Add floor and ceil, move built-in functions to a separate file #120
|
@ -2,16 +2,16 @@
|
|||
"nodes": {
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1637636156,
|
||||
"narHash": "sha256-E2ym4Vcpqu9JYoQDXJZR48gVD+LPPbaCoYveIk7Xu3Y=",
|
||||
"lastModified": 1638279546,
|
||||
"narHash": "sha256-1KCwN7twjp1dBdp0jPgVdYFztDkCR8+roo0B34J9oBY=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "b026e1cf87a108dd06fe521f224fdc72fd0b013d",
|
||||
"rev": "96b4157790fc96e70d6e6c115e3f34bba7be490f",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "NixOS",
|
||||
"ref": "release-21.11",
|
||||
"ref": "nixos-21.11",
|
||||
"repo": "nixpkgs",
|
||||
"type": "github"
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
description = "The third-generation ARTIQ compiler";
|
||||
|
||||
inputs.nixpkgs.url = github:NixOS/nixpkgs/release-21.11;
|
||||
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-21.11;
|
||||
|
||||
outputs = { self, nixpkgs }:
|
||||
let
|
||||
|
|
|
@ -9,13 +9,17 @@ import nac3artiq
|
|||
__all__ = ["KernelInvariant", "extern", "kernel", "portable", "nac3",
|
||||
"ms", "us", "ns",
|
||||
"print_int32", "print_int64",
|
||||
"Core", "TTLOut", "parallel", "sequential"]
|
||||
"Core", "TTLOut", "parallel", "sequential", "virtual"]
|
||||
|
||||
|
||||
T = TypeVar('T')
|
||||
|
||||
class KernelInvariant(Generic[T]):
|
||||
pass
|
||||
|
||||
# The virtual class must exist before nac3artiq.NAC3 is created.
|
||||
class virtual(Generic[T]):
|
||||
pass
|
||||
|
||||
import device_db
|
||||
core_arguments = device_db.device_db["core"]["arguments"]
|
||||
|
|
|
@ -55,6 +55,10 @@ pub struct PrimitivePythonId {
|
|||
bool: u64,
|
||||
list: u64,
|
||||
tuple: u64,
|
||||
typevar: u64,
|
||||
none: u64,
|
||||
generic_alias: (u64, u64),
|
||||
virtual_id: u64,
|
||||
}
|
||||
|
||||
// TopLevelComposer is unsendable as it holds the unification table, which is
|
||||
|
@ -96,10 +100,13 @@ impl Nac3 {
|
|||
let val = id_fn.call1((member.get_item(1)?,))?.extract()?;
|
||||
name_to_pyid.insert(key.into(), val);
|
||||
}
|
||||
let typings = PyModule::import(py, "typing")?;
|
||||
let helper = PythonHelper {
|
||||
id_fn: builtins.getattr("id").unwrap().to_object(py),
|
||||
len_fn: builtins.getattr("len").unwrap().to_object(py),
|
||||
type_fn: builtins.getattr("type").unwrap().to_object(py),
|
||||
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
|
||||
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
|
||||
};
|
||||
Ok((
|
||||
module.getattr("__name__")?.extract()?,
|
||||
|
@ -284,7 +291,42 @@ impl Nac3 {
|
|||
let builtins_mod = PyModule::import(py, "builtins").unwrap();
|
||||
let id_fn = builtins_mod.getattr("id").unwrap();
|
||||
let numpy_mod = PyModule::import(py, "numpy").unwrap();
|
||||
let typing_mod = PyModule::import(py, "typing").unwrap();
|
||||
let types_mod = PyModule::import(py, "types").unwrap();
|
||||
let primitive_ids = PrimitivePythonId {
|
||||
virtual_id: id_fn
|
||||
.call1((builtins_mod
|
||||
.getattr("globals")
|
||||
.unwrap()
|
||||
.call0()
|
||||
.unwrap()
|
||||
.get_item("virtual")
|
||||
.unwrap(),
|
||||
)).unwrap()
|
||||
.extract()
|
||||
.unwrap(),
|
||||
generic_alias: (
|
||||
id_fn
|
||||
.call1((typing_mod.getattr("_GenericAlias").unwrap(),))
|
||||
.unwrap()
|
||||
.extract()
|
||||
.unwrap(),
|
||||
id_fn
|
||||
.call1((types_mod.getattr("GenericAlias").unwrap(),))
|
||||
.unwrap()
|
||||
.extract()
|
||||
.unwrap(),
|
||||
),
|
||||
none: id_fn
|
||||
.call1((builtins_mod.getattr("None").unwrap(),))
|
||||
.unwrap()
|
||||
.extract()
|
||||
.unwrap(),
|
||||
typevar: id_fn
|
||||
.call1((typing_mod.getattr("TypeVar").unwrap(),))
|
||||
.unwrap()
|
||||
.extract()
|
||||
.unwrap(),
|
||||
int: id_fn
|
||||
.call1((builtins_mod.getattr("int").unwrap(),))
|
||||
.unwrap()
|
||||
|
@ -403,10 +445,13 @@ impl Nac3 {
|
|||
};
|
||||
let mut synthesized = parse_program(&synthesized).unwrap();
|
||||
let builtins = PyModule::import(py, "builtins")?;
|
||||
let typings = PyModule::import(py, "typing")?;
|
||||
let helper = PythonHelper {
|
||||
id_fn: builtins.getattr("id").unwrap().to_object(py),
|
||||
len_fn: builtins.getattr("len").unwrap().to_object(py),
|
||||
type_fn: builtins.getattr("type").unwrap().to_object(py),
|
||||
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
|
||||
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
|
||||
};
|
||||
let resolver = Arc::new(Resolver(Arc::new(InnerResolver {
|
||||
id_to_type: self.builtins_ty.clone().into(),
|
||||
|
|
|
@ -43,6 +43,8 @@ pub struct PythonHelper {
|
|||
pub type_fn: PyObject,
|
||||
pub len_fn: PyObject,
|
||||
pub id_fn: PyObject,
|
||||
pub origin_ty_fn: PyObject,
|
||||
pub args_ty_fn: PyObject,
|
||||
}
|
||||
|
||||
struct PythonValue {
|
||||
|
@ -133,47 +135,46 @@ impl InnerResolver {
|
|||
}))
|
||||
}
|
||||
|
||||
fn get_obj_type(
|
||||
// handle python objects that represent types themselves
|
||||
// primitives and class types should be themselves, use `ty_id` to check,
|
||||
// TypeVars and GenericAlias(`A[int, bool]`) should use `ty_ty_id` to check
|
||||
// the `bool` value returned indicates whether they are instantiated or not
|
||||
fn get_pyty_obj_type(
|
||||
&self,
|
||||
py: Python,
|
||||
obj: &PyAny,
|
||||
pyty: &PyAny,
|
||||
unifier: &mut Unifier,
|
||||
defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
primitives: &PrimitiveStore,
|
||||
) -> PyResult<Option<Type>> {
|
||||
) -> PyResult<Result<(Type, bool), String>> {
|
||||
let ty_id: u64 = self
|
||||
.helper
|
||||
.id_fn
|
||||
.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?
|
||||
.call1(py, (pyty,))?
|
||||
.extract(py)?;
|
||||
let ty_ty_id: u64 = self
|
||||
.helper
|
||||
.id_fn
|
||||
.call1(py, (self.helper.type_fn.call1(py, (pyty,))?,))?
|
||||
.extract(py)?;
|
||||
|
||||
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
|
||||
Ok(Some(primitives.int32))
|
||||
Ok(Ok((primitives.int32, true)))
|
||||
} else if ty_id == self.primitive_ids.int64 {
|
||||
Ok(Some(primitives.int64))
|
||||
Ok(Ok((primitives.int64, true)))
|
||||
} else if ty_id == self.primitive_ids.bool {
|
||||
Ok(Some(primitives.bool))
|
||||
Ok(Ok((primitives.bool, true)))
|
||||
} else if ty_id == self.primitive_ids.float {
|
||||
Ok(Some(primitives.float))
|
||||
Ok(Ok((primitives.float, true)))
|
||||
} else if ty_id == self.primitive_ids.list {
|
||||
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
|
||||
if len == 0 {
|
||||
let var = unifier.get_fresh_var().0;
|
||||
let list = unifier.add_ty(TypeEnum::TList { ty: var });
|
||||
Ok(Some(list))
|
||||
} else {
|
||||
let ty = self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
|
||||
Ok(ty.map(|ty| unifier.add_ty(TypeEnum::TList { ty })))
|
||||
}
|
||||
// do not handle type var param and concrete check here
|
||||
let var = unifier.get_fresh_var().0;
|
||||
let list = unifier.add_ty(TypeEnum::TList { ty: var });
|
||||
Ok(Ok((list, false)))
|
||||
} else if ty_id == self.primitive_ids.tuple {
|
||||
let elements: &PyTuple = obj.cast_as()?;
|
||||
let types: Result<Option<Vec<_>>, _> = elements
|
||||
.iter()
|
||||
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
|
||||
.collect();
|
||||
let types = types?;
|
||||
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
|
||||
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id) {
|
||||
// do not handle type var param and concrete check here
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
|
||||
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).cloned() {
|
||||
let def = defs[def_id.0].read();
|
||||
if let TopLevelDef::Class {
|
||||
object_id,
|
||||
|
@ -183,54 +184,274 @@ impl InnerResolver {
|
|||
..
|
||||
} = &*def
|
||||
{
|
||||
let var_map: HashMap<_, _> = type_vars
|
||||
.iter()
|
||||
.map(|var| {
|
||||
(
|
||||
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
|
||||
*id
|
||||
} else {
|
||||
unreachable!()
|
||||
},
|
||||
unifier.get_fresh_var().0,
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
let mut fields_ty = HashMap::new();
|
||||
for method in methods.iter() {
|
||||
fields_ty.insert(method.0, (method.1, false));
|
||||
}
|
||||
for field in fields.iter() {
|
||||
let name: String = field.0.into();
|
||||
let field_data = obj.getattr(&name)?;
|
||||
let ty = self
|
||||
.get_obj_type(py, field_data, unifier, defs, primitives)?
|
||||
.unwrap_or(primitives.none);
|
||||
let field_ty = unifier.subst(field.1, &var_map).unwrap_or(field.1);
|
||||
if unifier.unify(ty, field_ty).is_err() {
|
||||
// field type mismatch
|
||||
return Ok(None);
|
||||
// do not handle type var param and concrete check here, and no subst
|
||||
Ok(Ok({
|
||||
let ty = TypeEnum::TObj {
|
||||
obj_id: *object_id,
|
||||
params: RefCell::new({
|
||||
type_vars
|
||||
.iter()
|
||||
.map(|x| {
|
||||
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
|
||||
(*id, *x)
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}).collect()
|
||||
}),
|
||||
fields: RefCell::new({
|
||||
let mut res = methods
|
||||
.iter()
|
||||
.map(|(iden, ty, _)| (*iden, (*ty, false)))
|
||||
.collect::<HashMap<_, _>>();
|
||||
res.extend(fields.clone().into_iter().map(|x| (x.0, (x.1, x.2))));
|
||||
res
|
||||
})
|
||||
};
|
||||
// here also false, later instantiation use python object to check compatible
|
||||
(unifier.add_ty(ty), false)
|
||||
}))
|
||||
} else {
|
||||
// only object is supported, functions are not supported
|
||||
unreachable!("function type is not supported, should not be queried")
|
||||
}
|
||||
} else if ty_ty_id == self.primitive_ids.typevar {
|
||||
let constraint_types = {
|
||||
let constraints = pyty.getattr("__constraints__").unwrap();
|
||||
let mut result: Vec<Type> = vec![];
|
||||
for i in 0.. {
|
||||
if let Ok(constr) = constraints.get_item(i) {
|
||||
result.push({
|
||||
match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
|
||||
Ok((ty, _)) => {
|
||||
if unifier.is_concrete(ty, &[]) {
|
||||
ty
|
||||
} else {
|
||||
return Ok(Err(format!(
|
||||
"the {}th constraint of TypeVar `{}` is not concrete",
|
||||
i + 1,
|
||||
pyty.getattr("__name__")?.extract::<String>()?
|
||||
)))
|
||||
}
|
||||
},
|
||||
Err(err) => return Ok(Err(err))
|
||||
}
|
||||
})
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
result
|
||||
};
|
||||
let res = unifier.get_fresh_var_with_range(&constraint_types).0;
|
||||
Ok(Ok((res, true)))
|
||||
} else if ty_ty_id == self.primitive_ids.generic_alias.0 || ty_ty_id == self.primitive_ids.generic_alias.1 {
|
||||
let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?;
|
||||
let args = self.helper.args_ty_fn.call1(py, (pyty,))?;
|
||||
let args: &PyTuple = args.cast_as(py)?;
|
||||
let origin_ty = match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? {
|
||||
Ok((ty, false)) => ty,
|
||||
Ok((_, true)) => return Ok(Err("instantiated type does not take type parameters".into())),
|
||||
Err(err) => return Ok(Err(err))
|
||||
};
|
||||
|
||||
match &*unifier.get_ty(origin_ty) {
|
||||
TypeEnum::TList { .. } => {
|
||||
if args.len() == 1 {
|
||||
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
|
||||
Ok(ty) => ty,
|
||||
Err(err) => return Ok(Err(err))
|
||||
};
|
||||
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
|
||||
panic!("type list should take concrete parameters in type var ranges")
|
||||
}
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
|
||||
} else {
|
||||
return Ok(Err(format!("type list needs exactly 1 type parameters, found {}", args.len())))
|
||||
}
|
||||
},
|
||||
TypeEnum::TTuple { .. } => {
|
||||
let args = match args
|
||||
.iter()
|
||||
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
.into_iter()
|
||||
.collect::<Result<Vec<_>, _>>() {
|
||||
Ok(args) if !args.is_empty() => args
|
||||
.into_iter()
|
||||
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
|
||||
panic!("type tuple should take concrete parameters in type var ranges")
|
||||
} else {
|
||||
x
|
||||
}
|
||||
)
|
||||
.collect::<Vec<_>>(),
|
||||
Err(err) => return Ok(Err(err)),
|
||||
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
|
||||
};
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
|
||||
},
|
||||
TypeEnum::TObj { params, obj_id, .. } => {
|
||||
let subst = {
|
||||
let params = &*params.borrow();
|
||||
if params.len() != args.len() {
|
||||
return Ok(Err(format!(
|
||||
"for class #{}, expect {} type parameters, got {}.",
|
||||
obj_id.0,
|
||||
params.len(),
|
||||
args.len(),
|
||||
)))
|
||||
}
|
||||
let args = match args
|
||||
.iter()
|
||||
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
.into_iter()
|
||||
.collect::<Result<Vec<_>, _>>() {
|
||||
Ok(args) => args
|
||||
.into_iter()
|
||||
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
|
||||
panic!("type class should take concrete parameters in type var ranges")
|
||||
} else {
|
||||
x
|
||||
}
|
||||
)
|
||||
.collect::<Vec<_>>(),
|
||||
Err(err) => return Ok(Err(err)),
|
||||
};
|
||||
params
|
||||
.iter()
|
||||
.zip(args.iter())
|
||||
.map(|((id, _), ty)| (*id, *ty))
|
||||
.collect::<HashMap<_, _>>()
|
||||
};
|
||||
Ok(Ok((unifier.subst(origin_ty, &subst).unwrap_or(origin_ty), true)))
|
||||
},
|
||||
TypeEnum::TVirtual { .. } => {
|
||||
if args.len() == 1 {
|
||||
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
|
||||
Ok(ty) => ty,
|
||||
Err(err) => return Ok(Err(err))
|
||||
};
|
||||
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
|
||||
panic!("virtual class should take concrete parameters in type var ranges")
|
||||
}
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TVirtual { ty: ty.0 }), true)))
|
||||
} else {
|
||||
return Ok(Err(format!("virtual class needs exactly 1 type parameters, found {}", args.len())))
|
||||
}
|
||||
}
|
||||
_ => unimplemented!()
|
||||
}
|
||||
} else if ty_id == self.primitive_ids.virtual_id {
|
||||
Ok(Ok(({
|
||||
let ty = TypeEnum::TVirtual { ty: unifier.get_fresh_var().0 };
|
||||
unifier.add_ty(ty)
|
||||
}, false)))
|
||||
} else {
|
||||
Ok(Err("unknown type".into()))
|
||||
}
|
||||
}
|
||||
|
||||
fn get_obj_type(
|
||||
&self,
|
||||
py: Python,
|
||||
obj: &PyAny,
|
||||
unifier: &mut Unifier,
|
||||
defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
primitives: &PrimitiveStore,
|
||||
) -> PyResult<Option<Type>> {
|
||||
let ty = self.helper.type_fn.call1(py, (obj,)).unwrap();
|
||||
let (extracted_ty, inst_check) = match self.get_pyty_obj_type(
|
||||
py,
|
||||
{
|
||||
if [self.primitive_ids.typevar,
|
||||
self.primitive_ids.generic_alias.0,
|
||||
self.primitive_ids.generic_alias.1
|
||||
].contains(&self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?) {
|
||||
obj
|
||||
} else {
|
||||
ty.as_ref(py)
|
||||
}
|
||||
},
|
||||
unifier,
|
||||
defs,
|
||||
primitives
|
||||
)? {
|
||||
Ok(s) => s,
|
||||
Err(_) => return Ok(None)
|
||||
};
|
||||
return match (&*unifier.get_ty(extracted_ty), inst_check) {
|
||||
// do the instantiation for these three types
|
||||
(TypeEnum::TList { ty }, false) => {
|
||||
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
|
||||
if len == 0 {
|
||||
assert!(matches!(
|
||||
&*unifier.get_ty(extracted_ty),
|
||||
TypeEnum::TVar { meta: nac3core::typecheck::typedef::TypeVarMeta::Generic, range, .. }
|
||||
if range.borrow().is_empty()
|
||||
));
|
||||
Ok(Some(extracted_ty))
|
||||
} else {
|
||||
let actual_ty = self
|
||||
.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
|
||||
if let Some(actual_ty) = actual_ty {
|
||||
unifier.unify(*ty, actual_ty).unwrap();
|
||||
Ok(Some(extracted_ty))
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
}
|
||||
(TypeEnum::TTuple { .. }, false) => {
|
||||
let elements: &PyTuple = obj.cast_as()?;
|
||||
let types: Result<Option<Vec<_>>, _> = elements
|
||||
.iter()
|
||||
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
|
||||
.collect();
|
||||
let types = types?;
|
||||
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
|
||||
}
|
||||
(TypeEnum::TObj { params, fields, .. }, false) => {
|
||||
let var_map = params
|
||||
.borrow()
|
||||
.iter()
|
||||
.map(|(id_var, ty)| {
|
||||
if let TypeEnum::TVar { id, range, .. } = &*unifier.get_ty(*ty) {
|
||||
assert_eq!(*id, *id_var);
|
||||
(*id, unifier.get_fresh_var_with_range(&range.borrow()).0)
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
})
|
||||
.collect::<HashMap<_, _>>();
|
||||
// loop through non-function fields of the class to get the instantiated value
|
||||
for field in fields.borrow().iter() {
|
||||
let name: String = (*field.0).into();
|
||||
if let TypeEnum::TFunc( .. ) = &*unifier.get_ty(field.1.0) {
|
||||
continue;
|
||||
} else {
|
||||
let field_data = obj.getattr(&name)?;
|
||||
let ty = self
|
||||
.get_obj_type(py, field_data, unifier, defs, primitives)?
|
||||
.unwrap_or(primitives.none);
|
||||
let field_ty = unifier.subst(field.1.0, &var_map).unwrap_or(field.1.0);
|
||||
if unifier.unify(ty, field_ty).is_err() {
|
||||
// field type mismatch
|
||||
return Ok(None);
|
||||
}
|
||||
}
|
||||
fields_ty.insert(field.0, (ty, field.2));
|
||||
}
|
||||
for (_, ty) in var_map.iter() {
|
||||
// must be concrete type
|
||||
if !unifier.is_concrete(*ty, &[]) {
|
||||
return Ok(None);
|
||||
return Ok(None)
|
||||
}
|
||||
}
|
||||
Ok(Some(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id: *object_id,
|
||||
fields: RefCell::new(fields_ty),
|
||||
params: RefCell::new(var_map),
|
||||
})))
|
||||
} else {
|
||||
// only object is supported, functions are not supported
|
||||
Ok(None)
|
||||
return Ok(Some(unifier.subst(extracted_ty, &var_map).unwrap_or(extracted_ty)));
|
||||
}
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
_ => Ok(Some(extracted_ty))
|
||||
};
|
||||
}
|
||||
|
||||
fn get_obj_value<'ctx, 'a>(
|
||||
|
@ -620,4 +841,4 @@ impl SymbolResolver for Resolver {
|
|||
result
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
|
@ -138,159 +138,165 @@ pub fn parse_type_annotation<T>(
|
|||
let list_id = ids[6];
|
||||
let tuple_id = ids[7];
|
||||
|
||||
match &expr.node {
|
||||
Name { id, .. } => {
|
||||
if *id == int32_id {
|
||||
Ok(primitives.int32)
|
||||
} else if *id == int64_id {
|
||||
Ok(primitives.int64)
|
||||
} else if *id == float_id {
|
||||
Ok(primitives.float)
|
||||
} else if *id == bool_id {
|
||||
Ok(primitives.bool)
|
||||
} else if *id == none_id {
|
||||
Ok(primitives.none)
|
||||
} else {
|
||||
let obj_id = resolver.get_identifier_def(*id);
|
||||
if let Some(obj_id) = obj_id {
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
let fields = RefCell::new(
|
||||
chain(
|
||||
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
|
||||
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
|
||||
)
|
||||
.collect(),
|
||||
);
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields,
|
||||
params: Default::default(),
|
||||
}))
|
||||
} else {
|
||||
Err("Cannot use function name as type".into())
|
||||
let name_handling = |id: &StrRef, unifier: &mut Unifier| {
|
||||
if *id == int32_id {
|
||||
Ok(primitives.int32)
|
||||
} else if *id == int64_id {
|
||||
Ok(primitives.int64)
|
||||
} else if *id == float_id {
|
||||
Ok(primitives.float)
|
||||
} else if *id == bool_id {
|
||||
Ok(primitives.bool)
|
||||
} else if *id == none_id {
|
||||
Ok(primitives.none)
|
||||
} else {
|
||||
let obj_id = resolver.get_identifier_def(*id);
|
||||
if let Some(obj_id) = obj_id {
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
let fields = RefCell::new(
|
||||
chain(
|
||||
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
|
||||
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
|
||||
)
|
||||
.collect(),
|
||||
);
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields,
|
||||
params: Default::default(),
|
||||
}))
|
||||
} else {
|
||||
// it could be a type variable
|
||||
let ty = resolver
|
||||
.get_symbol_type(unifier, top_level_defs, primitives, *id)
|
||||
.ok_or_else(|| "unknown type variable name".to_owned())?;
|
||||
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
|
||||
Ok(ty)
|
||||
} else {
|
||||
Err(format!("Unknown type annotation {}", id))
|
||||
}
|
||||
Err("Cannot use function name as type".into())
|
||||
}
|
||||
} else {
|
||||
// it could be a type variable
|
||||
let ty = resolver
|
||||
.get_symbol_type(unifier, top_level_defs, primitives, *id)
|
||||
.ok_or_else(|| "unknown type variable name".to_owned())?;
|
||||
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
|
||||
Ok(ty)
|
||||
} else {
|
||||
Err(format!("Unknown type annotation {}", id))
|
||||
}
|
||||
}
|
||||
}
|
||||
Subscript { value, slice, .. } => {
|
||||
if let Name { id, .. } = &value.node {
|
||||
if *id == virtual_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
|
||||
} else if *id == list_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TList { ty }))
|
||||
} else if *id == tuple_id {
|
||||
if let Tuple { elts, .. } = &slice.node {
|
||||
let ty = elts
|
||||
.iter()
|
||||
.map(|elt| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
elt,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
|
||||
} else {
|
||||
Err("Expected multiple elements for tuple".into())
|
||||
}
|
||||
} else {
|
||||
let types = if let Tuple { elts, .. } = &slice.node {
|
||||
elts.iter()
|
||||
.map(|v| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
v,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
} else {
|
||||
vec![parse_type_annotation(
|
||||
};
|
||||
|
||||
let subscript_name_handle = |id: &StrRef, slice: &Expr<T>, unifier: &mut Unifier| {
|
||||
if *id == virtual_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
|
||||
} else if *id == list_id {
|
||||
let ty = parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?;
|
||||
Ok(unifier.add_ty(TypeEnum::TList { ty }))
|
||||
} else if *id == tuple_id {
|
||||
if let Tuple { elts, .. } = &slice.node {
|
||||
let ty = elts
|
||||
.iter()
|
||||
.map(|elt| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?]
|
||||
};
|
||||
elt,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
|
||||
} else {
|
||||
Err("Expected multiple elements for tuple".into())
|
||||
}
|
||||
} else {
|
||||
let types = if let Tuple { elts, .. } = &slice.node {
|
||||
elts.iter()
|
||||
.map(|v| {
|
||||
parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
v,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
} else {
|
||||
vec![parse_type_annotation(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
slice,
|
||||
)?]
|
||||
};
|
||||
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| format!("Unknown type annotation {}", id))?;
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if types.len() != type_vars.len() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got {}",
|
||||
type_vars.len(),
|
||||
types.len()
|
||||
));
|
||||
}
|
||||
let mut subst = HashMap::new();
|
||||
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
|
||||
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
|
||||
*id
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
subst.insert(id, *ty);
|
||||
}
|
||||
let mut fields = fields
|
||||
.iter()
|
||||
.map(|(attr, ty, is_mutable)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, *is_mutable))
|
||||
})
|
||||
.collect::<HashMap<_, _>>();
|
||||
fields.extend(methods.iter().map(|(attr, ty, _)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, false))
|
||||
}));
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields: fields.into(),
|
||||
params: subst.into(),
|
||||
}))
|
||||
} else {
|
||||
Err("Cannot use function name as type".into())
|
||||
}
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| format!("Unknown type annotation {}", id))?;
|
||||
let def = top_level_defs[obj_id.0].read();
|
||||
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
|
||||
if types.len() != type_vars.len() {
|
||||
return Err(format!(
|
||||
"Unexpected number of type parameters: expected {} but got {}",
|
||||
type_vars.len(),
|
||||
types.len()
|
||||
));
|
||||
}
|
||||
let mut subst = HashMap::new();
|
||||
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
|
||||
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
|
||||
*id
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
subst.insert(id, *ty);
|
||||
}
|
||||
let mut fields = fields
|
||||
.iter()
|
||||
.map(|(attr, ty, is_mutable)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, *is_mutable))
|
||||
})
|
||||
.collect::<HashMap<_, _>>();
|
||||
fields.extend(methods.iter().map(|(attr, ty, _)| {
|
||||
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
|
||||
(*attr, (ty, false))
|
||||
}));
|
||||
Ok(unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id,
|
||||
fields: fields.into(),
|
||||
params: subst.into(),
|
||||
}))
|
||||
} else {
|
||||
Err("Cannot use function name as type".into())
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
match &expr.node {
|
||||
Name { id, .. } => name_handling(id, unifier),
|
||||
Subscript { value, slice, .. } => {
|
||||
if let Name { id, .. } = &value.node {
|
||||
subscript_name_handle(id, slice, unifier)
|
||||
} else {
|
||||
Err("unsupported type expression".into())
|
||||
}
|
||||
|
|
|
@ -379,7 +379,14 @@ pub fn get_built_ins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo
|
|||
let arg = args[0].1;
|
||||
if ctx.unifier.unioned(arg_ty, boolean) {
|
||||
Some(arg)
|
||||
} else if ctx.unifier.unioned(arg_ty, int32) || ctx.unifier.unioned(arg_ty, int64) {
|
||||
} else if ctx.unifier.unioned(arg_ty, int32) {
|
||||
Some(ctx.builder.build_int_compare(
|
||||
IntPredicate::NE,
|
||||
ctx.ctx.i32_type().const_zero(),
|
||||
arg.into_int_value(),
|
||||
"bool",
|
||||
).into())
|
||||
} else if ctx.unifier.unioned(arg_ty, int64) {
|
||||
Some(ctx.builder.build_int_compare(
|
||||
IntPredicate::NE,
|
||||
ctx.ctx.i64_type().const_zero(),
|
||||
|
|
|
@ -1,10 +1,8 @@
|
|||
use std::cell::RefCell;
|
||||
|
||||
use nac3parser::ast::fold::Fold;
|
||||
use inkwell::{FloatPredicate, IntPredicate};
|
||||
|
||||
use crate::{
|
||||
symbol_resolver::SymbolValue,
|
||||
typecheck::type_inferencer::{FunctionData, Inferencer},
|
||||
codegen::expr::get_subst_key,
|
||||
};
|
||||
|
@ -131,7 +129,7 @@ impl TopLevelComposer {
|
|||
}
|
||||
}
|
||||
|
||||
fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
|
||||
pub fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
|
||||
self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec()
|
||||
}
|
||||
|
||||
|
|
|
@ -24,8 +24,8 @@ pub struct DefinitionId(pub usize);
|
|||
|
||||
pub mod composer;
|
||||
pub mod helper;
|
||||
mod type_annotation;
|
||||
pub mod builtins;
|
||||
pub mod type_annotation;
|
||||
use composer::*;
|
||||
use type_annotation::*;
|
||||
#[cfg(test)]
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
use std::cell::RefCell;
|
||||
|
||||
use crate::typecheck::typedef::TypeVarMeta;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
|
@ -49,54 +48,121 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
|||
primitives: &PrimitiveStore,
|
||||
expr: &ast::Expr<T>,
|
||||
// the key stores the type_var of this topleveldef::class, we only need this field here
|
||||
mut locked: HashMap<DefinitionId, Vec<Type>>,
|
||||
locked: HashMap<DefinitionId, Vec<Type>>,
|
||||
) -> Result<TypeAnnotation, String> {
|
||||
match &expr.node {
|
||||
ast::ExprKind::Name { id, .. } => {
|
||||
if id == &"int32".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int32))
|
||||
} else if id == &"int64".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int64))
|
||||
} else if id == &"float".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.float))
|
||||
} else if id == &"bool".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.bool))
|
||||
} else if id == &"None".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.none))
|
||||
} else if id == &"str".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.str))
|
||||
} else if let Some(obj_id) = resolver.get_identifier_def(*id) {
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
return Err("function cannot be used as a type".into());
|
||||
}
|
||||
let name_handle = |id: &StrRef, unifier: &mut Unifier, locked: HashMap<DefinitionId, Vec<Type>>| {
|
||||
if id == &"int32".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int32))
|
||||
} else if id == &"int64".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.int64))
|
||||
} else if id == &"float".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.float))
|
||||
} else if id == &"bool".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.bool))
|
||||
} else if id == &"None".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.none))
|
||||
} else if id == &"str".into() {
|
||||
Ok(TypeAnnotation::Primitive(primitives.str))
|
||||
} else if let Some(obj_id) = resolver.get_identifier_def(*id) {
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
return Err("function cannot be used as a type".into());
|
||||
}
|
||||
};
|
||||
// check param number here
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"expect {} type variable parameter but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
|
||||
} else if let Some(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
|
||||
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
|
||||
Ok(TypeAnnotation::TypeVar(ty))
|
||||
} else {
|
||||
Err("not a type variable identifier".into())
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
}
|
||||
};
|
||||
// check param number here
|
||||
if !type_vars.is_empty() {
|
||||
return Err(format!(
|
||||
"expect {} type variable parameter but got 0",
|
||||
type_vars.len()
|
||||
));
|
||||
}
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
|
||||
} else if let Some(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
|
||||
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
|
||||
Ok(TypeAnnotation::TypeVar(ty))
|
||||
} else {
|
||||
Err("not a type variable identifier".into())
|
||||
}
|
||||
} else {
|
||||
Err("name cannot be parsed as a type annotation".into())
|
||||
}
|
||||
};
|
||||
|
||||
let class_name_handle =
|
||||
|id: &StrRef, slice: &ast::Expr<T>, unifier: &mut Unifier, mut locked: HashMap<DefinitionId, Vec<Type>>| {
|
||||
if vec!["virtual".into(), "Generic".into(), "list".into(), "tuple".into()]
|
||||
.contains(id)
|
||||
{
|
||||
return Err("keywords cannot be class name".into());
|
||||
}
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| "unknown class name".to_string())?;
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
unreachable!("must be class here")
|
||||
}
|
||||
} else {
|
||||
Err("name cannot be parsed as a type annotation".into())
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
// we do not check whether the application of type variables are compatible here
|
||||
let param_type_infos = {
|
||||
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||
elts.iter().collect_vec()
|
||||
} else {
|
||||
vec![slice]
|
||||
};
|
||||
if type_vars.len() != params_ast.len() {
|
||||
return Err(format!(
|
||||
"expect {} type parameters but got {}",
|
||||
type_vars.len(),
|
||||
params_ast.len()
|
||||
));
|
||||
}
|
||||
let result = params_ast
|
||||
.into_iter()
|
||||
.map(|x| {
|
||||
parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
x,
|
||||
{
|
||||
locked.insert(obj_id, type_vars.clone());
|
||||
locked.clone()
|
||||
},
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
// make sure the result do not contain any type vars
|
||||
let no_type_var = result
|
||||
.iter()
|
||||
.all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
|
||||
if no_type_var {
|
||||
result
|
||||
} else {
|
||||
return Err("application of type vars to generic class \
|
||||
is not currently supported"
|
||||
.into());
|
||||
}
|
||||
};
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
|
||||
};
|
||||
match &expr.node {
|
||||
ast::ExprKind::Name { id, .. } => name_handle(id, unifier, locked),
|
||||
// virtual
|
||||
ast::ExprKind::Subscript { value, slice, .. }
|
||||
if {
|
||||
|
@ -163,71 +229,7 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
|||
// custom class
|
||||
ast::ExprKind::Subscript { value, slice, .. } => {
|
||||
if let ast::ExprKind::Name { id, .. } = &value.node {
|
||||
if vec!["virtual".into(), "Generic".into(), "list".into(), "tuple".into()]
|
||||
.contains(id)
|
||||
{
|
||||
return Err("keywords cannot be class name".into());
|
||||
}
|
||||
let obj_id = resolver
|
||||
.get_identifier_def(*id)
|
||||
.ok_or_else(|| "unknown class name".to_string())?;
|
||||
let type_vars = {
|
||||
let def_read = top_level_defs[obj_id.0].try_read();
|
||||
if let Some(def_read) = def_read {
|
||||
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
|
||||
type_vars.clone()
|
||||
} else {
|
||||
unreachable!("must be class here")
|
||||
}
|
||||
} else {
|
||||
locked.get(&obj_id).unwrap().clone()
|
||||
}
|
||||
};
|
||||
// we do not check whether the application of type variables are compatible here
|
||||
let param_type_infos = {
|
||||
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||
elts.iter().collect_vec()
|
||||
} else {
|
||||
vec![slice.as_ref()]
|
||||
};
|
||||
if type_vars.len() != params_ast.len() {
|
||||
return Err(format!(
|
||||
"expect {} type parameters but got {}",
|
||||
type_vars.len(),
|
||||
params_ast.len()
|
||||
));
|
||||
}
|
||||
let result = params_ast
|
||||
.into_iter()
|
||||
.map(|x| {
|
||||
parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
x,
|
||||
{
|
||||
locked.insert(obj_id, type_vars.clone());
|
||||
locked.clone()
|
||||
},
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
// make sure the result do not contain any type vars
|
||||
let no_type_var = result
|
||||
.iter()
|
||||
.all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
|
||||
if no_type_var {
|
||||
result
|
||||
} else {
|
||||
return Err("application of type vars to generic class \
|
||||
is not currently supported"
|
||||
.into());
|
||||
}
|
||||
};
|
||||
|
||||
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
|
||||
class_name_handle(id, slice, unifier, locked)
|
||||
} else {
|
||||
Err("unsupported expression type for class name".into())
|
||||
}
|
||||
|
@ -370,13 +372,7 @@ pub fn get_type_from_type_annotation_kinds(
|
|||
/// But note that here we do not make a duplication of `T`, `V`, we direclty
|
||||
/// use them as they are in the TopLevelDef::Class since those in the
|
||||
/// TopLevelDef::Class.type_vars will be substitute later when seeing applications/instantiations
|
||||
/// the Type of their fields and methods will also be subst when application/instantiation \
|
||||
/// \
|
||||
/// Note this implicit self type is different with seeing `A[T, V]` explicitly outside
|
||||
/// the class def ast body, where it is a new instantiation of the generic class `A`,
|
||||
/// but equivalent to seeing `A[T, V]` inside the class def body ast, where although we
|
||||
/// create copies of `T` and `V`, we will find them out as occured type vars in the analyze_class()
|
||||
/// and unify them with the class generic `T`, `V`
|
||||
/// the Type of their fields and methods will also be subst when application/instantiation
|
||||
pub fn make_self_type_annotation(type_vars: &[Type], object_id: DefinitionId) -> TypeAnnotation {
|
||||
TypeAnnotation::CustomClass {
|
||||
id: object_id,
|
||||
|
|
|
@ -167,7 +167,6 @@ impl<'a> Inferencer<'a> {
|
|||
}
|
||||
ExprKind::Constant { .. } => {}
|
||||
_ => {
|
||||
println!("{:?}", expr.node);
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -855,7 +855,6 @@ impl Unifier {
|
|||
}
|
||||
}
|
||||
_ => {
|
||||
println!("{}", ty.get_type_name());
|
||||
unreachable!("{} not expected", ty.get_type_name())
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,8 +3,9 @@ use inkwell::{
|
|||
targets::*,
|
||||
OptimizationLevel,
|
||||
};
|
||||
use nac3core::typecheck::type_inferencer::PrimitiveStore;
|
||||
use nac3core::typecheck::{type_inferencer::PrimitiveStore, typedef::{Type, Unifier}};
|
||||
use nac3parser::{ast::{Expr, ExprKind, StmtKind}, parser};
|
||||
use parking_lot::RwLock;
|
||||
use std::{borrow::Borrow, env};
|
||||
use std::fs;
|
||||
use std::{collections::HashMap, path::Path, sync::Arc, time::SystemTime};
|
||||
|
@ -15,7 +16,11 @@ use nac3core::{
|
|||
WorkerRegistry,
|
||||
},
|
||||
symbol_resolver::SymbolResolver,
|
||||
toplevel::{composer::TopLevelComposer, TopLevelDef, helper::parse_parameter_default_value},
|
||||
toplevel::{
|
||||
composer::TopLevelComposer,
|
||||
TopLevelDef, helper::parse_parameter_default_value,
|
||||
type_annotation::*,
|
||||
},
|
||||
typecheck::typedef::FunSignature,
|
||||
};
|
||||
|
||||
|
@ -68,25 +73,84 @@ fn main() {
|
|||
|
||||
for stmt in parser_result.into_iter() {
|
||||
if let StmtKind::Assign { targets, value, .. } = &stmt.node {
|
||||
fn handle_typevar_definition(
|
||||
var: &Expr,
|
||||
resolver: &(dyn SymbolResolver + Send + Sync),
|
||||
def_list: &[Arc<RwLock<TopLevelDef>>],
|
||||
unifier: &mut Unifier,
|
||||
primitives: &PrimitiveStore,
|
||||
) -> Result<Type, String> {
|
||||
if let ExprKind::Call { func, args, .. } = &var.node {
|
||||
if matches!(&func.node, ExprKind::Name { id, .. } if id == &"TypeVar".into()) {
|
||||
let constraints = args
|
||||
.iter()
|
||||
.skip(1)
|
||||
.map(|x| -> Result<Type, String> {
|
||||
let ty = parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
def_list,
|
||||
unifier,
|
||||
primitives,
|
||||
x,
|
||||
Default::default(),
|
||||
)?;
|
||||
get_type_from_type_annotation_kinds(def_list, unifier, primitives, &ty)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
Ok(unifier.get_fresh_var_with_range(&constraints).0)
|
||||
} else {
|
||||
Err(format!("expression {:?} cannot be handled as a TypeVar in global scope", var))
|
||||
}
|
||||
} else {
|
||||
Err(format!("expression {:?} cannot be handled as a TypeVar in global scope", var))
|
||||
}
|
||||
}
|
||||
|
||||
fn handle_assignment_pattern(
|
||||
targets: &[Expr],
|
||||
value: &Expr,
|
||||
resolver: &(dyn SymbolResolver + Send + Sync),
|
||||
internal_resolver: &ResolverInternal,
|
||||
def_list: &[Arc<RwLock<TopLevelDef>>],
|
||||
unifier: &mut Unifier,
|
||||
primitives: &PrimitiveStore,
|
||||
) -> Result<(), String> {
|
||||
if targets.len() == 1 {
|
||||
match &targets[0].node {
|
||||
ExprKind::Name { id, .. } => {
|
||||
let val = parse_parameter_default_value(value.borrow(), resolver)?;
|
||||
internal_resolver.add_module_global(*id, val);
|
||||
Ok(())
|
||||
if let Ok(var) = handle_typevar_definition(
|
||||
value.borrow(),
|
||||
resolver,
|
||||
def_list,
|
||||
unifier,
|
||||
primitives,
|
||||
) {
|
||||
internal_resolver.add_id_type(*id, var);
|
||||
Ok(())
|
||||
} else if let Ok(val) = parse_parameter_default_value(value.borrow(), resolver) {
|
||||
internal_resolver.add_module_global(*id, val);
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("fails to evaluate this expression `{:?}` as a constant or TypeVar at {}",
|
||||
targets[0].node,
|
||||
targets[0].location,
|
||||
))
|
||||
}
|
||||
}
|
||||
ExprKind::List { elts, .. }
|
||||
| ExprKind::Tuple { elts, .. } => {
|
||||
handle_assignment_pattern(elts, value, resolver, internal_resolver)?;
|
||||
handle_assignment_pattern(
|
||||
elts,
|
||||
value,
|
||||
resolver,
|
||||
internal_resolver,
|
||||
def_list,
|
||||
unifier,
|
||||
primitives
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
_ => unreachable!("cannot be assigned")
|
||||
_ => Err(format!("assignment to {:?} is not supported at {}", targets[0], targets[0].location))
|
||||
}
|
||||
} else {
|
||||
match &value.node {
|
||||
|
@ -105,7 +169,10 @@ fn main() {
|
|||
std::slice::from_ref(tar),
|
||||
val,
|
||||
resolver,
|
||||
internal_resolver
|
||||
internal_resolver,
|
||||
def_list,
|
||||
unifier,
|
||||
primitives
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
|
@ -115,7 +182,19 @@ fn main() {
|
|||
}
|
||||
}
|
||||
}
|
||||
if let Err(err) = handle_assignment_pattern(targets, value, resolver.as_ref(), internal_resolver.as_ref()) {
|
||||
|
||||
let def_list = composer.extract_def_list();
|
||||
let unifier = &mut composer.unifier;
|
||||
let primitives = &composer.primitives_ty;
|
||||
if let Err(err) = handle_assignment_pattern(
|
||||
targets,
|
||||
value,
|
||||
resolver.as_ref(),
|
||||
internal_resolver.as_ref(),
|
||||
&def_list,
|
||||
unifier,
|
||||
primitives,
|
||||
) {
|
||||
eprintln!("{}", err);
|
||||
return;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue