Replace ld.lld with nac3ld for non-host targets #292
|
@ -2,6 +2,8 @@
|
|||
|
||||
use std::mem;
|
||||
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
pub const DW_EH_PE_omit: u8 = 0xFF;
|
||||
pub const DW_EH_PE_absptr: u8 = 0x00;
|
||||
|
||||
|
@ -22,44 +24,29 @@ pub const DW_EH_PE_aligned: u8 = 0x50;
|
|||
|
||||
pub const DW_EH_PE_indirect: u8 = 0x80;
|
||||
|
||||
pub struct DwarfReader {
|
||||
pub ptr: *const u8,
|
||||
pub struct DwarfReader<'a> {
|
||||
pub slice: &'a [u8],
|
||||
pub virt_addr: u32,
|
||||
}
|
||||
|
||||
#[repr(C, packed)]
|
||||
struct Unaligned<T>(T);
|
||||
|
||||
impl DwarfReader {
|
||||
pub fn new(ptr: *const u8, virt_addr: u32) -> DwarfReader {
|
||||
DwarfReader { ptr, virt_addr }
|
||||
impl<'a> DwarfReader<'a> {
|
||||
pub fn new(slice: &[u8], virt_addr: u32) -> DwarfReader {
|
||||
DwarfReader { slice, virt_addr }
|
||||
}
|
||||
|
||||
// DWARF streams are packed, so e.g., a u32 would not necessarily be aligned
|
||||
// on a 4-byte boundary. This may cause problems on platforms with strict
|
||||
// alignment requirements. By wrapping data in a "packed" struct, we are
|
||||
// telling the backend to generate "misalignment-safe" code.
|
||||
pub unsafe fn read<T: Copy>(&mut self) -> T {
|
||||
let Unaligned(result) = *(self.ptr as *const Unaligned<T>);
|
||||
let addr_increment = mem::size_of::<T>();
|
||||
self.ptr = self.ptr.add(addr_increment);
|
||||
self.virt_addr += addr_increment as u32;
|
||||
result
|
||||
}
|
||||
|
||||
pub unsafe fn offset(&mut self, offset: i32) {
|
||||
self.ptr = self.ptr.offset(offset as isize);
|
||||
pub fn offset(&mut self, offset: i32) {
|
||||
self.slice = &self.slice[offset as usize..];
|
||||
self.virt_addr = self.virt_addr.wrapping_add(offset as u32);
|
||||
}
|
||||
|
||||
// ULEB128 and SLEB128 encodings are defined in Section 7.6 - "Variable
|
||||
// Length Data".
|
||||
pub unsafe fn read_uleb128(&mut self) -> u64 {
|
||||
pub fn read_uleb128(&mut self) -> u64 {
|
||||
let mut shift: usize = 0;
|
||||
let mut result: u64 = 0;
|
||||
let mut byte: u8;
|
||||
loop {
|
||||
byte = self.read::<u8>();
|
||||
byte = self.read_u8();
|
||||
result |= ((byte & 0x7F) as u64) << shift;
|
||||
shift += 7;
|
||||
if byte & 0x80 == 0 {
|
||||
|
@ -69,12 +56,12 @@ impl DwarfReader {
|
|||
result
|
||||
}
|
||||
|
||||
pub unsafe fn read_sleb128(&mut self) -> i64 {
|
||||
pub fn read_sleb128(&mut self) -> i64 {
|
||||
let mut shift: u32 = 0;
|
||||
let mut result: u64 = 0;
|
||||
let mut byte: u8;
|
||||
loop {
|
||||
byte = self.read::<u8>();
|
||||
byte = self.read_u8();
|
||||
result |= ((byte & 0x7F) as u64) << shift;
|
||||
shift += 7;
|
||||
if byte & 0x80 == 0 {
|
||||
|
@ -87,49 +74,90 @@ impl DwarfReader {
|
|||
}
|
||||
result as i64
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DwarfWriter {
|
||||
pub ptr: *mut u8,
|
||||
}
|
||||
|
||||
impl DwarfWriter {
|
||||
pub fn new(ptr: *mut u8) -> DwarfWriter {
|
||||
DwarfWriter { ptr }
|
||||
}
|
||||
|
||||
pub unsafe fn write<T: Copy>(&mut self, data: T) {
|
||||
*(self.ptr as *mut Unaligned<T>) = Unaligned(data);
|
||||
self.ptr = self.ptr.add(mem::size_of::<T>());
|
||||
pub fn read_u8(&mut self) -> u8 {
|
||||
let val = self.slice[0];
|
||||
self.slice = &self.slice[1..];
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn read_encoded_pointer(reader: &mut DwarfReader, encoding: u8) -> Result<usize, ()> {
|
||||
macro_rules! impl_read_fn {
|
||||
( $($type: ty, $byteorder_fn: ident);* ) => {
|
||||
impl<'a> DwarfReader<'a> {
|
||||
$(
|
||||
pub fn $byteorder_fn(&mut self) -> $type {
|
||||
let val = LittleEndian::$byteorder_fn(self.slice);
|
||||
self.slice = &self.slice[mem::size_of::<$type>()..];
|
||||
val
|
||||
}
|
||||
)*
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_read_fn!(
|
||||
u16, read_u16;
|
||||
u32, read_u32;
|
||||
u64, read_u64;
|
||||
i16, read_i16;
|
||||
i32, read_i32;
|
||||
i64, read_i64
|
||||
);
|
||||
|
||||
pub struct DwarfWriter<'a> {
|
||||
pub slice: &'a mut [u8],
|
||||
pub offset: usize,
|
||||
}
|
||||
|
||||
impl<'a> DwarfWriter<'a> {
|
||||
pub fn new(slice: &mut [u8]) -> DwarfWriter {
|
||||
DwarfWriter { slice, offset: 0 }
|
||||
}
|
||||
|
||||
pub fn write_u8(&mut self, data: u8) {
|
||||
self.slice[self.offset] = data;
|
||||
self.offset += 1;
|
||||
}
|
||||
|
||||
pub fn write_u32(&mut self, data: u32) {
|
||||
LittleEndian::write_u32(&mut self.slice[self.offset..], data);
|
||||
self.offset += 4;
|
||||
}
|
||||
}
|
||||
|
||||
fn read_encoded_pointer(reader: &mut DwarfReader, encoding: u8) -> Result<usize, ()> {
|
||||
if encoding == DW_EH_PE_omit {
|
||||
return Err(());
|
||||
}
|
||||
|
||||
// DW_EH_PE_aligned implies it's an absolute pointer value
|
||||
// However, we are linking library for 32-bits architecture
|
||||
// The size of variable should be 4 bytes instead
|
||||
if encoding == DW_EH_PE_aligned {
|
||||
reader.ptr = round_up(reader.ptr as usize, mem::size_of::<usize>())? as *const u8;
|
||||
return Ok(reader.read::<usize>());
|
||||
let shifted_virt_addr = round_up(reader.virt_addr as usize, mem::size_of::<u32>())?;
|
||||
let addr_inc = shifted_virt_addr - reader.virt_addr as usize;
|
||||
|
||||
reader.slice = &reader.slice[addr_inc..];
|
||||
reader.virt_addr = shifted_virt_addr as u32;
|
||||
return Ok(reader.read_u32() as usize);
|
||||
}
|
||||
|
||||
match encoding & 0x0F {
|
||||
DW_EH_PE_absptr => Ok(reader.read::<usize>()),
|
||||
DW_EH_PE_absptr => Ok(reader.read_u32() as usize),
|
||||
DW_EH_PE_uleb128 => Ok(reader.read_uleb128() as usize),
|
||||
DW_EH_PE_udata2 => Ok(reader.read::<u16>() as usize),
|
||||
DW_EH_PE_udata4 => Ok(reader.read::<u32>() as usize),
|
||||
DW_EH_PE_udata8 => Ok(reader.read::<u64>() as usize),
|
||||
DW_EH_PE_udata2 => Ok(reader.read_u16() as usize),
|
||||
DW_EH_PE_udata4 => Ok(reader.read_u32() as usize),
|
||||
DW_EH_PE_udata8 => Ok(reader.read_u64() as usize),
|
||||
DW_EH_PE_sleb128 => Ok(reader.read_sleb128() as usize),
|
||||
DW_EH_PE_sdata2 => Ok(reader.read::<i16>() as usize),
|
||||
DW_EH_PE_sdata4 => Ok(reader.read::<i32>() as usize),
|
||||
DW_EH_PE_sdata8 => Ok(reader.read::<i64>() as usize),
|
||||
DW_EH_PE_sdata2 => Ok(reader.read_i16() as usize),
|
||||
DW_EH_PE_sdata4 => Ok(reader.read_i32() as usize),
|
||||
DW_EH_PE_sdata8 => Ok(reader.read_i64() as usize),
|
||||
_ => Err(()),
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn read_encoded_pointer_with_pc(
|
||||
fn read_encoded_pointer_with_pc(
|
||||
reader: &mut DwarfReader,
|
||||
encoding: u8,
|
||||
) -> Result<usize, ()> {
|
||||
|
@ -177,25 +205,25 @@ fn round_up(unrounded: usize, align: usize) -> Result<usize, ()> {
|
|||
// frame information (CFI) record, so there should be only 1 common information entry (CIE).
|
||||
// So the class parses the only CIE on init, cache the encoding info, then parse the FDE on
|
||||
// iterations based on the cached encoding format.
|
||||
pub struct EH_Frame {
|
||||
pub struct EH_Frame<'a> {
|
||||
// It refers to the augmentation data that corresponds to 'R' in the augmentation string
|
||||
pub fde_pointer_encoding: u8,
|
||||
pub fde_reader: DwarfReader,
|
||||
pub fde_reader: DwarfReader<'a>,
|
||||
pub fde_sz: usize,
|
||||
}
|
||||
|
||||
impl EH_Frame {
|
||||
pub unsafe fn new(eh_frame_slice: &[u8], eh_frame_addr: u32) -> Result<EH_Frame, ()> {
|
||||
let mut cie_reader = DwarfReader::new(eh_frame_slice.as_ptr(), eh_frame_addr);
|
||||
impl<'a> EH_Frame<'a> {
|
||||
pub fn new(eh_frame_slice: &[u8], eh_frame_addr: u32) -> Result<EH_Frame, ()> {
|
||||
let mut cie_reader = DwarfReader::new(eh_frame_slice, eh_frame_addr);
|
||||
let eh_frame_size = eh_frame_slice.len();
|
||||
let length = cie_reader.read::<u32>();
|
||||
let length = cie_reader.read_u32();
|
||||
let fde_reader = match length {
|
||||
// eh_frame with 0 lengths means the CIE is terminated
|
||||
// while length == u32::MAX means that the length is only representable with 64 bits,
|
||||
// which does not make sense in a system with 32-bit address.
|
||||
0 | 0xFFFFFFFF => unimplemented!(),
|
||||
_ => {
|
||||
let mut fde_reader = DwarfReader::new(cie_reader.ptr, cie_reader.virt_addr);
|
||||
let mut fde_reader = DwarfReader::new(cie_reader.slice, cie_reader.virt_addr);
|
||||
fde_reader.offset(length as i32);
|
||||
fde_reader
|
||||
}
|
||||
|
@ -203,21 +231,21 @@ impl EH_Frame {
|
|||
let fde_sz = eh_frame_size - mem::size_of::<u32>() - length as usize;
|
||||
|
||||
// Routine check on the .eh_frame well-formness, in terms of CIE ID & Version args.
|
||||
assert_eq!(cie_reader.read::<u32>(), 0);
|
||||
assert_eq!(cie_reader.read::<u8>(), 1);
|
||||
assert_eq!(cie_reader.read_u32(), 0);
|
||||
assert_eq!(cie_reader.read_u8(), 1);
|
||||
|
||||
// Parse augmentation string
|
||||
// The first character must be 'z', there is no way to proceed otherwise
|
||||
assert_eq!(cie_reader.read::<u8>(), b'z');
|
||||
assert_eq!(cie_reader.read_u8(), b'z');
|
||||
|
||||
// Establish a pointer that skips ahead of the string
|
||||
// Skip code/data alignment factors & return address register along the way as well
|
||||
// We only tackle the case where 'z' and 'R' are part of the augmentation string, otherwise
|
||||
// we cannot get the addresses to make .eh_frame_hdr
|
||||
let mut aug_data_reader = DwarfReader::new(cie_reader.ptr, cie_reader.virt_addr);
|
||||
let mut aug_data_reader = DwarfReader::new(cie_reader.slice, cie_reader.virt_addr);
|
||||
let mut aug_str_len = 0;
|
||||
loop {
|
||||
if aug_data_reader.read::<u8>() == b'\0' {
|
||||
if aug_data_reader.read_u8() == b'\0' {
|
||||
break;
|
||||
}
|
||||
aug_str_len += 1;
|
||||
|
@ -231,18 +259,18 @@ impl EH_Frame {
|
|||
aug_data_reader.read_uleb128(); // Augmentation data length
|
||||
let mut fde_pointer_encoding = DW_EH_PE_omit;
|
||||
for _ in 0..aug_str_len {
|
||||
match cie_reader.read::<u8>() {
|
||||
match cie_reader.read_u8() {
|
||||
b'L' => {
|
||||
aug_data_reader.read::<u8>();
|
||||
aug_data_reader.read_u8();
|
||||
}
|
||||
|
||||
b'P' => {
|
||||
let encoding = aug_data_reader.read::<u8>();
|
||||
let encoding = aug_data_reader.read_u8();
|
||||
read_encoded_pointer(&mut aug_data_reader, encoding)?;
|
||||
}
|
||||
|
||||
b'R' => {
|
||||
fde_pointer_encoding = aug_data_reader.read::<u8>();
|
||||
fde_pointer_encoding = aug_data_reader.read_u8();
|
||||
}
|
||||
|
||||
// Other characters are not supported
|
||||
|
@ -254,30 +282,30 @@ impl EH_Frame {
|
|||
Ok(EH_Frame { fde_pointer_encoding, fde_reader, fde_sz })
|
||||
}
|
||||
|
||||
pub unsafe fn iterate_fde(&self, callback: &mut dyn FnMut(u32, u32)) -> Result<(), ()> {
|
||||
pub fn iterate_fde(&self, callback: &mut dyn FnMut(u32, u32)) -> Result<(), ()> {
|
||||
// Parse each FDE to obtain the starting address that the FDE applies to
|
||||
// Send the FDE offset and the mentioned address to a callback that write up the
|
||||
// .eh_frame_hdr section
|
||||
let mut remaining_len = self.fde_sz;
|
||||
let mut reader = DwarfReader::new(self.fde_reader.ptr, self.fde_reader.virt_addr);
|
||||
let mut reader = DwarfReader::new(self.fde_reader.slice, self.fde_reader.virt_addr);
|
||||
loop {
|
||||
if remaining_len == 0 {
|
||||
break;
|
||||
}
|
||||
|
||||
let fde_virt_addr = reader.virt_addr;
|
||||
let length = match reader.read::<u32>() {
|
||||
let length = match reader.read_u32() {
|
||||
0 | 0xFFFFFFFF => unimplemented!(),
|
||||
other => other,
|
||||
};
|
||||
|
||||
// Remove the length of the header and the content from the counter
|
||||
remaining_len -= length as usize + mem::size_of::<u32>();
|
||||
let mut next_fde_reader = DwarfReader::new(reader.ptr, reader.virt_addr);
|
||||
let mut next_fde_reader = DwarfReader::new(reader.slice, reader.virt_addr);
|
||||
next_fde_reader.offset(length as i32);
|
||||
|
||||
// Skip CIE pointer offset
|
||||
reader.read::<u32>();
|
||||
reader.read_u32();
|
||||
|
||||
// Parse PC Begin using the encoding scheme mentioned in the CIE
|
||||
let pc_begin = read_encoded_pointer_with_pc(&mut reader, self.fde_pointer_encoding)?;
|
||||
|
@ -291,74 +319,73 @@ impl EH_Frame {
|
|||
}
|
||||
}
|
||||
|
||||
pub struct EH_Frame_Hdr {
|
||||
fde_writer: DwarfWriter,
|
||||
fde_count_ptr: *mut u8,
|
||||
pub struct EH_Frame_Hdr<'a> {
|
||||
fde_writer: DwarfWriter<'a>,
|
||||
eh_frame_hdr_addr: u32,
|
||||
fdes: Vec<(u32, u32)>,
|
||||
}
|
||||
|
||||
impl EH_Frame_Hdr {
|
||||
impl<'a> EH_Frame_Hdr<'a> {
|
||||
// Create a EH_Frame_Hdr object, and write out the fixed fields of .eh_frame_hdr to memory
|
||||
// eh_frame_ptr_enc will be 0x1B (PC-relative, 4 bytes)
|
||||
// table_enc will be 0x3B (Relative to the start of .eh_frame_hdr, 4 bytes)
|
||||
// Load address is not known at this point.
|
||||
pub unsafe fn new(
|
||||
pub fn new(
|
||||
eh_frame_hdr_slice: &mut [u8],
|
||||
eh_frame_hdr_addr: u32,
|
||||
eh_frame_addr: u32,
|
||||
) -> EH_Frame_Hdr {
|
||||
let mut writer = DwarfWriter::new(eh_frame_hdr_slice.as_mut_ptr());
|
||||
writer.write::<u8>(1);
|
||||
writer.write::<u8>(0x1B);
|
||||
writer.write::<u8>(0x03);
|
||||
writer.write::<u8>(0x3B);
|
||||
let mut writer = DwarfWriter::new(eh_frame_hdr_slice);
|
||||
writer.write_u8(1);
|
||||
writer.write_u8(0x1B);
|
||||
writer.write_u8(0x03);
|
||||
writer.write_u8(0x3B);
|
||||
|
||||
let eh_frame_offset =
|
||||
(eh_frame_addr).wrapping_sub(eh_frame_hdr_addr + ((mem::size_of::<u8>() as u32) * 4));
|
||||
writer.write(eh_frame_offset);
|
||||
let fde_count_ptr = writer.ptr;
|
||||
writer.write::<u32>(0);
|
||||
writer.write_u32(eh_frame_offset);
|
||||
writer.write_u32(0);
|
||||
|
||||
EH_Frame_Hdr { fde_writer: writer, fde_count_ptr, eh_frame_hdr_addr, fdes: Vec::new() }
|
||||
EH_Frame_Hdr { fde_writer: writer, eh_frame_hdr_addr, fdes: Vec::new() }
|
||||
}
|
||||
|
||||
pub unsafe fn add_fde(&mut self, init_loc: u32, addr: u32) {
|
||||
fn fde_count_offset() -> usize {
|
||||
8
|
||||
}
|
||||
|
||||
pub fn add_fde(&mut self, init_loc: u32, addr: u32) {
|
||||
self.fdes.push((
|
||||
init_loc.wrapping_sub(self.eh_frame_hdr_addr),
|
||||
addr.wrapping_sub(self.eh_frame_hdr_addr),
|
||||
));
|
||||
}
|
||||
|
||||
pub unsafe fn finalize_fde(mut self) {
|
||||
pub fn finalize_fde(mut self) {
|
||||
self.fdes
|
||||
.sort_by(|(left_init_loc, _), (right_init_loc, _)| left_init_loc.cmp(right_init_loc));
|
||||
for (init_loc, addr) in &self.fdes {
|
||||
self.fde_writer.write(init_loc);
|
||||
self.fde_writer.write(addr);
|
||||
self.fde_writer.write_u32(*init_loc);
|
||||
self.fde_writer.write_u32(*addr);
|
||||
}
|
||||
let mut fde_count_writer = DwarfWriter::new(self.fde_count_ptr);
|
||||
fde_count_writer.write::<u32>(self.fdes.len() as u32);
|
||||
LittleEndian::write_u32(&mut self.fde_writer.slice[Self::fde_count_offset()..], self.fdes.len() as u32);
|
||||
}
|
||||
|
||||
pub unsafe fn size_from_eh_frame(eh_frame: &[u8]) -> usize {
|
||||
// The virtual address of the EH frame does no matter in this case
|
||||
pub fn size_from_eh_frame(eh_frame: &[u8]) -> usize {
|
||||
// The virtual address of the EH frame does not matter in this case
|
||||
// Calculation of size does not involve modifying any headers
|
||||
let mut reader = DwarfReader::new(eh_frame.as_ptr(), 0);
|
||||
let end_addr = eh_frame.as_ptr() as usize + eh_frame.len();
|
||||
let mut reader = DwarfReader::new(eh_frame, 0);
|
||||
let mut fde_count = 0;
|
||||
while (reader.ptr as usize) < end_addr {
|
||||
while !reader.slice.is_empty() {
|
||||
// The original length field should be able to hold the entire value.
|
||||
// The device memory space is limited to 32-bits addresses anyway.
|
||||
let entry_length = reader.read::<u32>();
|
||||
let next_ptr = reader.ptr.offset(entry_length as isize);
|
||||
let entry_length = reader.read_u32();
|
||||
if entry_length == 0 || entry_length == 0xFFFFFFFF {
|
||||
unimplemented!()
|
||||
}
|
||||
if reader.read::<u32>() != 0 {
|
||||
if reader.read_u32() != 0 {
|
||||
fde_count += 1;
|
||||
}
|
||||
reader.ptr = next_ptr;
|
||||
reader.offset(entry_length as i32 - mem::size_of::<u32>() as i32)
|
||||
}
|
||||
12 + fde_count * 8
|
||||
}
|
||||
|
|
|
@ -549,7 +549,6 @@ impl<'a> Linker<'a> {
|
|||
let eh_frame_slice = eh_frame_rec.data.as_slice();
|
||||
// Prepare a new buffer to dodge borrow check
|
||||
let mut eh_frame_hdr_vec: Vec<u8> = vec![0; eh_frame_hdr_rec.shdr.sh_size as usize];
|
||||
unsafe {
|
||||
let eh_frame = EH_Frame::new(eh_frame_slice, eh_frame_rec.shdr.sh_offset)
|
||||
.map_err(|()| "cannot read EH frame")?;
|
||||
let mut eh_frame_hdr = EH_Frame_Hdr::new(
|
||||
|
@ -564,7 +563,6 @@ impl<'a> Linker<'a> {
|
|||
|
||||
// Sort FDE entries in .eh_frame_hdr
|
||||
eh_frame_hdr.finalize_fde();
|
||||
}
|
||||
|
||||
// Replace the data buffer in the record
|
||||
get_mut_section_by_name!(self, ".eh_frame_hdr")
|
||||
|
@ -727,7 +725,7 @@ impl<'a> Linker<'a> {
|
|||
|
||||
// Allocate memory for .eh_frame_hdr
|
||||
// Calculate the size by parsing .eh_frame at coarse as possible
|
||||
let eh_frame_hdr_size = unsafe { EH_Frame_Hdr::size_from_eh_frame(eh_frame) };
|
||||
let eh_frame_hdr_size = EH_Frame_Hdr::size_from_eh_frame(eh_frame);
|
||||
|
||||
// Describe the .eh_frame_hdr with a dummy shdr.
|
||||
let eh_frame_hdr_shdr = Elf32_Shdr {
|
||||
|
|
Loading…
Reference in New Issue