> b)
|
||||
output_int64(a << int32(b))
|
||||
output_int64(a << uint32(b))
|
||||
output_int64(a >> int32(b))
|
||||
output_int64(a >> uint32(b))
|
||||
output_float64(a / b)
|
||||
a += b
|
||||
output_int64(a)
|
||||
|
@ -127,9 +133,9 @@ def test_int64():
|
|||
output_int64(a)
|
||||
a &= b
|
||||
output_int64(a)
|
||||
a <<= b
|
||||
a <<= int32(b)
|
||||
output_int64(a)
|
||||
a >>= b
|
||||
a >>= int32(b)
|
||||
output_int64(a)
|
||||
|
||||
def test_uint64():
|
||||
|
@ -143,8 +149,8 @@ def test_uint64():
|
|||
output_uint64(a | b)
|
||||
output_uint64(a ^ b)
|
||||
output_uint64(a & b)
|
||||
output_uint64(a << b)
|
||||
output_uint64(a >> b)
|
||||
output_uint64(a << uint32(b))
|
||||
output_uint64(a >> uint32(b))
|
||||
output_float64(a / b)
|
||||
a += b
|
||||
output_uint64(a)
|
||||
|
@ -162,9 +168,9 @@ def test_uint64():
|
|||
output_uint64(a)
|
||||
a &= b
|
||||
output_uint64(a)
|
||||
a <<= b
|
||||
a <<= uint32(b)
|
||||
output_uint64(a)
|
||||
a >>= b
|
||||
a >>= uint32(b)
|
||||
output_uint64(a)
|
||||
|
||||
class A:
|
||||
|
|
It's become unclear here to which side of the operand
signed
refers to. I suggest adding a comment here to clarify what is going on.