Compare commits
3 Commits
master
...
misc/updat
Author | SHA1 | Date | |
---|---|---|---|
ad94f59a9d | |||
246d2f6d05 | |||
19d183ed84 |
@ -1,7 +1,7 @@
|
||||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
|
||||
default_stages: [pre-commit]
|
||||
default_stages: [commit]
|
||||
|
||||
repos:
|
||||
- repo: local
|
||||
|
544
Cargo.lock
generated
544
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
@ -4,7 +4,6 @@ members = [
|
||||
"nac3ast",
|
||||
"nac3parser",
|
||||
"nac3core",
|
||||
"nac3core/nac3core_derive",
|
||||
"nac3standalone",
|
||||
"nac3artiq",
|
||||
"runkernel",
|
||||
|
6
flake.lock
generated
6
flake.lock
generated
@ -2,11 +2,11 @@
|
||||
"nodes": {
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1736798957,
|
||||
"narHash": "sha256-qwpCtZhSsSNQtK4xYGzMiyEDhkNzOCz/Vfu4oL2ETsQ=",
|
||||
"lastModified": 1725432240,
|
||||
"narHash": "sha256-+yj+xgsfZaErbfYM3T+QvEE2hU7UuE+Jf0fJCJ8uPS0=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "9abb87b552b7f55ac8916b6fc9e5cb486656a2f3",
|
||||
"rev": "ad416d066ca1222956472ab7d0555a6946746a80",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
10
flake.nix
10
flake.nix
@ -107,18 +107,18 @@
|
||||
(pkgs.fetchFromGitHub {
|
||||
owner = "m-labs";
|
||||
repo = "sipyco";
|
||||
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
|
||||
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
|
||||
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e";
|
||||
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc=";
|
||||
})
|
||||
(pkgs.fetchFromGitHub {
|
||||
owner = "m-labs";
|
||||
repo = "artiq";
|
||||
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
|
||||
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
|
||||
rev = "923ca3377d42c815f979983134ec549dc39d3ca0";
|
||||
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw=";
|
||||
})
|
||||
];
|
||||
buildInputs = [
|
||||
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
|
||||
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ]))
|
||||
pkgs.llvmPackages_14.llvm.out
|
||||
];
|
||||
phases = [ "buildPhase" "installPhase" ];
|
||||
|
@ -10,9 +10,9 @@ crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.13"
|
||||
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
|
||||
pyo3 = { version = "0.22", features = ["extension-module", "py-clone"] }
|
||||
parking_lot = "0.12"
|
||||
tempfile = "3.13"
|
||||
tempfile = "3.10"
|
||||
nac3core = { path = "../nac3core" }
|
||||
nac3ld = { path = "../nac3ld" }
|
||||
|
||||
|
66
nac3artiq/demo/embedding_map.py
Normal file
66
nac3artiq/demo/embedding_map.py
Normal file
@ -0,0 +1,66 @@
|
||||
class EmbeddingMap:
|
||||
def __init__(self):
|
||||
self.object_inverse_map = {}
|
||||
self.object_map = {}
|
||||
self.string_map = {}
|
||||
self.string_reverse_map = {}
|
||||
self.function_map = {}
|
||||
self.attributes_writeback = []
|
||||
|
||||
# preallocate exception names
|
||||
self.preallocate_runtime_exception_names(["RuntimeError",
|
||||
"RTIOUnderflow",
|
||||
"RTIOOverflow",
|
||||
"RTIODestinationUnreachable",
|
||||
"DMAError",
|
||||
"I2CError",
|
||||
"CacheError",
|
||||
"SPIError",
|
||||
"0:ZeroDivisionError",
|
||||
"0:IndexError",
|
||||
"0:ValueError",
|
||||
"0:RuntimeError",
|
||||
"0:AssertionError",
|
||||
"0:KeyError",
|
||||
"0:NotImplementedError",
|
||||
"0:OverflowError",
|
||||
"0:IOError",
|
||||
"0:UnwrapNoneError"])
|
||||
|
||||
def preallocate_runtime_exception_names(self, names):
|
||||
for i, name in enumerate(names):
|
||||
if ":" not in name:
|
||||
name = "0:artiq.coredevice.exceptions." + name
|
||||
exn_id = self.store_str(name)
|
||||
assert exn_id == i
|
||||
|
||||
def store_function(self, key, fun):
|
||||
self.function_map[key] = fun
|
||||
return key
|
||||
|
||||
def store_object(self, obj):
|
||||
obj_id = id(obj)
|
||||
if obj_id in self.object_inverse_map:
|
||||
return self.object_inverse_map[obj_id]
|
||||
key = len(self.object_map) + 1
|
||||
self.object_map[key] = obj
|
||||
self.object_inverse_map[obj_id] = key
|
||||
return key
|
||||
|
||||
def store_str(self, s):
|
||||
if s in self.string_reverse_map:
|
||||
return self.string_reverse_map[s]
|
||||
key = len(self.string_map)
|
||||
self.string_map[key] = s
|
||||
self.string_reverse_map[s] = key
|
||||
return key
|
||||
|
||||
def retrieve_function(self, key):
|
||||
return self.function_map[key]
|
||||
|
||||
def retrieve_object(self, key):
|
||||
return self.object_map[key]
|
||||
|
||||
def retrieve_str(self, key):
|
||||
return self.string_map[key]
|
||||
|
@ -6,6 +6,7 @@ from typing import Generic, TypeVar
|
||||
from math import floor, ceil
|
||||
|
||||
import nac3artiq
|
||||
from embedding_map import EmbeddingMap
|
||||
|
||||
|
||||
__all__ = [
|
||||
@ -111,15 +112,10 @@ def extern(function):
|
||||
register_function(function)
|
||||
return function
|
||||
|
||||
|
||||
def rpc(arg=None, flags={}):
|
||||
"""Decorates a function or method to be executed on the host interpreter."""
|
||||
if arg is None:
|
||||
def inner_decorator(function):
|
||||
return rpc(function, flags)
|
||||
return inner_decorator
|
||||
register_function(arg)
|
||||
return arg
|
||||
def rpc(function):
|
||||
"""Decorates a function declaration defined by the core device runtime."""
|
||||
register_function(function)
|
||||
return function
|
||||
|
||||
def kernel(function_or_method):
|
||||
"""Decorates a function or method to be executed on the core device."""
|
||||
@ -192,46 +188,6 @@ def print_int64(x: int64):
|
||||
raise NotImplementedError("syscall not simulated")
|
||||
|
||||
|
||||
class EmbeddingMap:
|
||||
def __init__(self):
|
||||
self.object_inverse_map = {}
|
||||
self.object_map = {}
|
||||
self.string_map = {}
|
||||
self.string_reverse_map = {}
|
||||
self.function_map = {}
|
||||
self.attributes_writeback = []
|
||||
|
||||
def store_function(self, key, fun):
|
||||
self.function_map[key] = fun
|
||||
return key
|
||||
|
||||
def store_object(self, obj):
|
||||
obj_id = id(obj)
|
||||
if obj_id in self.object_inverse_map:
|
||||
return self.object_inverse_map[obj_id]
|
||||
key = len(self.object_map) + 1
|
||||
self.object_map[key] = obj
|
||||
self.object_inverse_map[obj_id] = key
|
||||
return key
|
||||
|
||||
def store_str(self, s):
|
||||
if s in self.string_reverse_map:
|
||||
return self.string_reverse_map[s]
|
||||
key = len(self.string_map)
|
||||
self.string_map[key] = s
|
||||
self.string_reverse_map[s] = key
|
||||
return key
|
||||
|
||||
def retrieve_function(self, key):
|
||||
return self.function_map[key]
|
||||
|
||||
def retrieve_object(self, key):
|
||||
return self.object_map[key]
|
||||
|
||||
def retrieve_str(self, key):
|
||||
return self.string_map[key]
|
||||
|
||||
|
||||
@nac3
|
||||
class Core:
|
||||
ref_period: KernelInvariant[float]
|
||||
@ -245,7 +201,7 @@ class Core:
|
||||
embedding = EmbeddingMap()
|
||||
|
||||
if allow_registration:
|
||||
compiler.analyze(registered_functions, registered_classes, set())
|
||||
compiler.analyze(registered_functions, registered_classes)
|
||||
allow_registration = False
|
||||
|
||||
if hasattr(method, "__self__"):
|
||||
|
@ -1,26 +0,0 @@
|
||||
from min_artiq import *
|
||||
from numpy import int32
|
||||
|
||||
# Global Variable Definition
|
||||
X: Kernel[int32] = 1
|
||||
|
||||
# TopLevelFunction Defintion
|
||||
@kernel
|
||||
def display_X():
|
||||
print_int32(X)
|
||||
|
||||
# TopLevel Class Definition
|
||||
@nac3
|
||||
class A:
|
||||
@kernel
|
||||
def __init__(self):
|
||||
self.set_x(1)
|
||||
|
||||
@kernel
|
||||
def set_x(self, new_val: int32):
|
||||
global X
|
||||
X = new_val
|
||||
|
||||
@kernel
|
||||
def get_X(self) -> int32:
|
||||
return X
|
@ -1,26 +0,0 @@
|
||||
from min_artiq import *
|
||||
import module as module_definition
|
||||
|
||||
@nac3
|
||||
class TestModuleSupport:
|
||||
core: KernelInvariant[Core]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
# Accessing classes
|
||||
obj = module_definition.A()
|
||||
obj.get_X()
|
||||
obj.set_x(2)
|
||||
|
||||
# Calling functions
|
||||
module_definition.display_X()
|
||||
|
||||
# Updating global variables
|
||||
module_definition.X = 9
|
||||
module_definition.display_X()
|
||||
|
||||
if __name__ == "__main__":
|
||||
TestModuleSupport().run()
|
@ -1,29 +0,0 @@
|
||||
from min_artiq import *
|
||||
import numpy
|
||||
from numpy import int32
|
||||
|
||||
|
||||
@nac3
|
||||
class NumpyBoolDecay:
|
||||
core: KernelInvariant[Core]
|
||||
np_true: KernelInvariant[bool]
|
||||
np_false: KernelInvariant[bool]
|
||||
np_int: KernelInvariant[int32]
|
||||
np_float: KernelInvariant[float]
|
||||
np_str: KernelInvariant[str]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
self.np_true = numpy.True_
|
||||
self.np_false = numpy.False_
|
||||
self.np_int = numpy.int32(0)
|
||||
self.np_float = numpy.float64(0.0)
|
||||
self.np_str = numpy.str_("")
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
NumpyBoolDecay().run()
|
24
nac3artiq/demo/string_attribute_issue337.py
Normal file
24
nac3artiq/demo/string_attribute_issue337.py
Normal file
@ -0,0 +1,24 @@
|
||||
from min_artiq import *
|
||||
from numpy import int32
|
||||
|
||||
|
||||
@nac3
|
||||
class Demo:
|
||||
core: KernelInvariant[Core]
|
||||
attr1: KernelInvariant[str]
|
||||
attr2: KernelInvariant[int32]
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
self.attr2 = 32
|
||||
self.attr1 = "SAMPLE"
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
print_int32(self.attr2)
|
||||
self.attr1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
Demo().run()
|
40
nac3artiq/demo/support_class_attr_issue102.py
Normal file
40
nac3artiq/demo/support_class_attr_issue102.py
Normal file
@ -0,0 +1,40 @@
|
||||
from min_artiq import *
|
||||
from numpy import int32
|
||||
|
||||
|
||||
@nac3
|
||||
class Demo:
|
||||
attr1: KernelInvariant[int32] = 2
|
||||
attr2: int32 = 4
|
||||
attr3: Kernel[int32]
|
||||
|
||||
@kernel
|
||||
def __init__(self):
|
||||
self.attr3 = 8
|
||||
|
||||
|
||||
@nac3
|
||||
class NAC3Devices:
|
||||
core: KernelInvariant[Core]
|
||||
attr4: KernelInvariant[int32] = 16
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
Demo.attr1 # Supported
|
||||
# Demo.attr2 # Field not accessible on Kernel
|
||||
# Demo.attr3 # Only attributes can be accessed in this way
|
||||
# Demo.attr1 = 2 # Attributes are immutable
|
||||
|
||||
self.attr4 # Attributes can be accessed within class
|
||||
|
||||
obj = Demo()
|
||||
obj.attr1 # Attributes can be accessed by class objects
|
||||
|
||||
NAC3Devices.attr4 # Attributes accessible for classes without __init__
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
NAC3Devices().run()
|
@ -1,3 +1,39 @@
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
|
||||
NDArrayValue, ProxyType, ProxyValue, RangeValue, UntypedArrayLikeAccessor,
|
||||
},
|
||||
expr::{destructure_range, gen_call},
|
||||
irrt::call_ndarray_calc_size,
|
||||
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
|
||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
|
||||
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
|
||||
};
|
||||
|
||||
use nac3core::nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
|
||||
|
||||
use nac3core::inkwell::{
|
||||
context::Context,
|
||||
module::Linkage,
|
||||
types::{BasicType, IntType},
|
||||
values::{BasicValueEnum, PointerValue, StructValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
|
||||
use pyo3::{
|
||||
prelude::*,
|
||||
types::{PyDict, PyList},
|
||||
};
|
||||
|
||||
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
|
||||
|
||||
use itertools::Itertools;
|
||||
use nac3core::inkwell::values::IntValue;
|
||||
use std::{
|
||||
collections::{hash_map::DefaultHasher, HashMap},
|
||||
hash::{Hash, Hasher},
|
||||
@ -6,44 +42,6 @@ use std::{
|
||||
sync::Arc,
|
||||
};
|
||||
|
||||
use itertools::Itertools;
|
||||
use pyo3::{
|
||||
types::{PyDict, PyList},
|
||||
PyObject, PyResult, Python,
|
||||
};
|
||||
|
||||
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
expr::{destructure_range, gen_call},
|
||||
llvm_intrinsics::{call_int_smax, call_memcpy, call_stackrestore, call_stacksave},
|
||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||
type_aligned_alloca,
|
||||
types::ndarray::NDArrayType,
|
||||
values::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue, RangeValue,
|
||||
UntypedArrayLikeAccessor,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
inkwell::{
|
||||
context::Context,
|
||||
module::Linkage,
|
||||
targets::TargetMachine,
|
||||
types::{BasicType, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
},
|
||||
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{
|
||||
helper::{extract_ndims, PrimDef},
|
||||
numpy::unpack_ndarray_var_tys,
|
||||
DefinitionId, GenCall,
|
||||
},
|
||||
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
|
||||
};
|
||||
|
||||
/// The parallelism mode within a block.
|
||||
#[derive(Copy, Clone, Eq, PartialEq)]
|
||||
enum ParallelMode {
|
||||
@ -88,13 +86,13 @@ pub struct ArtiqCodeGenerator<'a> {
|
||||
impl<'a> ArtiqCodeGenerator<'a> {
|
||||
pub fn new(
|
||||
name: String,
|
||||
size_t: IntType<'_>,
|
||||
size_t: u32,
|
||||
timeline: &'a (dyn TimeFns + Sync),
|
||||
) -> ArtiqCodeGenerator<'a> {
|
||||
assert!(matches!(size_t.get_bit_width(), 32 | 64));
|
||||
assert!(size_t == 32 || size_t == 64);
|
||||
ArtiqCodeGenerator {
|
||||
name,
|
||||
size_t: size_t.get_bit_width(),
|
||||
size_t,
|
||||
name_counter: 0,
|
||||
start: None,
|
||||
end: None,
|
||||
@ -103,17 +101,6 @@ impl<'a> ArtiqCodeGenerator<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn with_target_machine(
|
||||
name: String,
|
||||
ctx: &Context,
|
||||
target_machine: &TargetMachine,
|
||||
timeline: &'a (dyn TimeFns + Sync),
|
||||
) -> ArtiqCodeGenerator<'a> {
|
||||
let llvm_usize = ctx.ptr_sized_int_type(&target_machine.get_target_data(), None);
|
||||
Self::new(name, llvm_usize, timeline)
|
||||
}
|
||||
|
||||
/// If the generator is currently in a direct-`parallel` block context, emits IR that resets the
|
||||
/// position of the timeline to the initial timeline position before entering the `parallel`
|
||||
/// block.
|
||||
@ -174,7 +161,7 @@ impl<'a> ArtiqCodeGenerator<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl CodeGenerator for ArtiqCodeGenerator<'_> {
|
||||
impl<'b> CodeGenerator for ArtiqCodeGenerator<'b> {
|
||||
fn get_name(&self) -> &str {
|
||||
&self.name
|
||||
}
|
||||
@ -471,51 +458,54 @@ fn format_rpc_arg<'ctx>(
|
||||
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
||||
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
let dtype = ctx.get_llvm_type(generator, elem_ty);
|
||||
let ndarray =
|
||||
NDArrayType::new(ctx, dtype, ndims).map_value(arg.into_pointer_value(), None);
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
|
||||
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
|
||||
|
||||
let ndims = llvm_usize.const_int(ndims, false);
|
||||
let llvm_usize_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let llvm_pdata_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(
|
||||
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
|
||||
llvm_usize,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
|
||||
// the reader.
|
||||
// Turning it into a ContiguousNDArray to get a `data` that is contiguous.
|
||||
let carray = ndarray.make_contiguous_ndarray(generator, ctx);
|
||||
let dims_buf_sz =
|
||||
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
||||
|
||||
let sizeof_usize = llvm_usize.size_of();
|
||||
let sizeof_usize =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
|
||||
let buffer_size =
|
||||
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
|
||||
|
||||
let sizeof_pdata = dtype.ptr_type(AddressSpace::default()).size_of();
|
||||
let sizeof_pdata =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_pdata, llvm_usize, "").unwrap();
|
||||
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
|
||||
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
|
||||
|
||||
let sizeof_buf_shape = ctx.builder.build_int_mul(sizeof_usize, ndims, "").unwrap();
|
||||
let sizeof_buf = ctx.builder.build_int_add(sizeof_buf_shape, sizeof_pdata, "").unwrap();
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
buffer.base_ptr(ctx, generator),
|
||||
llvm_arg.ptr_to_data(ctx),
|
||||
llvm_pdata_sizeof,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
// buf = { data: void*, shape: [size_t; ndims]; }
|
||||
let buf = ctx.builder.build_array_alloca(llvm_i8, sizeof_buf, "rpc.arg").unwrap();
|
||||
let buf = ArraySliceValue::from_ptr_val(buf, sizeof_buf, Some("rpc.arg"));
|
||||
let buf_data = buf.base_ptr(ctx, generator);
|
||||
let buf_shape =
|
||||
unsafe { buf.ptr_offset_unchecked(ctx, generator, &sizeof_pdata, None) };
|
||||
let pbuffer_dims_begin =
|
||||
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
pbuffer_dims_begin,
|
||||
llvm_arg.dim_sizes().base_ptr(ctx, generator),
|
||||
dims_buf_sz,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
// Write to `buf->data`
|
||||
let carray_data = carray.load_data(ctx);
|
||||
let carray_data = ctx.builder.build_pointer_cast(carray_data, llvm_pi8, "").unwrap();
|
||||
call_memcpy(ctx, buf_data, carray_data, sizeof_pdata, llvm_i1.const_zero());
|
||||
|
||||
// Write to `buf->shape`
|
||||
let carray_shape = ndarray.shape().base_ptr(ctx, generator);
|
||||
let carray_shape_i8 =
|
||||
ctx.builder.build_pointer_cast(carray_shape, llvm_pi8, "").unwrap();
|
||||
call_memcpy(ctx, buf_shape, carray_shape_i8, sizeof_buf_shape, llvm_i1.const_zero());
|
||||
|
||||
buf.base_ptr(ctx, generator)
|
||||
buffer.base_ptr(ctx, generator)
|
||||
}
|
||||
|
||||
_ => {
|
||||
@ -556,8 +546,6 @@ fn format_rpc_ret<'ctx>(
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
|
||||
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
|
||||
@ -578,7 +566,8 @@ fn format_rpc_ret<'ctx>(
|
||||
|
||||
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let num_0 = llvm_usize.const_zero();
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// Round `val` up to its modulo `power_of_two`
|
||||
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
@ -604,49 +593,79 @@ fn format_rpc_ret<'ctx>(
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// Setup types
|
||||
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
|
||||
|
||||
// Allocate the resulting ndarray
|
||||
// A condition after format_rpc_ret ensures this will not be popped this off.
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
let ndarray = NDArrayType::new(ctx, dtype_llvm, ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
let ndarray = llvm_ret_ty.new_value(generator, ctx, Some("rpc.result"));
|
||||
|
||||
// NOTE: Current content of `ndarray`:
|
||||
// - * `data` - **NOT YET** allocated.
|
||||
// - * `itemsize` - initialized to be size_of(dtype).
|
||||
// - * `ndims` - initialized.
|
||||
// - * `shape` - allocated; has uninitialized values.
|
||||
// - * `strides` - allocated; has uninitialized values.
|
||||
// Setup ndims
|
||||
let ndims =
|
||||
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) {
|
||||
assert_eq!(values.len(), 1);
|
||||
|
||||
let itemsize = ndarray.load_itemsize(ctx); // Same as doing a `ctx.get_llvm_type` on `dtype` and get its `size_of()`.
|
||||
u64::try_from(values[0].clone()).unwrap()
|
||||
} else {
|
||||
unreachable!();
|
||||
};
|
||||
// Set `ndarray.ndims`
|
||||
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
|
||||
// Allocate `ndarray.shape` [size_t; ndims]
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray.load_ndims(ctx));
|
||||
|
||||
/*
|
||||
ndarray now:
|
||||
- .ndims: initialized
|
||||
- .shape: allocated but uninitialized .shape
|
||||
- .data: uninitialized
|
||||
*/
|
||||
|
||||
let llvm_usize_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let llvm_pdata_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(
|
||||
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
|
||||
llvm_usize,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let llvm_elem_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
|
||||
.unwrap();
|
||||
|
||||
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
|
||||
// (4 + 4 * ndims) bytes with 8-byte alignment
|
||||
let sizeof_usize = llvm_usize.size_of();
|
||||
let sizeof_usize =
|
||||
ctx.builder.build_int_truncate_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
|
||||
|
||||
let sizeof_ptr = llvm_i8.ptr_type(AddressSpace::default()).size_of();
|
||||
let sizeof_ptr =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_ptr, llvm_usize, "").unwrap();
|
||||
|
||||
let sizeof_shape =
|
||||
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), sizeof_usize, "").unwrap();
|
||||
|
||||
// Size of the buffer for the initial `rpc_recv()`.
|
||||
let sizeof_dims =
|
||||
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
||||
let unaligned_buffer_size =
|
||||
ctx.builder.build_int_add(sizeof_ptr, sizeof_shape, "").unwrap();
|
||||
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
|
||||
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
|
||||
|
||||
let stackptr = call_stacksave(ctx, None);
|
||||
let buffer = type_aligned_alloca(
|
||||
generator,
|
||||
ctx,
|
||||
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
|
||||
let buffer = ctx
|
||||
.builder
|
||||
.build_array_alloca(
|
||||
llvm_i8_8,
|
||||
unaligned_buffer_size,
|
||||
Some("rpc.buffer"),
|
||||
);
|
||||
let buffer = ArraySliceValue::from_ptr_val(buffer, unaligned_buffer_size, None);
|
||||
ctx.builder
|
||||
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "")
|
||||
.unwrap(),
|
||||
"rpc.buffer",
|
||||
)
|
||||
.unwrap();
|
||||
let buffer = ctx
|
||||
.builder
|
||||
.build_bit_cast(buffer, llvm_pi8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
|
||||
|
||||
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
|
||||
//
|
||||
@ -654,7 +673,7 @@ fn format_rpc_ret<'ctx>(
|
||||
let ndarray_nbytes = ctx
|
||||
.build_call_or_invoke(
|
||||
rpc_recv,
|
||||
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]
|
||||
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims].
|
||||
"rpc.size.next",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
@ -662,14 +681,16 @@ fn format_rpc_ret<'ctx>(
|
||||
|
||||
// debug_assert(ndarray_nbytes > 0)
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let cmp = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::UGT, ndarray_nbytes, num_0, "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cmp,
|
||||
ctx.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::UGT,
|
||||
ndarray_nbytes,
|
||||
ndarray_nbytes.get_type().const_zero(),
|
||||
"",
|
||||
)
|
||||
.unwrap(),
|
||||
"0:AssertionError",
|
||||
"Unexpected RPC termination for ndarray - Expected data buffer next",
|
||||
[None, None, None],
|
||||
@ -678,50 +699,49 @@ fn format_rpc_ret<'ctx>(
|
||||
}
|
||||
|
||||
// Copy shape from the buffer to `ndarray.shape`.
|
||||
// We need to skip the first `sizeof(uint8_t*)` bytes to skip the `pdata` in `[pdata, shape]`.
|
||||
let pbuffer_shape =
|
||||
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &sizeof_ptr, None) };
|
||||
let pbuffer_shape =
|
||||
ctx.builder.build_pointer_cast(pbuffer_shape, llvm_pusize, "").unwrap();
|
||||
|
||||
// Copy shape from buffer to `ndarray.shape`
|
||||
ndarray.copy_shape_from_array(generator, ctx, pbuffer_shape);
|
||||
let pbuffer_dims =
|
||||
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
ndarray.dim_sizes().base_ptr(ctx, generator),
|
||||
pbuffer_dims,
|
||||
sizeof_dims,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
// Restore stack from before allocation of buffer
|
||||
call_stackrestore(ctx, stackptr);
|
||||
|
||||
// Allocate `ndarray.data`.
|
||||
// `ndarray.shape` must be initialized beforehand in this implementation
|
||||
// (for ndarray.create_data() to know how many elements to allocate)
|
||||
unsafe { ndarray.create_data(generator, ctx) }; // NOTE: the strides of `ndarray` has also been set to contiguous in `create_data`.
|
||||
let num_elements =
|
||||
call_ndarray_calc_size(generator, ctx, &ndarray.dim_sizes(), (None, None));
|
||||
|
||||
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let num_elements = ndarray.size(ctx);
|
||||
|
||||
let expected_ndarray_nbytes =
|
||||
ctx.builder.build_int_mul(num_elements, itemsize, "").unwrap();
|
||||
let cmp = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::UGE,
|
||||
expected_ndarray_nbytes,
|
||||
ndarray_nbytes,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let sizeof_data =
|
||||
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cmp,
|
||||
ctx.builder.build_int_compare(IntPredicate::UGE,
|
||||
sizeof_data,
|
||||
ndarray_nbytes,
|
||||
"",
|
||||
).unwrap(),
|
||||
"0:AssertionError",
|
||||
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
|
||||
[Some(expected_ndarray_nbytes), Some(ndarray_nbytes), None],
|
||||
[Some(sizeof_data), Some(ndarray_nbytes), None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
|
||||
|
||||
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
|
||||
let ndarray_data_i8 =
|
||||
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
|
||||
|
||||
// NOTE: Currently on `prehead_bb`
|
||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||
@ -730,7 +750,7 @@ fn format_rpc_ret<'ctx>(
|
||||
ctx.builder.position_at_end(head_bb);
|
||||
|
||||
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
|
||||
phi.add_incoming(&[(&ndarray_data, prehead_bb)]);
|
||||
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]);
|
||||
|
||||
let alloc_size = ctx
|
||||
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
|
||||
@ -745,13 +765,12 @@ fn format_rpc_ret<'ctx>(
|
||||
|
||||
ctx.builder.position_at_end(alloc_bb);
|
||||
// Align the allocation to sizeof(T)
|
||||
let alloc_size = round_up(ctx, alloc_size, itemsize);
|
||||
// TODO(Derppening): Candidate for refactor into type_aligned_alloca
|
||||
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof);
|
||||
let alloc_ptr = ctx
|
||||
.builder
|
||||
.build_array_alloca(
|
||||
dtype_llvm,
|
||||
ctx.builder.build_int_unsigned_div(alloc_size, itemsize, "").unwrap(),
|
||||
llvm_elem_ty,
|
||||
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(),
|
||||
"rpc.alloc",
|
||||
)
|
||||
.unwrap();
|
||||
@ -805,11 +824,10 @@ fn rpc_codegen_callback_fn<'ctx>(
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
is_async: bool,
|
||||
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
||||
let int8 = ctx.ctx.i8_type();
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let size_type = ctx.get_size_type();
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let ptr_type = int8.ptr_type(AddressSpace::default());
|
||||
let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false);
|
||||
|
||||
@ -914,29 +932,6 @@ fn rpc_codegen_callback_fn<'ctx>(
|
||||
}
|
||||
|
||||
// call
|
||||
if is_async {
|
||||
let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
|
||||
ctx.module.add_function(
|
||||
"rpc_send_async",
|
||||
ctx.ctx.void_type().fn_type(
|
||||
&[
|
||||
int32.into(),
|
||||
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
|
||||
ptr_type.ptr_type(AddressSpace::default()).into(),
|
||||
],
|
||||
false,
|
||||
),
|
||||
None,
|
||||
)
|
||||
});
|
||||
ctx.builder
|
||||
.build_call(
|
||||
rpc_send_async,
|
||||
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
|
||||
"rpc.send",
|
||||
)
|
||||
.unwrap();
|
||||
} else {
|
||||
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
|
||||
ctx.module.add_function(
|
||||
"rpc_send",
|
||||
@ -954,15 +949,10 @@ fn rpc_codegen_callback_fn<'ctx>(
|
||||
ctx.builder
|
||||
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
// reclaim stack space used by arguments
|
||||
call_stackrestore(ctx, stackptr);
|
||||
|
||||
if is_async {
|
||||
// async RPCs do not return any values
|
||||
Ok(None)
|
||||
} else {
|
||||
let result = format_rpc_ret(generator, ctx, fun.0.ret);
|
||||
|
||||
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
|
||||
@ -971,31 +961,24 @@ fn rpc_codegen_callback_fn<'ctx>(
|
||||
}
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn attributes_writeback<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
pub fn attributes_writeback(
|
||||
ctx: &mut CodeGenContext<'_, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
inner_resolver: &InnerResolver,
|
||||
host_attributes: &PyObject,
|
||||
return_obj: Option<(Type, ValueEnum<'ctx>)>,
|
||||
) -> Result<(), String> {
|
||||
Python::with_gil(|py| -> PyResult<Result<(), String>> {
|
||||
let host_attributes: &PyList = host_attributes.downcast(py)?;
|
||||
let host_attributes = host_attributes.downcast_bound::<PyList>(py)?;
|
||||
let top_levels = ctx.top_level.definitions.read();
|
||||
let globals = inner_resolver.global_value_ids.read();
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let zero = int32.const_zero();
|
||||
let mut values = Vec::new();
|
||||
let mut scratch_buffer = Vec::new();
|
||||
|
||||
if let Some((ty, obj)) = return_obj {
|
||||
values.push((ty, obj.to_basic_value_enum(ctx, generator, ty).unwrap()));
|
||||
}
|
||||
|
||||
for val in (*globals).values() {
|
||||
let val = val.as_ref(py);
|
||||
let val = val.bind_borrowed(py);
|
||||
let ty = inner_resolver.get_obj_type(
|
||||
py,
|
||||
val,
|
||||
@ -1033,7 +1016,7 @@ pub fn attributes_writeback<'ctx>(
|
||||
}
|
||||
}
|
||||
if !attributes.is_empty() {
|
||||
let pydict = PyDict::new(py);
|
||||
let pydict = PyDict::new_bound(py);
|
||||
pydict.set_item("obj", val)?;
|
||||
pydict.set_item("fields", attributes)?;
|
||||
host_attributes.append(pydict)?;
|
||||
@ -1043,7 +1026,7 @@ pub fn attributes_writeback<'ctx>(
|
||||
let elem_ty = iter_type_vars(params).next().unwrap().ty;
|
||||
|
||||
if gen_rpc_tag(ctx, elem_ty, &mut scratch_buffer).is_ok() {
|
||||
let pydict = PyDict::new(py);
|
||||
let pydict = PyDict::new_bound(py);
|
||||
pydict.set_item("obj", val)?;
|
||||
host_attributes.append(pydict)?;
|
||||
values.push((
|
||||
@ -1052,34 +1035,6 @@ pub fn attributes_writeback<'ctx>(
|
||||
));
|
||||
}
|
||||
}
|
||||
TypeEnum::TModule { attributes, .. } => {
|
||||
let mut fields = Vec::new();
|
||||
let obj = inner_resolver.get_obj_value(py, val, ctx, generator, ty)?.unwrap();
|
||||
|
||||
for (name, (field_ty, is_method)) in attributes {
|
||||
if *is_method {
|
||||
continue;
|
||||
}
|
||||
if gen_rpc_tag(ctx, *field_ty, &mut scratch_buffer).is_ok() {
|
||||
fields.push(name.to_string());
|
||||
let (index, _) = ctx.get_attr_index(ty, *name);
|
||||
values.push((
|
||||
*field_ty,
|
||||
ctx.build_gep_and_load(
|
||||
obj.into_pointer_value(),
|
||||
&[zero, int32.const_int(index as u64, false)],
|
||||
None,
|
||||
),
|
||||
));
|
||||
}
|
||||
}
|
||||
if !fields.is_empty() {
|
||||
let pydict = PyDict::new(py);
|
||||
pydict.set_item("obj", val)?;
|
||||
pydict.set_item("fields", fields)?;
|
||||
host_attributes.append(pydict)?;
|
||||
}
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
@ -1100,7 +1055,7 @@ pub fn attributes_writeback<'ctx>(
|
||||
let args: Vec<_> =
|
||||
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
|
||||
if let Err(e) =
|
||||
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, true)
|
||||
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator)
|
||||
{
|
||||
return Ok(Err(e));
|
||||
}
|
||||
@ -1110,9 +1065,9 @@ pub fn attributes_writeback<'ctx>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
|
||||
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
|
||||
rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
|
||||
pub fn rpc_codegen_callback() -> Arc<GenCall> {
|
||||
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| {
|
||||
rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
|
||||
})))
|
||||
}
|
||||
|
||||
@ -1195,7 +1150,7 @@ fn polymorphic_print<'ctx>(
|
||||
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_i64 = ctx.ctx.i64_type();
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let suffix = suffix.unwrap_or_default();
|
||||
|
||||
@ -1326,8 +1281,7 @@ fn polymorphic_print<'ctx>(
|
||||
fmt.push('[');
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val =
|
||||
ListValue::from_pointer_value(value.into_pointer_value(), llvm_usize, None);
|
||||
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
||||
let len = val.load_size(ctx, None);
|
||||
let last =
|
||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||
@ -1378,50 +1332,56 @@ fn polymorphic_print<'ctx>(
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
|
||||
fmt.push_str("array([");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ty)
|
||||
.map_value(value.into_pointer_value(), None);
|
||||
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
||||
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
|
||||
let last =
|
||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||
|
||||
let num_0 = llvm_usize.const_zero();
|
||||
|
||||
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
|
||||
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||
let i = hdl.get_index(ctx);
|
||||
let scalar = hdl.get_scalar(ctx);
|
||||
|
||||
// if (i != 0) puts(", ");
|
||||
gen_if_callback(
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
let not_first = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, i, num_0, "")
|
||||
.unwrap();
|
||||
Ok(not_first)
|
||||
},
|
||||
|generator, ctx| {
|
||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||
Ok(())
|
||||
},
|
||||
|_, _| Ok(()),
|
||||
)?;
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(len, false),
|
||||
|generator, ctx, _, i| {
|
||||
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
|
||||
|
||||
// Print element
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[(dtype, scalar.into())],
|
||||
&[(elem_ty, elem.into())],
|
||||
"",
|
||||
None,
|
||||
true,
|
||||
as_rtio,
|
||||
)?;
|
||||
|
||||
gen_if_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, i, last, "")
|
||||
.unwrap())
|
||||
},
|
||||
|generator, ctx| {
|
||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||
|
||||
Ok(())
|
||||
})?;
|
||||
},
|
||||
|_, _| Ok(()),
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
|
||||
fmt.push_str(")]");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
@ -1431,7 +1391,7 @@ fn polymorphic_print<'ctx>(
|
||||
fmt.push_str("range(");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val = RangeValue::from_pointer_value(value.into_pointer_value(), None);
|
||||
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
|
||||
|
||||
let (start, stop, step) = destructure_range(ctx, val);
|
||||
|
||||
@ -1545,7 +1505,7 @@ pub fn call_rtio_log_impl<'ctx>(
|
||||
/// Generates a call to `core_log`.
|
||||
pub fn gen_core_log<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: Option<&(Type, ValueEnum<'ctx>)>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
@ -1562,7 +1522,7 @@ pub fn gen_core_log<'ctx>(
|
||||
/// Generates a call to `rtio_log`.
|
||||
pub fn gen_rtio_log<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: Option<&(Type, ValueEnum<'ctx>)>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,32 +1,17 @@
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
sync::{
|
||||
atomic::{AtomicBool, Ordering::Relaxed},
|
||||
Arc,
|
||||
},
|
||||
};
|
||||
|
||||
use crate::PrimitivePythonId;
|
||||
use itertools::Itertools;
|
||||
use parking_lot::RwLock;
|
||||
use pyo3::{
|
||||
types::{PyDict, PyTuple},
|
||||
PyAny, PyErr, PyObject, PyResult, Python,
|
||||
};
|
||||
|
||||
use super::PrimitivePythonId;
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
types::{ndarray::NDArrayType, ProxyType},
|
||||
values::ndarray::make_contiguous_strides,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
inkwell::{
|
||||
use nac3core::inkwell::{
|
||||
module::Linkage,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::{BasicValue, BasicValueEnum},
|
||||
values::BasicValueEnum,
|
||||
AddressSpace,
|
||||
};
|
||||
use nac3core::nac3parser::ast::{self, StrRef};
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
classes::{NDArrayType, ProxyType},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
nac3parser::ast::{self, StrRef},
|
||||
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
||||
toplevel::{
|
||||
helper::PrimDef,
|
||||
@ -38,6 +23,18 @@ use nac3core::{
|
||||
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
|
||||
},
|
||||
};
|
||||
use parking_lot::RwLock;
|
||||
use pyo3::{
|
||||
prelude::*,
|
||||
types::{PyDict, PyTuple},
|
||||
};
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
sync::{
|
||||
atomic::{AtomicBool, Ordering::Relaxed},
|
||||
Arc,
|
||||
},
|
||||
};
|
||||
|
||||
pub enum PrimitiveValue {
|
||||
I32(i32),
|
||||
@ -176,7 +173,7 @@ impl StaticValue for PythonValue {
|
||||
|
||||
Python::with_gil(|py| -> PyResult<BasicValueEnum<'ctx>> {
|
||||
self.resolver
|
||||
.get_obj_value(py, self.value.as_ref(py), ctx, generator, expected_ty)
|
||||
.get_obj_value(py, self.value.bind_borrowed(py), ctx, generator, expected_ty)
|
||||
.map(Option::unwrap)
|
||||
})
|
||||
.map_err(|e| e.to_string())
|
||||
@ -245,10 +242,10 @@ impl StaticValue for PythonValue {
|
||||
let ty = helper.type_fn.call1(py, (&self.value,))?;
|
||||
let ty_id: u64 = helper.id_fn.call1(py, (ty,))?.extract(py)?;
|
||||
assert_eq!(ty_id, self.resolver.primitive_ids.tuple);
|
||||
let tup: &PyTuple = self.value.extract(py)?;
|
||||
let tup = self.value.downcast_bound::<PyTuple>(py)?;
|
||||
let elem = tup.get_item(index as usize)?;
|
||||
let id = self.resolver.helper.id_fn.call1(py, (elem,))?.extract(py)?;
|
||||
Ok(Some((id, elem.into())))
|
||||
let id = self.resolver.helper.id_fn.call1(py, (elem.as_borrowed(),))?.extract(py)?;
|
||||
Ok(Some((id, elem.unbind())))
|
||||
})
|
||||
.unwrap()
|
||||
.map(|(id, obj)| {
|
||||
@ -266,21 +263,26 @@ impl InnerResolver {
|
||||
fn get_list_elem_type(
|
||||
&self,
|
||||
py: Python,
|
||||
list: &PyAny,
|
||||
list: Borrowed<PyAny>,
|
||||
len: usize,
|
||||
unifier: &mut Unifier,
|
||||
defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
primitives: &PrimitiveStore,
|
||||
) -> PyResult<Result<Type, String>> {
|
||||
let mut ty = match self.get_obj_type(py, list.get_item(0)?, unifier, defs, primitives)? {
|
||||
let mut ty = match self.get_obj_type(
|
||||
py,
|
||||
list.get_item(0)?.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
)? {
|
||||
Ok(t) => t,
|
||||
Err(e) => return Ok(Err(format!("type error ({e}) at element #0 of the list"))),
|
||||
};
|
||||
for i in 1..len {
|
||||
let b = match list
|
||||
.get_item(i)
|
||||
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))??
|
||||
{
|
||||
let b = match list.get_item(i).map(|elem| {
|
||||
self.get_obj_type(py, elem.as_borrowed(), unifier, defs, primitives)
|
||||
})?? {
|
||||
Ok(t) => t,
|
||||
Err(e) => return Ok(Err(format!("type error ({e}) at element #{i} of the list"))),
|
||||
};
|
||||
@ -306,7 +308,7 @@ impl InnerResolver {
|
||||
fn get_pyty_obj_type(
|
||||
&self,
|
||||
py: Python,
|
||||
pyty: &PyAny,
|
||||
pyty: Borrowed<PyAny>,
|
||||
unifier: &mut Unifier,
|
||||
defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
primitives: &PrimitiveStore,
|
||||
@ -394,7 +396,8 @@ impl InnerResolver {
|
||||
(unifier.add_ty(ty), false)
|
||||
}))
|
||||
} else if ty_ty_id == self.primitive_ids.typevar {
|
||||
let name: &str = pyty.getattr("__name__").unwrap().extract().unwrap();
|
||||
let name = pyty.getattr("__name__").unwrap();
|
||||
let name: &str = name.extract().unwrap();
|
||||
let (constraint_types, is_const_generic) = {
|
||||
let constraints = pyty.getattr("__constraints__").unwrap();
|
||||
let mut result: Vec<Type> = vec![];
|
||||
@ -403,7 +406,8 @@ impl InnerResolver {
|
||||
let mut is_const_generic = false;
|
||||
for i in 0usize.. {
|
||||
if let Ok(constr) = constraints.get_item(i) {
|
||||
let constr_id: u64 = self.helper.id_fn.call1(py, (constr,))?.extract(py)?;
|
||||
let constr_id: u64 =
|
||||
self.helper.id_fn.call1(py, (constr.as_borrowed(),))?.extract(py)?;
|
||||
if constr_id == self.primitive_ids.const_generic_marker {
|
||||
is_const_generic = true;
|
||||
continue;
|
||||
@ -413,7 +417,7 @@ impl InnerResolver {
|
||||
result.push(unifier.get_dummy_var().ty);
|
||||
} else {
|
||||
result.push({
|
||||
match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
|
||||
match self.get_pyty_obj_type(py, constr.as_borrowed(), unifier, defs, primitives)? {
|
||||
Ok((ty, _)) => {
|
||||
if unifier.is_concrete(ty, &[]) {
|
||||
ty
|
||||
@ -464,9 +468,14 @@ impl InnerResolver {
|
||||
{
|
||||
let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?;
|
||||
let args = self.helper.args_ty_fn.call1(py, (pyty,))?;
|
||||
let args: &PyTuple = args.downcast(py)?;
|
||||
let origin_ty =
|
||||
match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? {
|
||||
let args = args.downcast_bound::<PyTuple>(py)?;
|
||||
let origin_ty = match self.get_pyty_obj_type(
|
||||
py,
|
||||
origin.bind_borrowed(py),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
)? {
|
||||
Ok((ty, false)) => ty,
|
||||
Ok((_, true)) => {
|
||||
return Ok(Err("instantiated type does not take type parameters".into()))
|
||||
@ -479,7 +488,7 @@ impl InnerResolver {
|
||||
if args.len() == 1 {
|
||||
let ty = match self.get_pyty_obj_type(
|
||||
py,
|
||||
args.get_item(0)?,
|
||||
args.get_item(0)?.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
@ -525,9 +534,15 @@ impl InnerResolver {
|
||||
// npt.NDArray[T] == np.ndarray[Any, np.dtype[T]]
|
||||
let ndarray_dtype_pyty =
|
||||
self.helper.args_ty_fn.call1(py, (args.get_item(1)?,))?;
|
||||
let dtype = ndarray_dtype_pyty.downcast::<PyTuple>(py)?.get_item(0)?;
|
||||
let dtype = ndarray_dtype_pyty.downcast_bound::<PyTuple>(py)?.get_item(0)?;
|
||||
|
||||
let ty = match self.get_pyty_obj_type(py, dtype, unifier, defs, primitives)? {
|
||||
let ty = match self.get_pyty_obj_type(
|
||||
py,
|
||||
dtype.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
)? {
|
||||
Ok(ty) => ty,
|
||||
Err(err) => return Ok(Err(err)),
|
||||
};
|
||||
@ -543,7 +558,7 @@ impl InnerResolver {
|
||||
TypeEnum::TTuple { .. } => {
|
||||
let args = match args
|
||||
.iter()
|
||||
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
|
||||
.map(|x| self.get_pyty_obj_type(py, x.as_borrowed(), unifier, defs, primitives))
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
.into_iter()
|
||||
.collect::<Result<Vec<_>, _>>() {
|
||||
@ -576,7 +591,7 @@ impl InnerResolver {
|
||||
}
|
||||
let args = match args
|
||||
.iter()
|
||||
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
|
||||
.map(|x| self.get_pyty_obj_type(py, x.as_borrowed(), unifier, defs, primitives))
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
.into_iter()
|
||||
.collect::<Result<Vec<_>, _>>() {
|
||||
@ -603,7 +618,7 @@ impl InnerResolver {
|
||||
if args.len() == 1 {
|
||||
let ty = match self.get_pyty_obj_type(
|
||||
py,
|
||||
args.get_item(0)?,
|
||||
args.get_item(0)?.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
@ -634,8 +649,7 @@ impl InnerResolver {
|
||||
false,
|
||||
)))
|
||||
} else {
|
||||
let str_fn =
|
||||
pyo3::types::PyModule::import(py, "builtins").unwrap().getattr("repr").unwrap();
|
||||
let str_fn = PyModule::import_bound(py, "builtins").unwrap().getattr("repr").unwrap();
|
||||
let str_repr: String = str_fn.call1((pyty,)).unwrap().extract().unwrap();
|
||||
Ok(Err(format!("{str_repr} is not registered with NAC3 (@nac3 decorator missing?)")))
|
||||
}
|
||||
@ -644,7 +658,7 @@ impl InnerResolver {
|
||||
pub fn get_obj_type(
|
||||
&self,
|
||||
py: Python,
|
||||
obj: &PyAny,
|
||||
obj: Borrowed<PyAny>,
|
||||
unifier: &mut Unifier,
|
||||
defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
primitives: &PrimitiveStore,
|
||||
@ -674,48 +688,6 @@ impl InnerResolver {
|
||||
})
|
||||
});
|
||||
|
||||
// check if obj is module
|
||||
if self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?
|
||||
== self.primitive_ids.module
|
||||
&& self.pyid_to_def.read().contains_key(&py_obj_id)
|
||||
{
|
||||
let def_id = self.pyid_to_def.read()[&py_obj_id];
|
||||
let def = defs[def_id.0].read();
|
||||
let TopLevelDef::Module { name: module_name, module_id, attributes, methods, .. } =
|
||||
&*def
|
||||
else {
|
||||
unreachable!("must be a module here");
|
||||
};
|
||||
// Construct the module return type
|
||||
let mut module_attributes = HashMap::new();
|
||||
for (name, _) in attributes {
|
||||
let attribute_obj = obj.getattr(name.to_string().as_str())?;
|
||||
let attribute_ty =
|
||||
self.get_obj_type(py, attribute_obj, unifier, defs, primitives)?;
|
||||
if let Ok(attribute_ty) = attribute_ty {
|
||||
module_attributes.insert(*name, (attribute_ty, false));
|
||||
} else {
|
||||
return Ok(Err(format!("Unable to resolve {module_name}.{name}")));
|
||||
}
|
||||
}
|
||||
|
||||
for name in methods.keys() {
|
||||
let method_obj = obj.getattr(name.to_string().as_str())?;
|
||||
let method_ty = self.get_obj_type(py, method_obj, unifier, defs, primitives)?;
|
||||
if let Ok(method_ty) = method_ty {
|
||||
module_attributes.insert(*name, (method_ty, true));
|
||||
} else {
|
||||
return Ok(Err(format!("Unable to resolve {module_name}.{name}")));
|
||||
}
|
||||
}
|
||||
|
||||
let module_ty =
|
||||
TypeEnum::TModule { module_id: *module_id, attributes: module_attributes };
|
||||
|
||||
let ty = unifier.add_ty(module_ty);
|
||||
return Ok(Ok(ty));
|
||||
}
|
||||
|
||||
if let Some(ty) = constructor_ty {
|
||||
self.pyid_to_type.write().insert(py_obj_id, ty);
|
||||
return Ok(Ok(ty));
|
||||
@ -733,7 +705,7 @@ impl InnerResolver {
|
||||
{
|
||||
obj
|
||||
} else {
|
||||
ty.as_ref(py)
|
||||
ty.bind_borrowed(py)
|
||||
}
|
||||
},
|
||||
unifier,
|
||||
@ -821,7 +793,8 @@ impl InnerResolver {
|
||||
Ok(Ok(extracted_ty))
|
||||
} else {
|
||||
let dtype = obj.getattr("dtype")?.getattr("type")?;
|
||||
let dtype_ty = self.get_pyty_obj_type(py, dtype, unifier, defs, primitives)?;
|
||||
let dtype_ty =
|
||||
self.get_pyty_obj_type(py, dtype.as_borrowed(), unifier, defs, primitives)?;
|
||||
match dtype_ty {
|
||||
Ok((t, _)) => match unifier.unify(ty, t) {
|
||||
Ok(()) => {
|
||||
@ -840,10 +813,12 @@ impl InnerResolver {
|
||||
}
|
||||
}
|
||||
(TypeEnum::TTuple { .. }, false) => {
|
||||
let elements: &PyTuple = obj.downcast()?;
|
||||
let elements = obj.downcast::<PyTuple>()?;
|
||||
let types: Result<Result<Vec<_>, _>, _> = elements
|
||||
.iter()
|
||||
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
|
||||
.map(|elem| {
|
||||
self.get_obj_type(py, elem.as_borrowed(), unifier, defs, primitives)
|
||||
})
|
||||
.collect();
|
||||
let types = types?;
|
||||
Ok(types.map(|types| {
|
||||
@ -879,7 +854,13 @@ impl InnerResolver {
|
||||
return Ok(Ok(unifier.subst(primitives.option, &var_map).unwrap()));
|
||||
}
|
||||
|
||||
let ty = match self.get_obj_type(py, field_data, unifier, defs, primitives)? {
|
||||
let ty = match self.get_obj_type(
|
||||
py,
|
||||
field_data.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
)? {
|
||||
Ok(t) => t,
|
||||
Err(e) => {
|
||||
return Ok(Err(format!(
|
||||
@ -914,8 +895,13 @@ impl InnerResolver {
|
||||
Ok(d) => d,
|
||||
Err(e) => return Ok(Err(format!("{e}"))),
|
||||
};
|
||||
let ty =
|
||||
match self.get_obj_type(py, field_data, unifier, defs, primitives)? {
|
||||
let ty = match self.get_obj_type(
|
||||
py,
|
||||
field_data.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
)? {
|
||||
Ok(t) => t,
|
||||
Err(e) => {
|
||||
return Ok(Err(format!(
|
||||
@ -954,35 +940,32 @@ impl InnerResolver {
|
||||
// check integer bounds
|
||||
if unifier.unioned(extracted_ty, primitives.int32) {
|
||||
obj.extract::<i32>().map_or_else(
|
||||
|_| Ok(Err(format!("{obj} is not in the range of int32"))),
|
||||
|_| Ok(Err(format!("{} is not in the range of int32", obj.as_unbound()))),
|
||||
|_| Ok(Ok(extracted_ty)),
|
||||
)
|
||||
} else if unifier.unioned(extracted_ty, primitives.int64) {
|
||||
obj.extract::<i64>().map_or_else(
|
||||
|_| Ok(Err(format!("{obj} is not in the range of int64"))),
|
||||
|_| Ok(Err(format!("{} is not in the range of int64", obj.as_unbound()))),
|
||||
|_| Ok(Ok(extracted_ty)),
|
||||
)
|
||||
} else if unifier.unioned(extracted_ty, primitives.uint32) {
|
||||
obj.extract::<u32>().map_or_else(
|
||||
|_| Ok(Err(format!("{obj} is not in the range of uint32"))),
|
||||
|_| Ok(Err(format!("{} is not in the range of uint32", obj.as_unbound()))),
|
||||
|_| Ok(Ok(extracted_ty)),
|
||||
)
|
||||
} else if unifier.unioned(extracted_ty, primitives.uint64) {
|
||||
obj.extract::<u64>().map_or_else(
|
||||
|_| Ok(Err(format!("{obj} is not in the range of uint64"))),
|
||||
|_| Ok(Err(format!("{} is not in the range of uint64", obj.as_unbound()))),
|
||||
|_| Ok(Ok(extracted_ty)),
|
||||
)
|
||||
} else if unifier.unioned(extracted_ty, primitives.bool) {
|
||||
if obj.extract::<bool>().is_ok()
|
||||
|| obj.call_method("__bool__", (), None)?.extract::<bool>().is_ok()
|
||||
{
|
||||
Ok(Ok(extracted_ty))
|
||||
} else {
|
||||
Ok(Err(format!("{obj} is not in the range of bool")))
|
||||
}
|
||||
obj.extract::<bool>().map_or_else(
|
||||
|_| Ok(Err(format!("{} is not in the range of bool", obj.as_unbound()))),
|
||||
|_| Ok(Ok(extracted_ty)),
|
||||
)
|
||||
} else if unifier.unioned(extracted_ty, primitives.float) {
|
||||
obj.extract::<f64>().map_or_else(
|
||||
|_| Ok(Err(format!("{obj} is not in the range of float64"))),
|
||||
|_| Ok(Err(format!("{} is not in the range of float64", obj.as_unbound()))),
|
||||
|_| Ok(Ok(extracted_ty)),
|
||||
)
|
||||
} else {
|
||||
@ -995,7 +978,7 @@ impl InnerResolver {
|
||||
pub fn get_obj_value<'ctx>(
|
||||
&self,
|
||||
py: Python,
|
||||
obj: &PyAny,
|
||||
obj: Borrowed<PyAny>,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
expected_ty: Type,
|
||||
@ -1019,14 +1002,10 @@ impl InnerResolver {
|
||||
let val: u64 = obj.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val));
|
||||
Ok(Some(ctx.ctx.i64_type().const_int(val, false).into()))
|
||||
} else if ty_id == self.primitive_ids.bool {
|
||||
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
|
||||
let val: bool = obj.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
|
||||
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
|
||||
} else if ty_id == self.primitive_ids.np_bool_ {
|
||||
let val: bool = obj.call_method("__bool__", (), None)?.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
|
||||
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
|
||||
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
|
||||
let val: String = obj.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
|
||||
@ -1049,7 +1028,7 @@ impl InnerResolver {
|
||||
}
|
||||
_ => unreachable!("must be list"),
|
||||
};
|
||||
let size_t = ctx.get_size_type();
|
||||
let size_t = generator.get_size_type(ctx.ctx);
|
||||
let ty = if len == 0
|
||||
&& matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. })
|
||||
{
|
||||
@ -1069,15 +1048,19 @@ impl InnerResolver {
|
||||
});
|
||||
return Ok(Some(global.as_pointer_value().into()));
|
||||
}
|
||||
self.global_value_ids.write().insert(id, obj.into());
|
||||
self.global_value_ids.write().insert(id, obj.as_unbound().clone());
|
||||
}
|
||||
|
||||
let arr: Result<Option<Vec<_>>, _> = (0..len)
|
||||
.map(|i| {
|
||||
obj.get_item(i).and_then(|elem| {
|
||||
self.get_obj_value(py, elem, ctx, generator, elem_ty).map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||
})
|
||||
self.get_obj_value(py, elem.as_borrowed(), ctx, generator, elem_ty).map_err(
|
||||
|e| {
|
||||
super::CompileError::new_err(format!(
|
||||
"Error getting element {i}: {e}"
|
||||
))
|
||||
},
|
||||
)
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
@ -1134,66 +1117,69 @@ impl InnerResolver {
|
||||
} else {
|
||||
unreachable!("must be ndarray")
|
||||
};
|
||||
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||
let (ndarray_dtype, ndarray_ndims) =
|
||||
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty);
|
||||
let dtype = llvm_ndarray.element_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
|
||||
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
|
||||
|
||||
{
|
||||
if self.global_value_ids.read().contains_key(&id) {
|
||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||
ctx.module.add_global(
|
||||
llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
)
|
||||
});
|
||||
return Ok(Some(global.as_pointer_value().into()));
|
||||
}
|
||||
self.global_value_ids.write().insert(id, obj.into());
|
||||
self.global_value_ids.write().insert(id, obj.as_unbound().clone());
|
||||
}
|
||||
|
||||
let ndims = llvm_ndarray.ndims();
|
||||
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndarray_ndims)
|
||||
else {
|
||||
unreachable!("Expected Literal for ndarray_ndims")
|
||||
};
|
||||
|
||||
let ndarray_ndims = if values.len() == 1 {
|
||||
values[0].clone()
|
||||
} else {
|
||||
todo!("Unpacking literal of more than one element unimplemented")
|
||||
};
|
||||
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
|
||||
unreachable!("Expected u64 value for ndarray_ndims")
|
||||
};
|
||||
|
||||
// Obtain the shape of the ndarray
|
||||
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
||||
assert_eq!(shape_tuple.len(), ndims as usize);
|
||||
|
||||
// The Rust type inferencer cannot figure this out
|
||||
let shape_values = shape_tuple
|
||||
let shape_tuple = obj.getattr("shape")?;
|
||||
let shape_tuple = shape_tuple.downcast::<PyTuple>()?;
|
||||
assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
|
||||
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, elem)| {
|
||||
let value = self
|
||||
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
|
||||
self.get_obj_value(
|
||||
py,
|
||||
elem.as_borrowed(),
|
||||
ctx,
|
||||
generator,
|
||||
ctx.primitives.usize(),
|
||||
)
|
||||
.map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||
})?
|
||||
.unwrap();
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_z_extend(value.into_int_value(), llvm_usize, "")
|
||||
.unwrap();
|
||||
Ok(value)
|
||||
})
|
||||
.collect::<Result<Vec<_>, PyErr>>()?;
|
||||
|
||||
// Also use this opportunity to get the constant values of `shape_values` for calculating strides.
|
||||
let shape_u64s = shape_values
|
||||
.iter()
|
||||
.map(|dim| {
|
||||
assert!(dim.is_const());
|
||||
dim.get_zero_extended_constant().unwrap()
|
||||
})
|
||||
.collect_vec();
|
||||
let shape_values = llvm_usize.const_array(&shape_values);
|
||||
.collect();
|
||||
let shape_values = shape_values?.unwrap();
|
||||
let shape_values = llvm_usize.const_array(
|
||||
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
|
||||
);
|
||||
|
||||
// create a global for ndarray.shape and initialize it using the shape
|
||||
let shape_global = ctx.module.add_global(
|
||||
llvm_usize.array_type(ndims as u32),
|
||||
llvm_usize.array_type(ndarray_ndims as u32),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".shape"),
|
||||
);
|
||||
@ -1201,25 +1187,20 @@ impl InnerResolver {
|
||||
|
||||
// Obtain the (flattened) elements of the ndarray
|
||||
let sz: usize = obj.getattr("size")?.extract()?;
|
||||
let data: Vec<_> = (0..sz)
|
||||
let data: Result<Option<Vec<_>>, _> = (0..sz)
|
||||
.map(|i| {
|
||||
obj.getattr("flat")?.get_item(i).and_then(|elem| {
|
||||
let value = self
|
||||
.get_obj_value(py, elem, ctx, generator, ndarray_dtype)
|
||||
self.get_obj_value(py, elem.as_borrowed(), ctx, generator, ndarray_dtype)
|
||||
.map_err(|e| {
|
||||
super::CompileError::new_err(format!(
|
||||
"Error getting element {i}: {e}"
|
||||
))
|
||||
})?
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(value.get_type(), dtype);
|
||||
Ok(value)
|
||||
})
|
||||
})
|
||||
.try_collect()?;
|
||||
let data = data.into_iter();
|
||||
let data = match dtype {
|
||||
})
|
||||
.collect();
|
||||
let data = data?.unwrap().into_iter();
|
||||
let data = match ndarray_dtype_llvm_ty {
|
||||
BasicTypeEnum::ArrayType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
|
||||
}
|
||||
@ -1244,97 +1225,34 @@ impl InnerResolver {
|
||||
};
|
||||
|
||||
// create a global for ndarray.data and initialize it using the elements
|
||||
//
|
||||
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
|
||||
// We will have to cast it to an `u8*` later.
|
||||
let data_global = ctx.module.add_global(
|
||||
dtype.array_type(sz as u32),
|
||||
ndarray_dtype_llvm_ty.array_type(sz as u32),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".data"),
|
||||
);
|
||||
data_global.set_initializer(&data);
|
||||
|
||||
// Get the constant itemsize.
|
||||
//
|
||||
// NOTE: dtype.size_of() may return a non-constant, where `TargetData::get_store_size`
|
||||
// will always return a constant size.
|
||||
let itemsize = ctx
|
||||
.registry
|
||||
.llvm_options
|
||||
.create_target_machine()
|
||||
.map(|tm| tm.get_target_data().get_store_size(&dtype))
|
||||
.unwrap();
|
||||
assert_ne!(itemsize, 0);
|
||||
|
||||
// Create the strides needed for ndarray.strides
|
||||
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
|
||||
let strides =
|
||||
strides.into_iter().map(|stride| llvm_usize.const_int(stride, false)).collect_vec();
|
||||
let strides = llvm_usize.const_array(&strides);
|
||||
|
||||
// create a global for ndarray.strides and initialize it
|
||||
let strides_global = ctx.module.add_global(
|
||||
llvm_usize.array_type(ndims as u32),
|
||||
Some(AddressSpace::default()),
|
||||
&format!("${id_str}.strides"),
|
||||
);
|
||||
strides_global.set_initializer(&strides);
|
||||
|
||||
// create a global for the ndarray object and initialize it
|
||||
|
||||
// NOTE: data_global is an array of dtype, we want a `u8*`.
|
||||
let ndarray_data = data_global.as_pointer_value();
|
||||
let ndarray_data = ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
|
||||
|
||||
let ndarray_itemsize = llvm_usize.const_int(itemsize, false);
|
||||
|
||||
let ndarray_ndims = llvm_usize.const_int(ndims, false);
|
||||
|
||||
// calling as_pointer_value on shape and strides returns [i64 x ndims]*
|
||||
// convert into i64* to conform with expected layout of ndarray
|
||||
|
||||
let ndarray_shape = shape_global.as_pointer_value();
|
||||
let ndarray_shape = unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
ndarray_shape,
|
||||
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
|
||||
"",
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let ndarray_strides = strides_global.as_pointer_value();
|
||||
let ndarray_strides = unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
ndarray_strides,
|
||||
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
|
||||
"",
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let ndarray = llvm_ndarray
|
||||
.as_base_type()
|
||||
.get_element_type()
|
||||
.into_struct_type()
|
||||
.const_named_struct(&[
|
||||
ndarray_itemsize.into(),
|
||||
ndarray_ndims.into(),
|
||||
ndarray_shape.into(),
|
||||
ndarray_strides.into(),
|
||||
ndarray_data.into(),
|
||||
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
|
||||
llvm_usize.const_int(ndarray_ndims, false).into(),
|
||||
shape_global
|
||||
.as_pointer_value()
|
||||
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
|
||||
.into(),
|
||||
data_global
|
||||
.as_pointer_value()
|
||||
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
|
||||
.into(),
|
||||
]);
|
||||
|
||||
let ndarray_global = ctx.module.add_global(
|
||||
llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
|
||||
let ndarray = ctx.module.add_global(
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
);
|
||||
ndarray_global.set_initializer(&ndarray);
|
||||
ndarray.set_initializer(&value);
|
||||
|
||||
Ok(Some(ndarray_global.as_pointer_value().into()))
|
||||
Ok(Some(ndarray.as_pointer_value().into()))
|
||||
} else if ty_id == self.primitive_ids.tuple {
|
||||
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
|
||||
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
|
||||
@ -1342,14 +1260,14 @@ impl InnerResolver {
|
||||
};
|
||||
|
||||
let tup_tys = ty.iter();
|
||||
let elements: &PyTuple = obj.downcast()?;
|
||||
let elements = obj.downcast::<PyTuple>()?;
|
||||
assert_eq!(elements.len(), tup_tys.len());
|
||||
let val: Result<Option<Vec<_>>, _> = elements
|
||||
.iter()
|
||||
.enumerate()
|
||||
.zip(tup_tys)
|
||||
.map(|((i, elem), ty)| {
|
||||
self.get_obj_value(py, elem, ctx, generator, *ty).map_err(|e| {
|
||||
self.get_obj_value(py, elem.as_borrowed(), ctx, generator, *ty).map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||
})
|
||||
})
|
||||
@ -1378,7 +1296,7 @@ impl InnerResolver {
|
||||
match self
|
||||
.get_obj_value(
|
||||
py,
|
||||
obj.getattr("_nac3_option").unwrap(),
|
||||
obj.getattr("_nac3_option").unwrap().as_borrowed(),
|
||||
ctx,
|
||||
generator,
|
||||
option_val_ty,
|
||||
@ -1402,7 +1320,7 @@ impl InnerResolver {
|
||||
});
|
||||
return Ok(Some(global.as_pointer_value().into()));
|
||||
}
|
||||
self.global_value_ids.write().insert(id, obj.into());
|
||||
self.global_value_ids.write().insert(id, obj.as_unbound().clone());
|
||||
}
|
||||
let global = ctx.module.add_global(
|
||||
v.get_type(),
|
||||
@ -1415,77 +1333,6 @@ impl InnerResolver {
|
||||
None => Ok(None),
|
||||
}
|
||||
}
|
||||
} else if ty_id == self.primitive_ids.module {
|
||||
let id_str = id.to_string();
|
||||
|
||||
if let Some(global) = ctx.module.get_global(&id_str) {
|
||||
return Ok(Some(global.as_pointer_value().into()));
|
||||
}
|
||||
|
||||
let top_level_defs = ctx.top_level.definitions.read();
|
||||
let ty = self
|
||||
.get_obj_type(py, obj, &mut ctx.unifier, &top_level_defs, &ctx.primitives)?
|
||||
.unwrap();
|
||||
let ty = ctx
|
||||
.get_llvm_type(generator, ty)
|
||||
.into_pointer_type()
|
||||
.get_element_type()
|
||||
.into_struct_type();
|
||||
|
||||
{
|
||||
if self.global_value_ids.read().contains_key(&id) {
|
||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||
ctx.module.add_global(ty, Some(AddressSpace::default()), &id_str)
|
||||
});
|
||||
return Ok(Some(global.as_pointer_value().into()));
|
||||
}
|
||||
self.global_value_ids.write().insert(id, obj.into());
|
||||
}
|
||||
|
||||
let fields = {
|
||||
let definition =
|
||||
top_level_defs.get(self.pyid_to_def.read().get(&id).unwrap().0).unwrap().read();
|
||||
let TopLevelDef::Module { attributes, .. } = &*definition else { unreachable!() };
|
||||
attributes
|
||||
.iter()
|
||||
.filter_map(|f| {
|
||||
let definition = top_level_defs.get(f.1 .0).unwrap().read();
|
||||
if let TopLevelDef::Variable { ty, .. } = &*definition {
|
||||
Some((f.0, *ty))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect_vec()
|
||||
};
|
||||
|
||||
let values: Result<Option<Vec<_>>, _> = fields
|
||||
.iter()
|
||||
.map(|(name, ty)| {
|
||||
self.get_obj_value(
|
||||
py,
|
||||
obj.getattr(name.to_string().as_str())?,
|
||||
ctx,
|
||||
generator,
|
||||
*ty,
|
||||
)
|
||||
.map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting field {name}: {e}"))
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
let values = values?;
|
||||
|
||||
if let Some(values) = values {
|
||||
let val = ty.const_named_struct(&values);
|
||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||
ctx.module.add_global(ty, Some(AddressSpace::default()), &id_str)
|
||||
});
|
||||
global.set_initializer(&val);
|
||||
Ok(Some(global.as_pointer_value().into()))
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
} else {
|
||||
let id_str = id.to_string();
|
||||
|
||||
@ -1509,7 +1356,7 @@ impl InnerResolver {
|
||||
});
|
||||
return Ok(Some(global.as_pointer_value().into()));
|
||||
}
|
||||
self.global_value_ids.write().insert(id, obj.into());
|
||||
self.global_value_ids.write().insert(id, obj.as_unbound().clone());
|
||||
}
|
||||
// should be classes
|
||||
let definition =
|
||||
@ -1521,7 +1368,7 @@ impl InnerResolver {
|
||||
.map(|(name, ty, _)| {
|
||||
self.get_obj_value(
|
||||
py,
|
||||
obj.getattr(name.to_string().as_str())?,
|
||||
obj.getattr(name.to_string().as_str())?.as_borrowed(),
|
||||
ctx,
|
||||
generator,
|
||||
*ty,
|
||||
@ -1548,7 +1395,7 @@ impl InnerResolver {
|
||||
fn get_default_param_obj_value(
|
||||
&self,
|
||||
py: Python,
|
||||
obj: &PyAny,
|
||||
obj: Borrowed<PyAny>,
|
||||
) -> PyResult<Result<SymbolValue, String>> {
|
||||
let id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?;
|
||||
let ty_id: u64 =
|
||||
@ -1565,12 +1412,9 @@ impl InnerResolver {
|
||||
} else if ty_id == self.primitive_ids.uint64 {
|
||||
let val: u64 = obj.extract()?;
|
||||
Ok(SymbolValue::U64(val))
|
||||
} else if ty_id == self.primitive_ids.bool {
|
||||
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
|
||||
let val: bool = obj.extract()?;
|
||||
Ok(SymbolValue::Bool(val))
|
||||
} else if ty_id == self.primitive_ids.np_bool_ {
|
||||
let val: bool = obj.call_method("__bool__", (), None)?.extract()?;
|
||||
Ok(SymbolValue::Bool(val))
|
||||
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
|
||||
let val: String = obj.extract()?;
|
||||
Ok(SymbolValue::Str(val))
|
||||
@ -1578,15 +1422,20 @@ impl InnerResolver {
|
||||
let val: f64 = obj.extract()?;
|
||||
Ok(SymbolValue::Double(val))
|
||||
} else if ty_id == self.primitive_ids.tuple {
|
||||
let elements: &PyTuple = obj.downcast()?;
|
||||
let elements: Result<Result<Vec<_>, String>, _> =
|
||||
elements.iter().map(|elem| self.get_default_param_obj_value(py, elem)).collect();
|
||||
let elements = obj.downcast::<PyTuple>()?;
|
||||
let elements: Result<Result<Vec<_>, String>, _> = elements
|
||||
.iter()
|
||||
.map(|elem| self.get_default_param_obj_value(py, elem.as_borrowed()))
|
||||
.collect();
|
||||
elements?.map(SymbolValue::Tuple)
|
||||
} else if ty_id == self.primitive_ids.option {
|
||||
if id == self.primitive_ids.none {
|
||||
Ok(SymbolValue::OptionNone)
|
||||
} else {
|
||||
self.get_default_param_obj_value(py, obj.getattr("_nac3_option").unwrap())?
|
||||
self.get_default_param_obj_value(
|
||||
py,
|
||||
obj.getattr("_nac3_option").unwrap().as_borrowed(),
|
||||
)?
|
||||
.map(|v| SymbolValue::OptionSome(Box::new(v)))
|
||||
}
|
||||
} else {
|
||||
@ -1602,13 +1451,14 @@ impl SymbolResolver for Resolver {
|
||||
};
|
||||
|
||||
Python::with_gil(|py| -> PyResult<Option<SymbolValue>> {
|
||||
let obj: &PyAny = self.0.module.extract(py)?;
|
||||
let members: &PyDict = obj.getattr("__dict__").unwrap().downcast().unwrap();
|
||||
let obj = self.0.module.downcast_bound::<PyAny>(py)?;
|
||||
let members = obj.getattr("__dict__").unwrap();
|
||||
let members = members.downcast::<PyDict>().unwrap();
|
||||
let mut sym_value = None;
|
||||
for (key, val) in members {
|
||||
let key: &str = key.extract()?;
|
||||
if key == id.to_string() {
|
||||
if let Ok(Ok(v)) = self.0.get_default_param_obj_value(py, val) {
|
||||
if let Ok(Ok(v)) = self.0.get_default_param_obj_value(py, val.as_borrowed()) {
|
||||
sym_value = Some(v);
|
||||
}
|
||||
break;
|
||||
@ -1642,13 +1492,20 @@ impl SymbolResolver for Resolver {
|
||||
Ok(t)
|
||||
} else {
|
||||
Python::with_gil(|py| -> PyResult<Result<Type, String>> {
|
||||
let obj: &PyAny = self.0.module.extract(py)?;
|
||||
let obj = self.0.module.downcast_bound::<PyAny>(py)?;
|
||||
let mut sym_ty = Err(format!("cannot find symbol `{str}`"));
|
||||
let members: &PyDict = obj.getattr("__dict__").unwrap().downcast().unwrap();
|
||||
let members = obj.getattr("__dict__").unwrap();
|
||||
let members = members.downcast::<PyDict>().unwrap();
|
||||
for (key, val) in members {
|
||||
let key: &str = key.extract()?;
|
||||
if key == str.to_string() {
|
||||
sym_ty = self.0.get_obj_type(py, val, unifier, defs, primitives)?;
|
||||
sym_ty = self.0.get_obj_type(
|
||||
py,
|
||||
val.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
)?;
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -1668,63 +1525,23 @@ impl SymbolResolver for Resolver {
|
||||
fn get_symbol_value<'ctx>(
|
||||
&self,
|
||||
id: StrRef,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
_: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Option<ValueEnum<'ctx>> {
|
||||
if let Some(def_id) = self.0.id_to_def.read().get(&id) {
|
||||
let top_levels = ctx.top_level.definitions.read();
|
||||
if matches!(&*top_levels[def_id.0].read(), TopLevelDef::Variable { .. }) {
|
||||
let module_val = &self.0.module;
|
||||
let ret = Python::with_gil(|py| -> PyResult<Result<BasicValueEnum, String>> {
|
||||
let module_val = module_val.as_ref(py);
|
||||
|
||||
let ty = self.0.get_obj_type(
|
||||
py,
|
||||
module_val,
|
||||
&mut ctx.unifier,
|
||||
&top_levels,
|
||||
&ctx.primitives,
|
||||
)?;
|
||||
if let Err(ty) = ty {
|
||||
return Ok(Err(ty));
|
||||
}
|
||||
let ty = ty.unwrap();
|
||||
let obj = self.0.get_obj_value(py, module_val, ctx, generator, ty)?.unwrap();
|
||||
let (idx, _) = ctx.get_attr_index(ty, id);
|
||||
let ret = unsafe {
|
||||
ctx.builder.build_gep(
|
||||
obj.into_pointer_value(),
|
||||
&[
|
||||
ctx.ctx.i32_type().const_zero(),
|
||||
ctx.ctx.i32_type().const_int(idx as u64, false),
|
||||
],
|
||||
id.to_string().as_str(),
|
||||
)
|
||||
}
|
||||
.unwrap();
|
||||
Ok(Ok(ret.as_basic_value_enum()))
|
||||
})
|
||||
.unwrap();
|
||||
if ret.is_err() {
|
||||
return None;
|
||||
}
|
||||
return Some(ret.unwrap().into());
|
||||
}
|
||||
}
|
||||
|
||||
let sym_value = {
|
||||
let id_to_val = self.0.id_to_pyval.read();
|
||||
id_to_val.get(&id).cloned()
|
||||
}
|
||||
.or_else(|| {
|
||||
Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> {
|
||||
let obj: &PyAny = self.0.module.extract(py)?;
|
||||
let obj = self.0.module.downcast_bound::<PyAny>(py)?;
|
||||
let mut sym_value: Option<(u64, PyObject)> = None;
|
||||
let members: &PyDict = obj.getattr("__dict__").unwrap().downcast().unwrap();
|
||||
let members = obj.getattr("__dict__").unwrap();
|
||||
let members = members.downcast::<PyDict>().unwrap();
|
||||
for (key, val) in members {
|
||||
let key: &str = key.extract()?;
|
||||
if key == id.to_string() {
|
||||
let id = self.0.helper.id_fn.call1(py, (val,))?.extract(py)?;
|
||||
let id =
|
||||
self.0.helper.id_fn.call1(py, (val.as_borrowed(),))?.extract(py)?;
|
||||
sym_value = Some((id, val.extract()?));
|
||||
break;
|
||||
}
|
||||
@ -1772,7 +1589,10 @@ impl SymbolResolver for Resolver {
|
||||
if let Some(id) = string_store.get(s) {
|
||||
*id
|
||||
} else {
|
||||
let id = i32::try_from(string_store.len()).unwrap();
|
||||
let id = Python::with_gil(|py| -> PyResult<i32> {
|
||||
self.0.helper.store_str.call1(py, (s,))?.extract(py)
|
||||
})
|
||||
.unwrap();
|
||||
string_store.insert(s.into(), id);
|
||||
id
|
||||
}
|
||||
@ -1790,10 +1610,16 @@ impl SymbolResolver for Resolver {
|
||||
let store = self.0.deferred_eval_store.store.read();
|
||||
Python::with_gil(|py| -> PyResult<Result<(), String>> {
|
||||
for (variables, constraints, name) in store.iter() {
|
||||
let constraints: &PyAny = constraints.as_ref(py);
|
||||
let constraints = constraints.bind(py);
|
||||
for (i, var) in variables.iter().enumerate() {
|
||||
if let Ok(constr) = constraints.get_item(i) {
|
||||
match self.0.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
|
||||
match self.0.get_pyty_obj_type(
|
||||
py,
|
||||
constr.as_borrowed(),
|
||||
unifier,
|
||||
defs,
|
||||
primitives,
|
||||
)? {
|
||||
Ok((ty, _)) => {
|
||||
if !unifier.is_concrete(ty, &[]) {
|
||||
return Ok(Err(format!(
|
||||
|
@ -1,11 +1,8 @@
|
||||
use itertools::Either;
|
||||
|
||||
use nac3core::{
|
||||
codegen::CodeGenContext,
|
||||
inkwell::{
|
||||
use nac3core::codegen::CodeGenContext;
|
||||
use nac3core::inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue},
|
||||
AddressSpace, AtomicOrdering,
|
||||
},
|
||||
};
|
||||
|
||||
/// Functions for manipulating the timeline.
|
||||
|
@ -10,6 +10,7 @@ constant-optimization = ["fold"]
|
||||
fold = []
|
||||
|
||||
[dependencies]
|
||||
lazy_static = "1.5"
|
||||
parking_lot = "0.12"
|
||||
string-interner = "0.17"
|
||||
fxhash = "0.2"
|
||||
|
@ -5,12 +5,14 @@ pub use crate::location::Location;
|
||||
|
||||
use fxhash::FxBuildHasher;
|
||||
use parking_lot::{Mutex, MutexGuard};
|
||||
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
|
||||
use std::{cell::RefCell, collections::HashMap, fmt};
|
||||
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
|
||||
|
||||
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
|
||||
static INTERNER: LazyLock<Mutex<Interner>> =
|
||||
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
|
||||
lazy_static! {
|
||||
static ref INTERNER: Mutex<Interner> =
|
||||
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
|
||||
}
|
||||
|
||||
thread_local! {
|
||||
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();
|
||||
|
@ -1,4 +1,10 @@
|
||||
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
|
||||
#![deny(
|
||||
future_incompatible,
|
||||
let_underscore,
|
||||
nonstandard_style,
|
||||
rust_2024_compatibility,
|
||||
clippy::all
|
||||
)]
|
||||
#![warn(clippy::pedantic)]
|
||||
#![allow(
|
||||
clippy::missing_errors_doc,
|
||||
@ -8,6 +14,9 @@
|
||||
clippy::wildcard_imports
|
||||
)]
|
||||
|
||||
#[macro_use]
|
||||
extern crate lazy_static;
|
||||
|
||||
mod ast_gen;
|
||||
mod constant;
|
||||
#[cfg(feature = "fold")]
|
||||
|
@ -5,17 +5,14 @@ authors = ["M-Labs"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
default = ["derive"]
|
||||
derive = ["dep:nac3core_derive"]
|
||||
no-escape-analysis = []
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.13"
|
||||
crossbeam = "0.8"
|
||||
indexmap = "2.6"
|
||||
indexmap = "2.2"
|
||||
parking_lot = "0.12"
|
||||
rayon = "1.10"
|
||||
nac3core_derive = { path = "nac3core_derive", optional = true }
|
||||
rayon = "1.8"
|
||||
nac3parser = { path = "../nac3parser" }
|
||||
strum = "0.26"
|
||||
strum_macros = "0.26"
|
||||
|
@ -1,3 +1,4 @@
|
||||
use regex::Regex;
|
||||
use std::{
|
||||
env,
|
||||
fs::File,
|
||||
@ -6,8 +7,6 @@ use std::{
|
||||
process::{Command, Stdio},
|
||||
};
|
||||
|
||||
use regex::Regex;
|
||||
|
||||
fn main() {
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_dir = Path::new(&out_dir);
|
||||
@ -56,8 +55,9 @@ fn main() {
|
||||
let output = Command::new("clang-irrt")
|
||||
.args(flags)
|
||||
.output()
|
||||
.inspect(|o| {
|
||||
.map(|o| {
|
||||
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
|
||||
o
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
|
@ -1,15 +1,6 @@
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/list.hpp"
|
||||
#include "irrt/math.hpp"
|
||||
#include "irrt/range.hpp"
|
||||
#include "irrt/ndarray.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
#include "irrt/string.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/ndarray/iter.hpp"
|
||||
#include "irrt/ndarray/indexing.hpp"
|
||||
#include "irrt/ndarray/array.hpp"
|
||||
#include "irrt/ndarray/reshape.hpp"
|
||||
#include "irrt/ndarray/broadcast.hpp"
|
||||
#include "irrt/ndarray/transpose.hpp"
|
||||
#include "irrt/ndarray/matmul.hpp"
|
@ -4,6 +4,6 @@
|
||||
|
||||
template<typename SizeT>
|
||||
struct CSlice {
|
||||
void* base;
|
||||
uint8_t* base;
|
||||
SizeT len;
|
||||
};
|
@ -6,7 +6,7 @@
|
||||
/**
|
||||
* @brief The int type of ARTIQ exception IDs.
|
||||
*/
|
||||
using ExceptionId = int32_t;
|
||||
typedef int32_t ExceptionId;
|
||||
|
||||
/*
|
||||
* Set of exceptions C++ IRRT can use.
|
||||
@ -55,14 +55,11 @@ void _raise_exception_helper(ExceptionId id,
|
||||
int64_t param2) {
|
||||
Exception<SizeT> e = {
|
||||
.id = id,
|
||||
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(filename))},
|
||||
.filename = {.base = reinterpret_cast<const uint8_t*>(filename), .len = __builtin_strlen(filename)},
|
||||
.line = line,
|
||||
.column = 0,
|
||||
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(function))},
|
||||
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(msg))},
|
||||
.function = {.base = reinterpret_cast<const uint8_t*>(function), .len = __builtin_strlen(function)},
|
||||
.msg = {.base = reinterpret_cast<const uint8_t*>(msg), .len = __builtin_strlen(msg)},
|
||||
};
|
||||
e.params[0] = param0;
|
||||
e.params[1] = param1;
|
||||
@ -70,7 +67,6 @@ void _raise_exception_helper(ExceptionId id,
|
||||
__nac3_raise(reinterpret_cast<void*>(&e));
|
||||
__builtin_unreachable();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
/**
|
||||
* @brief Raise an exception with location details (location in the IRRT source files).
|
||||
@ -83,3 +79,4 @@ void _raise_exception_helper(ExceptionId id,
|
||||
*/
|
||||
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
|
||||
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
|
||||
} // namespace
|
@ -8,18 +8,15 @@ using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
||||
#else
|
||||
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wdeprecated-type"
|
||||
using int8_t = _ExtInt(8);
|
||||
using uint8_t = unsigned _ExtInt(8);
|
||||
using int32_t = _ExtInt(32);
|
||||
using uint32_t = unsigned _ExtInt(32);
|
||||
using int64_t = _ExtInt(64);
|
||||
using uint64_t = unsigned _ExtInt(64);
|
||||
#pragma clang diagnostic pop
|
||||
|
||||
#endif
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
@ -2,21 +2,6 @@
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/math_util.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief A list in NAC3.
|
||||
*
|
||||
* The `items` field is opaque. You must rely on external contexts to
|
||||
* know how to interpret it.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct List {
|
||||
uint8_t* items;
|
||||
SizeT len;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
// Handle list assignment and dropping part of the list when
|
||||
@ -28,12 +13,12 @@ extern "C" {
|
||||
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
void* dest_arr,
|
||||
uint8_t* dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
void* src_arr,
|
||||
uint8_t* src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
@ -44,13 +29,11 @@ SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
|
||||
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
|
||||
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
|
||||
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
|
||||
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
@ -61,7 +44,7 @@ SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
|
||||
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca) {
|
||||
void* tmp = __builtin_alloca(src_arr_len * size);
|
||||
uint8_t* tmp = reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
@ -70,24 +53,20 @@ SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
|
||||
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
|
||||
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
|
@ -1,7 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
@ -92,4 +90,4 @@ double __nac3_j0(double x) {
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
} // namespace
|
||||
}
|
144
nac3core/irrt/irrt/ndarray.hpp
Normal file
144
nac3core/irrt/irrt/ndarray.hpp
Normal file
@ -0,0 +1,144 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
template<typename SizeT>
|
||||
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i) {
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices) {
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
|
||||
SizeT lhs_ndims,
|
||||
const SizeT* rhs_dims,
|
||||
SizeT rhs_ndims,
|
||||
SizeT* out_dims) {
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (rhs_dim_sz == nullptr) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == 1) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (*rhs_dim_sz == 1) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
|
||||
SizeT src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx) {
|
||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t
|
||||
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t
|
||||
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t
|
||||
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
|
||||
uint32_t lhs_ndims,
|
||||
const uint32_t* rhs_dims,
|
||||
uint32_t rhs_ndims,
|
||||
uint32_t* out_dims) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
|
||||
uint64_t lhs_ndims,
|
||||
const uint64_t* rhs_dims,
|
||||
uint64_t rhs_ndims,
|
||||
uint64_t* out_dims) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
|
||||
uint32_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
|
||||
uint64_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
}
|
@ -1,132 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/list.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
namespace ndarray::array {
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
|
||||
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
|
||||
* [3.0]])`)
|
||||
*
|
||||
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
|
||||
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
|
||||
* of implementation details.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||
if (shape[axis] == -1) {
|
||||
// Dimension is unspecified. Set it.
|
||||
shape[axis] = list->len;
|
||||
} else {
|
||||
// Dimension is specified. Check.
|
||||
if (shape[axis] != list->len) {
|
||||
// Mismatch, throw an error.
|
||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"The requested array has an inhomogenous shape "
|
||||
"after {0} dimension(s).",
|
||||
axis, shape[axis], list->len);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndims) {
|
||||
// `list` has type `list[ItemType]`
|
||||
// Do nothing
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `set_and_validate_list_shape_helper`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||
}
|
||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
|
||||
*
|
||||
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
|
||||
*
|
||||
* # Notes on `ndarray`
|
||||
* The caller is responsible for allocating space for `ndarray`.
|
||||
* Here is what this function expects from `ndarray` when called:
|
||||
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
|
||||
* - `ndarray->itemsize` has to be initialized.
|
||||
* - `ndarray->ndims` has to be initialized.
|
||||
* - `ndarray->shape` has to be initialized.
|
||||
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
|
||||
* When this function call ends:
|
||||
* - `ndarray->data` is written with contents from `<list>`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||
if (IRRT_DEBUG_ASSERT_BOOL) {
|
||||
if (!ndarray::basic::is_c_contiguous(ndarray)) {
|
||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndarray->ndims) {
|
||||
// `list` has type `list[scalar]`
|
||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
|
||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||
*index += list->len;
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `write_list_to_array_helper`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||
SizeT index = 0;
|
||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||
}
|
||||
} // namespace ndarray::array
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::array;
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
}
|
@ -1,340 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
namespace ndarray::basic {
|
||||
/**
|
||||
* @brief Assert that `shape` does not contain negative dimensions.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape to check on
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
if (shape[axis] < 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"negative dimensions are not allowed; axis {0} "
|
||||
"has dimension {1}",
|
||||
axis, shape[axis], NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void assert_output_shape_same(SizeT ndarray_ndims,
|
||||
const SizeT* ndarray_shape,
|
||||
SizeT output_ndims,
|
||||
const SizeT* output_shape) {
|
||||
if (ndarray_ndims != output_ndims) {
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
||||
output_ndims, ndarray_ndims, NO_PARAM);
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
|
||||
if (ndarray_shape[axis] != output_shape[axis]) {
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"Mismatched dimensions on axis {0}, output has "
|
||||
"dimension {1}, but destination ndarray has dimension {2}.",
|
||||
axis, output_shape[axis], ndarray_shape[axis]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of elements of an ndarray given its shape.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape of the ndarray
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
||||
SizeT size = 1;
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
size *= shape[axis];
|
||||
return size;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
||||
*
|
||||
* @param ndims Number of elements in `shape` and `indices`
|
||||
* @param shape The shape of the ndarray
|
||||
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
||||
* @param nth The index of the element of interest.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = ndims - i - 1;
|
||||
SizeT dim = shape[axis];
|
||||
|
||||
indices[axis] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of elements of an `ndarray`
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.size`
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT size(const NDArray<SizeT>* ndarray) {
|
||||
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return of the number of its content of an `ndarray`.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.nbytes`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT nbytes(const NDArray<SizeT>* ndarray) {
|
||||
return size(ndarray) * ndarray->itemsize;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.__len__`.
|
||||
*
|
||||
* @param dst_length The length.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT len(const NDArray<SizeT>* ndarray) {
|
||||
if (ndarray->ndims != 0) {
|
||||
return ndarray->shape[0];
|
||||
}
|
||||
|
||||
// numpy prohibits `__len__` on unsized objects
|
||||
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
||||
*
|
||||
* You may want to see ndarray's rules for C-contiguity:
|
||||
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
*/
|
||||
template<typename SizeT>
|
||||
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
|
||||
// References:
|
||||
// - tinynumpy's implementation:
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
||||
// - ndarray's flags["C_CONTIGUOUS"]:
|
||||
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
||||
// - ndarray's rules for C-contiguity:
|
||||
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
|
||||
// From
|
||||
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
||||
//
|
||||
// The traditional rule is that for an array to be flagged as C contiguous,
|
||||
// the following must hold:
|
||||
//
|
||||
// strides[-1] == itemsize
|
||||
// strides[i] == shape[i+1] * strides[i + 1]
|
||||
// [...]
|
||||
// According to these rules, a 0- or 1-dimensional array is either both
|
||||
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
||||
// can be C- or F- contiguous, or neither, but not both. Though there
|
||||
// there are exceptions for arrays with zero or one item, in the first
|
||||
// case the check is relaxed up to and including the first dimension
|
||||
// with shape[i] == 0. In the second case `strides == itemsize` will
|
||||
// can be true for all dimensions and both flags are set.
|
||||
|
||||
if (ndarray->ndims == 0) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 1; i < ndarray->ndims; i++) {
|
||||
SizeT axis_i = ndarray->ndims - i - 1;
|
||||
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
|
||||
*
|
||||
* This function does no bound check.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
|
||||
void* element = ndarray->data;
|
||||
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
||||
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
|
||||
*
|
||||
* This function does no bound check.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
|
||||
void* element = ndarray->data;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
SizeT dim = ndarray->shape[axis];
|
||||
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
|
||||
nth /= dim;
|
||||
}
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
|
||||
*
|
||||
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
||||
stride_product *= ndarray->shape[axis];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set an element in `ndarray`.
|
||||
*
|
||||
* @param pelement Pointer to the element in `ndarray` to be set.
|
||||
* @param pvalue Pointer to the value `pelement` will be set to.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
||||
*
|
||||
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
// TODO: Make this faster with memcpy when we see a contiguous segment.
|
||||
// TODO: Handle overlapping.
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
||||
|
||||
for (SizeT i = 0; i < size(src_ndarray); i++) {
|
||||
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
||||
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
||||
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::basic
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::basic;
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
|
||||
const int32_t* ndarray_shape,
|
||||
int32_t output_ndims,
|
||||
const int32_t* output_shape) {
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
|
||||
const int64_t* ndarray_shape,
|
||||
int64_t output_ndims,
|
||||
const int64_t* output_shape) {
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
@ -1,165 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
namespace {
|
||||
template<typename SizeT>
|
||||
struct ShapeEntry {
|
||||
SizeT ndims;
|
||||
SizeT* shape;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
namespace ndarray::broadcast {
|
||||
/**
|
||||
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||
*
|
||||
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
*/
|
||||
template<typename SizeT>
|
||||
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
|
||||
if (src_ndims > target_ndims) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 0; i < src_ndims; i++) {
|
||||
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||
if (!(src_dim == 1 || target_dim == src_dim)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||
*
|
||||
* @param num_shapes Number of entries in `shapes`
|
||||
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||
* @param dst_ndims The length of `dst_shape`.
|
||||
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||
* of `np.broadcast_shapes` and write it here.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
|
||||
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
|
||||
dst_shape[dst_axis] = 1;
|
||||
}
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
SizeT max_ndims_found = 0;
|
||||
#endif
|
||||
|
||||
for (SizeT i = 0; i < num_shapes; i++) {
|
||||
ShapeEntry<SizeT> entry = shapes[i];
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||
#endif
|
||||
|
||||
for (SizeT j = 0; j < entry.ndims; j++) {
|
||||
SizeT entry_axis = entry.ndims - j - 1;
|
||||
SizeT dst_axis = dst_ndims - j - 1;
|
||||
|
||||
SizeT entry_dim = entry.shape[entry_axis];
|
||||
SizeT dst_dim = dst_shape[dst_axis];
|
||||
|
||||
if (dst_dim == 1) {
|
||||
dst_shape[dst_axis] = entry_dim;
|
||||
} else if (entry_dim == 1 || entry_dim == dst_dim) {
|
||||
// Do nothing
|
||||
} else {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"shape mismatch: objects cannot be broadcast "
|
||||
"to a single shape.",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||
*
|
||||
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||
* and return the result by modifying `dst_ndarray`.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is unchanged.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||
src_ndarray->shape)) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
|
||||
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
|
||||
// Freeze the steps in-place
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
} else {
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::broadcast
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::broadcast;
|
||||
|
||||
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
|
||||
const ShapeEntry<int32_t>* shapes,
|
||||
int32_t dst_ndims,
|
||||
int32_t* dst_shape) {
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
|
||||
const ShapeEntry<int64_t>* shapes,
|
||||
int64_t dst_ndims,
|
||||
int64_t* dst_shape) {
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief The NDArray object
|
||||
*
|
||||
* Official numpy implementation:
|
||||
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
|
||||
*
|
||||
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
|
||||
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
|
||||
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
|
||||
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
|
||||
* `data`. There are also minor differences in the struct layout.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct NDArray {
|
||||
/**
|
||||
* @brief The number of bytes of a single element in `data`.
|
||||
*/
|
||||
SizeT itemsize;
|
||||
|
||||
/**
|
||||
* @brief The number of dimensions of this shape.
|
||||
*/
|
||||
SizeT ndims;
|
||||
|
||||
/**
|
||||
* @brief The NDArray shape, with length equal to `ndims`.
|
||||
*
|
||||
* Note that it may contain 0.
|
||||
*/
|
||||
SizeT* shape;
|
||||
|
||||
/**
|
||||
* @brief Array strides, with length equal to `ndims`
|
||||
*
|
||||
* The stride values are in units of bytes, not number of elements.
|
||||
*
|
||||
* Note that `strides` can have negative values or contain 0.
|
||||
*/
|
||||
SizeT* strides;
|
||||
|
||||
/**
|
||||
* @brief The underlying data this `ndarray` is pointing to.
|
||||
*/
|
||||
void* data;
|
||||
};
|
||||
} // namespace
|
@ -1,219 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/range.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
namespace {
|
||||
typedef uint8_t NDIndexType;
|
||||
|
||||
/**
|
||||
* @brief A single element index
|
||||
*
|
||||
* `data` points to a `int32_t`.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
||||
|
||||
/**
|
||||
* @brief A slice index
|
||||
*
|
||||
* `data` points to a `Slice<int32_t>`.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
||||
|
||||
/**
|
||||
* @brief `np.newaxis` / `None`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
||||
|
||||
/**
|
||||
* @brief `Ellipsis` / `...`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
||||
|
||||
/**
|
||||
* @brief An index used in ndarray indexing
|
||||
*
|
||||
* That is:
|
||||
* ```
|
||||
* my_ndarray[::-1, 3, ..., np.newaxis]
|
||||
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
|
||||
* ```
|
||||
*/
|
||||
struct NDIndex {
|
||||
/**
|
||||
* @brief Enum tag to specify the type of index.
|
||||
*
|
||||
* Please see the comment of each enum constant.
|
||||
*/
|
||||
NDIndexType type;
|
||||
|
||||
/**
|
||||
* @brief The accompanying data associated with `type`.
|
||||
*
|
||||
* Please see the comment of each enum constant.
|
||||
*/
|
||||
uint8_t* data;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
namespace ndarray::indexing {
|
||||
/**
|
||||
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||
*
|
||||
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
|
||||
*
|
||||
* This function also does proper assertions on `indices` to check for out of bounds access and more.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
||||
* indexing `src_ndarray` with `indices`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data`.
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
||||
*
|
||||
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
|
||||
* @param src_ndarray The NDArray to be indexed.
|
||||
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
// Validate `indices`.
|
||||
|
||||
// Expected value of `dst_ndarray->ndims`.
|
||||
SizeT expected_dst_ndims = src_ndarray->ndims;
|
||||
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
||||
SizeT num_indexed = 0;
|
||||
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
|
||||
SizeT num_ellipsis = 0;
|
||||
|
||||
for (SizeT i = 0; i < num_indices; i++) {
|
||||
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||
expected_dst_ndims--;
|
||||
num_indexed++;
|
||||
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
|
||||
num_indexed++;
|
||||
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
|
||||
expected_dst_ndims++;
|
||||
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||
num_ellipsis++;
|
||||
if (num_ellipsis > 1) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
||||
|
||||
if (src_ndarray->ndims - num_indexed < 0) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"too many indices for array: array is {0}-dimensional, "
|
||||
"but {1} were indexed",
|
||||
src_ndarray->ndims, num_indices, NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Reference code:
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
SizeT src_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
||||
for (int32_t i = 0; i < num_indices; i++) {
|
||||
const NDIndex* index = &indices[i];
|
||||
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||
SizeT input = (SizeT) * ((int32_t*)index->data);
|
||||
|
||||
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
|
||||
if (k == -1) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"index {0} is out of bounds for axis {1} "
|
||||
"with size {2}",
|
||||
input, src_axis, src_ndarray->shape[src_axis]);
|
||||
}
|
||||
|
||||
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis];
|
||||
|
||||
src_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_SLICE) {
|
||||
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
|
||||
|
||||
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
||||
|
||||
dst_ndarray->data =
|
||||
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
dst_ndarray->shape[dst_axis] = 1;
|
||||
|
||||
dst_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||
// The number of ':' entries this '...' implies.
|
||||
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
||||
|
||||
for (SizeT j = 0; j < ellipsis_size; j++) {
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
}
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
||||
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
||||
}
|
||||
} // namespace ndarray::indexing
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::indexing;
|
||||
|
||||
void __nac3_ndarray_index(int32_t num_indices,
|
||||
NDIndex* indices,
|
||||
NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray) {
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_index64(int64_t num_indices,
|
||||
NDIndex* indices,
|
||||
NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray) {
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
@ -1,146 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief Helper struct to enumerate through an ndarray *efficiently*.
|
||||
*
|
||||
* Example usage (in pseudo-code):
|
||||
* ```
|
||||
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
|
||||
* NDIter nditer;
|
||||
* nditer.initialize(my_ndarray);
|
||||
* while (nditer.has_element()) {
|
||||
* // This body is run 6 (= my_ndarray.size) times.
|
||||
*
|
||||
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
|
||||
* print(nditer.indices);
|
||||
*
|
||||
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
|
||||
* print(nditer.nth);
|
||||
*
|
||||
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
|
||||
* print(*((double *) nditer.element))
|
||||
*
|
||||
* nditer.next(); // Go to next element.
|
||||
* }
|
||||
* ```
|
||||
*
|
||||
* Interesting cases:
|
||||
* - If `my_ndarray.ndims` == 0, there is one iteration.
|
||||
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct NDIter {
|
||||
// Information about the ndarray being iterated over.
|
||||
SizeT ndims;
|
||||
SizeT* shape;
|
||||
SizeT* strides;
|
||||
|
||||
/**
|
||||
* @brief The current indices.
|
||||
*
|
||||
* Must be allocated by the caller.
|
||||
*/
|
||||
SizeT* indices;
|
||||
|
||||
/**
|
||||
* @brief The nth (0-based) index of the current indices.
|
||||
*
|
||||
* Initially this is 0.
|
||||
*/
|
||||
SizeT nth;
|
||||
|
||||
/**
|
||||
* @brief Pointer to the current element.
|
||||
*
|
||||
* Initially this points to first element of the ndarray.
|
||||
*/
|
||||
void* element;
|
||||
|
||||
/**
|
||||
* @brief Cache for the product of shape.
|
||||
*
|
||||
* Could be 0 if `shape` has 0s in it.
|
||||
*/
|
||||
SizeT size;
|
||||
|
||||
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
|
||||
this->ndims = ndims;
|
||||
this->shape = shape;
|
||||
this->strides = strides;
|
||||
|
||||
this->indices = indices;
|
||||
this->element = element;
|
||||
|
||||
// Compute size
|
||||
this->size = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
this->size *= shape[i];
|
||||
}
|
||||
|
||||
// `indices` starts on all 0s.
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
indices[axis] = 0;
|
||||
nth = 0;
|
||||
}
|
||||
|
||||
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
|
||||
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
|
||||
// element as well.
|
||||
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
|
||||
}
|
||||
|
||||
// Is the current iteration valid?
|
||||
// If true, then `element`, `indices` and `nth` contain details about the current element.
|
||||
bool has_element() { return nth < size; }
|
||||
|
||||
// Go to the next element.
|
||||
void next() {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = ndims - i - 1;
|
||||
indices[axis]++;
|
||||
if (indices[axis] >= shape[axis]) {
|
||||
indices[axis] = 0;
|
||||
|
||||
// TODO: There is something called backstrides to speedup iteration.
|
||||
// See https://ajcr.net/stride-guide-part-1/, and
|
||||
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
||||
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
|
||||
} else {
|
||||
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
nth++;
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
|
||||
return iter->has_element();
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
|
||||
return iter->has_element();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next(NDIter<int32_t>* iter) {
|
||||
iter->next();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
|
||||
iter->next();
|
||||
}
|
||||
}
|
@ -1,98 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/broadcast.hpp"
|
||||
#include "irrt/ndarray/iter.hpp"
|
||||
|
||||
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
||||
|
||||
namespace {
|
||||
namespace ndarray::matmul {
|
||||
|
||||
/**
|
||||
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
|
||||
*
|
||||
* Example:
|
||||
* Suppose `a_shape == [1, 97, 4, 2]`
|
||||
* and `b_shape == [99, 98, 1, 2, 5]`,
|
||||
*
|
||||
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
||||
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
||||
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
||||
* ^^^^^^^^^^ ^^^^
|
||||
* (broadcasted) (4x2 @ 2x5 => 4x5)
|
||||
*
|
||||
* @param a_ndims Length of `a_shape`.
|
||||
* @param a_shape Shape of `a`.
|
||||
* @param b_ndims Length of `b_shape`.
|
||||
* @param b_shape Shape of `b`.
|
||||
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
|
||||
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void calculate_shapes(SizeT a_ndims,
|
||||
SizeT* a_shape,
|
||||
SizeT b_ndims,
|
||||
SizeT* b_shape,
|
||||
SizeT final_ndims,
|
||||
SizeT* new_a_shape,
|
||||
SizeT* new_b_shape,
|
||||
SizeT* dst_shape) {
|
||||
debug_assert(SizeT, a_ndims >= 2);
|
||||
debug_assert(SizeT, b_ndims >= 2);
|
||||
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
||||
|
||||
// Check that a and b are compatible for matmul
|
||||
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
|
||||
// This is a custom error message. Different from NumPy.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
||||
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
|
||||
}
|
||||
|
||||
const SizeT num_entries = 2;
|
||||
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
|
||||
{.ndims = b_ndims - 2, .shape = b_shape}};
|
||||
|
||||
// TODO: Optimize this
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
|
||||
|
||||
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
||||
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
||||
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
}
|
||||
} // namespace ndarray::matmul
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::matmul;
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
|
||||
int32_t* a_shape,
|
||||
int32_t b_ndims,
|
||||
int32_t* b_shape,
|
||||
int32_t final_ndims,
|
||||
int32_t* new_a_shape,
|
||||
int32_t* new_b_shape,
|
||||
int32_t* dst_shape) {
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
|
||||
int64_t* a_shape,
|
||||
int64_t b_ndims,
|
||||
int64_t* b_shape,
|
||||
int64_t final_ndims,
|
||||
int64_t* new_a_shape,
|
||||
int64_t* new_b_shape,
|
||||
int64_t* dst_shape) {
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
}
|
@ -1,97 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
namespace ndarray::reshape {
|
||||
/**
|
||||
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
||||
*
|
||||
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
||||
* modified to contain the resolved dimension.
|
||||
*
|
||||
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
||||
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
||||
*
|
||||
* @param size The `.size` of `<ndarray>`
|
||||
* @param new_ndims Number of elements in `new_shape`
|
||||
* @param new_shape Target shape to reshape to
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
|
||||
// Is there a -1 in `new_shape`?
|
||||
bool neg1_exists = false;
|
||||
// Location of -1, only initialized if `neg1_exists` is true
|
||||
SizeT neg1_axis_i;
|
||||
// The computed ndarray size of `new_shape`
|
||||
SizeT new_size = 1;
|
||||
|
||||
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
|
||||
SizeT dim = new_shape[axis_i];
|
||||
if (dim < 0) {
|
||||
if (dim == -1) {
|
||||
if (neg1_exists) {
|
||||
// Multiple `-1` found. Throw an error.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
} else {
|
||||
neg1_exists = true;
|
||||
neg1_axis_i = axis_i;
|
||||
}
|
||||
} else {
|
||||
// TODO: What? In `np.reshape` any negative dimensions is
|
||||
// treated like its `-1`.
|
||||
//
|
||||
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
||||
//
|
||||
// It is not documented by numpy.
|
||||
// Throw an error for now...
|
||||
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
|
||||
NO_PARAM);
|
||||
}
|
||||
} else {
|
||||
new_size *= dim;
|
||||
}
|
||||
}
|
||||
|
||||
bool can_reshape;
|
||||
if (neg1_exists) {
|
||||
// Let `x` be the unknown dimension
|
||||
// Solve `x * <new_size> = <size>`
|
||||
if (new_size == 0 && size == 0) {
|
||||
// `x` has infinitely many solutions
|
||||
can_reshape = false;
|
||||
} else if (new_size == 0 && size != 0) {
|
||||
// `x` has no solutions
|
||||
can_reshape = false;
|
||||
} else if (size % new_size != 0) {
|
||||
// `x` has no integer solutions
|
||||
can_reshape = false;
|
||||
} else {
|
||||
can_reshape = true;
|
||||
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
||||
}
|
||||
} else {
|
||||
can_reshape = (new_size == size);
|
||||
}
|
||||
|
||||
if (!can_reshape) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::reshape
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
}
|
@ -1,143 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
/*
|
||||
* Notes on `np.transpose(<array>, <axes>)`
|
||||
*
|
||||
* TODO: `axes`, if specified, can actually contain negative indices,
|
||||
* but it is not documented in numpy.
|
||||
*
|
||||
* Supporting it for now.
|
||||
*/
|
||||
|
||||
namespace {
|
||||
namespace ndarray::transpose {
|
||||
/**
|
||||
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
||||
*
|
||||
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
||||
* is specified but the user, use this function to do assertions on it.
|
||||
*
|
||||
* @param ndims The number of dimensions of `<array>`
|
||||
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
||||
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
||||
* @param axes The user specified `<axes>`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
|
||||
if (ndims != num_axes) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
// TODO: Optimize this
|
||||
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
axe_specified[i] = false;
|
||||
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
||||
if (axis == -1) {
|
||||
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (axe_specified[axis]) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
axe_specified[axis] = true;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
||||
*
|
||||
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
||||
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
||||
*
|
||||
* The transpose view created is returned by modifying `dst_ndarray`.
|
||||
*
|
||||
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged
|
||||
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
||||
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
||||
*
|
||||
* @param src_ndarray The NDArray to build a transpose view on
|
||||
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
||||
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
||||
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
||||
const auto ndims = src_ndarray->ndims;
|
||||
|
||||
if (axes != nullptr)
|
||||
assert_transpose_axes(ndims, num_axes, axes);
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
||||
if (axes == nullptr) {
|
||||
// `np.transpose(<array>, axes=None)`
|
||||
|
||||
/*
|
||||
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
||||
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
||||
* is reversing the order of strides and shape.
|
||||
*
|
||||
* This is a fast implementation to handle this special (but very common) case.
|
||||
*/
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
||||
}
|
||||
} else {
|
||||
// `np.transpose(<array>, <axes>)`
|
||||
|
||||
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
||||
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
||||
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::transpose
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::transpose;
|
||||
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray,
|
||||
int32_t num_axes,
|
||||
const int32_t* axes) {
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray,
|
||||
int64_t num_axes,
|
||||
const int64_t* axes) {
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
}
|
@ -1,47 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
namespace range {
|
||||
template<typename T>
|
||||
T len(T start, T stop, T step) {
|
||||
// Reference:
|
||||
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
|
||||
if (step > 0 && start < stop)
|
||||
return 1 + (stop - 1 - start) / step;
|
||||
else if (step < 0 && start > stop)
|
||||
return 1 + (start - 1 - stop) / (-step);
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
} // namespace range
|
||||
|
||||
/**
|
||||
* @brief A Python range.
|
||||
*/
|
||||
template<typename T>
|
||||
struct Range {
|
||||
T start;
|
||||
T stop;
|
||||
T step;
|
||||
|
||||
/**
|
||||
* @brief Calculate the `len()` of this range.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
T len() {
|
||||
debug_assert(SizeT, step != 0);
|
||||
return range::len(start, stop, step);
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace range;
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
|
||||
return len(start, end, step);
|
||||
}
|
||||
}
|
@ -1,145 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/math_util.hpp"
|
||||
#include "irrt/range.hpp"
|
||||
|
||||
namespace {
|
||||
namespace slice {
|
||||
/**
|
||||
* @brief Resolve a possibly negative index in a list of a known length.
|
||||
*
|
||||
* Returns -1 if the resolved index is out of the list's bounds.
|
||||
*/
|
||||
template<typename T>
|
||||
T resolve_index_in_length(T length, T index) {
|
||||
T resolved = index < 0 ? length + index : index;
|
||||
if (0 <= resolved && resolved < length) {
|
||||
return resolved;
|
||||
} else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve a slice as a range.
|
||||
*
|
||||
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
|
||||
*/
|
||||
template<typename T>
|
||||
void indices(bool start_defined,
|
||||
T start,
|
||||
bool stop_defined,
|
||||
T stop,
|
||||
bool step_defined,
|
||||
T step,
|
||||
T length,
|
||||
T* range_start,
|
||||
T* range_stop,
|
||||
T* range_step) {
|
||||
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
*range_step = step_defined ? step : 1;
|
||||
bool step_is_negative = *range_step < 0;
|
||||
|
||||
T lower, upper;
|
||||
if (step_is_negative) {
|
||||
lower = -1;
|
||||
upper = length - 1;
|
||||
} else {
|
||||
lower = 0;
|
||||
upper = length;
|
||||
}
|
||||
|
||||
if (start_defined) {
|
||||
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
|
||||
} else {
|
||||
*range_start = step_is_negative ? upper : lower;
|
||||
}
|
||||
|
||||
if (stop_defined) {
|
||||
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
|
||||
} else {
|
||||
*range_stop = step_is_negative ? lower : upper;
|
||||
}
|
||||
}
|
||||
} // namespace slice
|
||||
|
||||
/**
|
||||
* @brief A Python-like slice with **unresolved** indices.
|
||||
*/
|
||||
template<typename T>
|
||||
struct Slice {
|
||||
bool start_defined;
|
||||
T start;
|
||||
|
||||
bool stop_defined;
|
||||
T stop;
|
||||
|
||||
bool step_defined;
|
||||
T step;
|
||||
|
||||
Slice() { this->reset(); }
|
||||
|
||||
void reset() {
|
||||
this->start_defined = false;
|
||||
this->stop_defined = false;
|
||||
this->step_defined = false;
|
||||
}
|
||||
|
||||
void set_start(T start) {
|
||||
this->start_defined = true;
|
||||
this->start = start;
|
||||
}
|
||||
|
||||
void set_stop(T stop) {
|
||||
this->stop_defined = true;
|
||||
this->stop = stop;
|
||||
}
|
||||
|
||||
void set_step(T step) {
|
||||
this->step_defined = true;
|
||||
this->step = step;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve this slice as a range.
|
||||
*
|
||||
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
Range<T> indices(T length) {
|
||||
// Reference:
|
||||
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
debug_assert(SizeT, length >= 0);
|
||||
|
||||
Range<T> result;
|
||||
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
|
||||
&result.stop, &result.step);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Like `.indices()` but with assertions.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
Range<T> indices_checked(T length) {
|
||||
// TODO: Switch to `SizeT length`
|
||||
|
||||
if (length < 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (this->step_defined && this->step == 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
return this->indices<SizeT>(length);
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
@ -153,4 +14,15 @@ SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
@ -1,23 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
template<typename SizeT>
|
||||
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
|
||||
if (len1 != len2) {
|
||||
return 0;
|
||||
}
|
||||
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
|
||||
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
|
||||
}
|
||||
|
||||
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
|
||||
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
|
||||
}
|
||||
}
|
@ -1,21 +0,0 @@
|
||||
[package]
|
||||
name = "nac3core_derive"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[lib]
|
||||
proc-macro = true
|
||||
|
||||
[[test]]
|
||||
name = "structfields_tests"
|
||||
path = "tests/structfields_test.rs"
|
||||
|
||||
[dev-dependencies]
|
||||
nac3core = { path = ".." }
|
||||
trybuild = { version = "1.0", features = ["diff"] }
|
||||
|
||||
[dependencies]
|
||||
proc-macro2 = "1.0"
|
||||
proc-macro-error = "1.0"
|
||||
syn = "2.0"
|
||||
quote = "1.0"
|
@ -1,320 +0,0 @@
|
||||
use proc_macro::TokenStream;
|
||||
use proc_macro_error::{abort, proc_macro_error};
|
||||
use quote::quote;
|
||||
use syn::{
|
||||
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
|
||||
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
|
||||
};
|
||||
|
||||
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
|
||||
///
|
||||
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
|
||||
/// `expected_ty_name`, otherwise returns [`None`].
|
||||
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
|
||||
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
|
||||
return None;
|
||||
};
|
||||
|
||||
let segments = &path.segments;
|
||||
if segments.len() != 1 {
|
||||
return None;
|
||||
};
|
||||
|
||||
let segment = segments.iter().next().unwrap();
|
||||
if segment.ident != expected_ty_name {
|
||||
return None;
|
||||
}
|
||||
|
||||
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
|
||||
return Some(Vec::new());
|
||||
};
|
||||
let args = &path_args.args;
|
||||
|
||||
Some(args.iter().cloned().collect::<Vec<_>>())
|
||||
}
|
||||
|
||||
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
|
||||
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
|
||||
path.require_ident()
|
||||
.ok()
|
||||
.filter(|ident| target_idents.iter().any(|target| ident == target))
|
||||
.map(|ident| Ident::new(replacement, ident.span()))
|
||||
}
|
||||
|
||||
/// Extracts the left-hand side of a dot-expression.
|
||||
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
|
||||
match expr {
|
||||
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
|
||||
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
|
||||
/// replacement is performed.
|
||||
///
|
||||
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
|
||||
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
|
||||
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
|
||||
| Expr::Field(ExprField { base: operand, .. }) = expr
|
||||
{
|
||||
return if extract_dot_operand(operand).is_some() {
|
||||
if replace_top_level_receiver(operand, ident).is_some() {
|
||||
Some(expr)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
} else {
|
||||
*operand = Box::new(Expr::Path(ExprPath {
|
||||
attrs: Vec::default(),
|
||||
qself: None,
|
||||
path: ident.into(),
|
||||
}));
|
||||
|
||||
Some(expr)
|
||||
};
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
|
||||
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
|
||||
///
|
||||
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
|
||||
/// return `vec![c, b, a]`.
|
||||
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
|
||||
let mut o = extract_dot_operand(expr);
|
||||
|
||||
std::iter::from_fn(move || {
|
||||
let this = o;
|
||||
o = o.as_ref().and_then(|o| extract_dot_operand(o));
|
||||
|
||||
this
|
||||
})
|
||||
}
|
||||
|
||||
/// Normalizes a value expression for use when creating an instance of this structure, returning a
|
||||
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
|
||||
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
|
||||
match &expr {
|
||||
Expr::Path(ExprPath { qself: None, path, .. }) => {
|
||||
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
|
||||
quote! { #ident }
|
||||
} else {
|
||||
abort!(
|
||||
path,
|
||||
format!(
|
||||
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
|
||||
quote!(#expr).to_string(),
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
Expr::Call(_) => {
|
||||
quote! { ctx.#expr }
|
||||
}
|
||||
|
||||
Expr::MethodCall(_) => {
|
||||
let base_receiver = iter_dot_operands(expr).last();
|
||||
|
||||
match base_receiver {
|
||||
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
|
||||
Some(Expr::Path(ExprPath { qself: None, path, .. }))
|
||||
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
|
||||
{
|
||||
let ident =
|
||||
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
|
||||
|
||||
let mut expr = expr.clone();
|
||||
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
|
||||
|
||||
quote!(#expr)
|
||||
}
|
||||
|
||||
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
|
||||
Some(Expr::Path(ExprPath { qself: None, path, .. }))
|
||||
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
|
||||
{
|
||||
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
|
||||
|
||||
let mut expr = expr.clone();
|
||||
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
|
||||
|
||||
quote!(#expr)
|
||||
}
|
||||
|
||||
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
|
||||
_ => quote! { ctx.#expr },
|
||||
}
|
||||
}
|
||||
|
||||
_ => {
|
||||
abort!(
|
||||
expr,
|
||||
format!(
|
||||
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
|
||||
quote!(#expr).to_string(),
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Derives an implementation of `codegen::types::structure::StructFields`.
|
||||
///
|
||||
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
|
||||
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
|
||||
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
|
||||
///
|
||||
/// # Prerequisites
|
||||
///
|
||||
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
|
||||
/// `StructFields`.
|
||||
///
|
||||
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
|
||||
/// with either `StructField` or [`PhantomData`] types.
|
||||
///
|
||||
/// # Attributes for [`StructFields`]
|
||||
///
|
||||
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
|
||||
/// accepts one of the following:
|
||||
///
|
||||
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
|
||||
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
|
||||
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
|
||||
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
|
||||
/// `usize.array_type(3)`.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
|
||||
///
|
||||
/// ```rust,ignore
|
||||
/// use nac3core::{
|
||||
/// codegen::types::structure::StructField,
|
||||
/// inkwell::{
|
||||
/// values::{IntValue, PointerValue},
|
||||
/// AddressSpace,
|
||||
/// },
|
||||
/// };
|
||||
/// use nac3core_derive::StructFields;
|
||||
///
|
||||
/// // All classes that implement StructFields must also implement Eq and Copy
|
||||
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
/// pub struct SliceValue<'ctx> {
|
||||
/// // Declares ptr have a value type of i8*
|
||||
/// //
|
||||
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
|
||||
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
///
|
||||
/// // Declares len have a value type of usize, depending on the target compilation platform
|
||||
/// #[value_type(usize)]
|
||||
/// len: StructField<'ctx, IntValue<'ctx>>,
|
||||
/// }
|
||||
/// ```
|
||||
#[proc_macro_derive(StructFields, attributes(value_type))]
|
||||
#[proc_macro_error]
|
||||
pub fn derive(input: TokenStream) -> TokenStream {
|
||||
let input = parse_macro_input!(input as syn::DeriveInput);
|
||||
let ident = &input.ident;
|
||||
|
||||
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
|
||||
abort!(input, "Only structs with named fields are supported");
|
||||
};
|
||||
if let Err(err_span) =
|
||||
fields
|
||||
.iter()
|
||||
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
|
||||
{
|
||||
abort!(err_span, "Only structs with named fields are supported");
|
||||
};
|
||||
|
||||
// Check if struct<'ctx>
|
||||
if input.generics.params.len() != 1 {
|
||||
abort!(input.generics, "Expected exactly 1 generic parameter")
|
||||
}
|
||||
|
||||
let phantom_info = fields
|
||||
.iter()
|
||||
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
|
||||
.map(|field| field.ident.as_ref().unwrap())
|
||||
.cloned()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let field_info = fields
|
||||
.iter()
|
||||
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
|
||||
.map(|field| {
|
||||
let ident = field.ident.as_ref().unwrap();
|
||||
let ty = &field.ty;
|
||||
|
||||
let Some(_) = extract_generic_args("StructField", ty) else {
|
||||
abort!(field, "Only StructField and PhantomData are allowed")
|
||||
};
|
||||
|
||||
let attrs = &field.attrs;
|
||||
let Some(value_type_attr) =
|
||||
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
|
||||
else {
|
||||
abort!(field, "Expected #[value_type(...)] attribute for field");
|
||||
};
|
||||
|
||||
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
|
||||
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
|
||||
};
|
||||
|
||||
let value_expr_toks = normalize_value_expr(&value_type_expr);
|
||||
|
||||
(ident.clone(), value_expr_toks)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
|
||||
let phantoms_create = phantom_info
|
||||
.iter()
|
||||
.map(|id| quote! { #id: ::std::marker::PhantomData })
|
||||
.collect::<Vec<_>>();
|
||||
let fields_create = field_info
|
||||
.iter()
|
||||
.map(|(id, ty)| {
|
||||
let id_lit = LitStr::new(&id.to_string(), id.span());
|
||||
quote! {
|
||||
#id: ::nac3core::codegen::types::structure::StructField::create(
|
||||
&mut counter,
|
||||
#id_lit,
|
||||
#ty,
|
||||
)
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// `.into()` impl of `StructField` for `StructFields::to_vec`
|
||||
let fields_into =
|
||||
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
|
||||
|
||||
let impl_block = quote! {
|
||||
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
|
||||
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
|
||||
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
|
||||
|
||||
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
|
||||
|
||||
#ident {
|
||||
#(#fields_create),*
|
||||
#(#phantoms_create),*
|
||||
}
|
||||
}
|
||||
|
||||
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
|
||||
vec![
|
||||
#(#fields_into),*
|
||||
]
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
impl_block.into()
|
||||
}
|
@ -1,9 +0,0 @@
|
||||
use nac3core_derive::StructFields;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct EmptyValue<'ctx> {
|
||||
_phantom: PhantomData<&'ctx ()>,
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -1,20 +0,0 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDArrayValue<'ctx> {
|
||||
#[value_type(usize)]
|
||||
ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -1,18 +0,0 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -1,18 +0,0 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -1,18 +0,0 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -1,18 +0,0 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(size_t)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -1,10 +0,0 @@
|
||||
#[test]
|
||||
fn test_parse_empty() {
|
||||
let t = trybuild::TestCases::new();
|
||||
t.pass("tests/structfields_empty.rs");
|
||||
t.pass("tests/structfields_slice.rs");
|
||||
t.pass("tests/structfields_slice_ctx.rs");
|
||||
t.pass("tests/structfields_slice_context.rs");
|
||||
t.pass("tests/structfields_slice_sizet.rs");
|
||||
t.pass("tests/structfields_ndarray.rs");
|
||||
}
|
File diff suppressed because it is too large
Load Diff
1766
nac3core/src/codegen/classes.rs
Normal file
1766
nac3core/src/codegen/classes.rs
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,9 +1,3 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use indexmap::IndexMap;
|
||||
|
||||
use nac3parser::ast::StrRef;
|
||||
|
||||
use crate::{
|
||||
symbol_resolver::SymbolValue,
|
||||
toplevel::DefinitionId,
|
||||
@ -15,6 +9,10 @@ use crate::{
|
||||
},
|
||||
};
|
||||
|
||||
use indexmap::IndexMap;
|
||||
use nac3parser::ast::StrRef;
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct ConcreteTypeStore {
|
||||
store: Vec<ConcreteTypeEnum>,
|
||||
}
|
||||
@ -56,10 +54,6 @@ pub enum ConcreteTypeEnum {
|
||||
fields: HashMap<StrRef, (ConcreteType, bool)>,
|
||||
params: IndexMap<TypeVarId, ConcreteType>,
|
||||
},
|
||||
TModule {
|
||||
module_id: DefinitionId,
|
||||
methods: HashMap<StrRef, (ConcreteType, bool)>,
|
||||
},
|
||||
TVirtual {
|
||||
ty: ConcreteType,
|
||||
},
|
||||
@ -209,19 +203,6 @@ impl ConcreteTypeStore {
|
||||
})
|
||||
.collect(),
|
||||
},
|
||||
TypeEnum::TModule { module_id, attributes } => ConcreteTypeEnum::TModule {
|
||||
module_id: *module_id,
|
||||
methods: attributes
|
||||
.iter()
|
||||
.filter_map(|(name, ty)| match &*unifier.get_ty(ty.0) {
|
||||
TypeEnum::TFunc(..) | TypeEnum::TObj { .. } => None,
|
||||
_ => Some((
|
||||
*name,
|
||||
(self.from_unifier_type(unifier, primitives, ty.0, cache), ty.1),
|
||||
)),
|
||||
})
|
||||
.collect(),
|
||||
},
|
||||
TypeEnum::TVirtual { ty } => ConcreteTypeEnum::TVirtual {
|
||||
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
|
||||
},
|
||||
@ -301,15 +282,6 @@ impl ConcreteTypeStore {
|
||||
TypeVar { id, ty }
|
||||
})),
|
||||
},
|
||||
ConcreteTypeEnum::TModule { module_id, methods } => TypeEnum::TModule {
|
||||
module_id: *module_id,
|
||||
attributes: methods
|
||||
.iter()
|
||||
.map(|(name, cty)| {
|
||||
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
|
||||
})
|
||||
.collect::<HashMap<_, _>>(),
|
||||
},
|
||||
ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature {
|
||||
args: args
|
||||
.iter()
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,10 +1,8 @@
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
};
|
||||
use inkwell::attributes::{Attribute, AttributeLoc};
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
|
||||
use itertools::Either;
|
||||
|
||||
use super::CodeGenContext;
|
||||
use crate::codegen::CodeGenContext;
|
||||
|
||||
/// Macro to generate extern function
|
||||
/// Both function return type and function parameter type are `FloatValue`
|
||||
|
@ -1,27 +1,20 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
targets::TargetMachine,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
};
|
||||
|
||||
use nac3parser::ast::{Expr, Stmt, StrRef};
|
||||
|
||||
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
|
||||
use crate::{
|
||||
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
};
|
||||
use nac3parser::ast::{Expr, Stmt, StrRef};
|
||||
|
||||
pub trait CodeGenerator {
|
||||
/// Return the module name for the code generator.
|
||||
fn get_name(&self) -> &str;
|
||||
|
||||
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
|
||||
///
|
||||
/// Prefer using [`CodeGenContext::get_size_type`] if [`CodeGenContext`] is available, as it is
|
||||
/// equivalent to this function in a more concise syntax.
|
||||
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
|
||||
|
||||
/// Generate function call and returns the function return value.
|
||||
@ -274,27 +267,19 @@ pub struct DefaultCodeGenerator {
|
||||
|
||||
impl DefaultCodeGenerator {
|
||||
#[must_use]
|
||||
pub fn new(name: String, size_t: IntType<'_>) -> DefaultCodeGenerator {
|
||||
assert!(matches!(size_t.get_bit_width(), 32 | 64));
|
||||
DefaultCodeGenerator { name, size_t: size_t.get_bit_width() }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn with_target_machine(
|
||||
name: String,
|
||||
ctx: &Context,
|
||||
target_machine: &TargetMachine,
|
||||
) -> DefaultCodeGenerator {
|
||||
let llvm_usize = ctx.ptr_sized_int_type(&target_machine.get_target_data(), None);
|
||||
Self::new(name, llvm_usize)
|
||||
pub fn new(name: String, size_t: u32) -> DefaultCodeGenerator {
|
||||
assert!(matches!(size_t, 32 | 64));
|
||||
DefaultCodeGenerator { name, size_t }
|
||||
}
|
||||
}
|
||||
|
||||
impl CodeGenerator for DefaultCodeGenerator {
|
||||
/// Returns the name for this [`CodeGenerator`].
|
||||
fn get_name(&self) -> &str {
|
||||
&self.name
|
||||
}
|
||||
|
||||
/// Returns an LLVM integer type representing `size_t`.
|
||||
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> {
|
||||
// it should be unsigned, but we don't really need unsigned and this could save us from
|
||||
// having to do a bit cast...
|
||||
|
@ -1,174 +0,0 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, CallSiteValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use super::calculate_len_for_slice_range;
|
||||
use crate::codegen::{
|
||||
macros::codegen_unreachable,
|
||||
values::{ArrayLikeValue, ListValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// This function handles 'end' **inclusively**.
|
||||
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
|
||||
/// Negative index should be handled before entering this function
|
||||
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
dest_arr: ListValue<'ctx>,
|
||||
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
src_arr: ListValue<'ctx>,
|
||||
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
assert_eq!(dest_idx.0.get_type(), llvm_i32);
|
||||
assert_eq!(dest_idx.1.get_type(), llvm_i32);
|
||||
assert_eq!(dest_idx.2.get_type(), llvm_i32);
|
||||
assert_eq!(src_idx.0.get_type(), llvm_i32);
|
||||
assert_eq!(src_idx.1.get_type(), llvm_i32);
|
||||
assert_eq!(src_idx.2.get_type(), llvm_i32);
|
||||
|
||||
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
|
||||
let slice_assign_fun = {
|
||||
let ty_vec = vec![
|
||||
llvm_i32.into(), // dest start idx
|
||||
llvm_i32.into(), // dest end idx
|
||||
llvm_i32.into(), // dest step
|
||||
elem_ptr_type.into(), // dest arr ptr
|
||||
llvm_i32.into(), // dest arr len
|
||||
llvm_i32.into(), // src start idx
|
||||
llvm_i32.into(), // src end idx
|
||||
llvm_i32.into(), // src step
|
||||
elem_ptr_type.into(), // src arr ptr
|
||||
llvm_i32.into(), // src arr len
|
||||
llvm_i32.into(), // size
|
||||
];
|
||||
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
|
||||
let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
|
||||
ctx.module.add_function(fun_symbol, fn_t, None)
|
||||
})
|
||||
};
|
||||
|
||||
let zero = llvm_i32.const_zero();
|
||||
let one = llvm_i32.const_int(1, false);
|
||||
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
|
||||
let dest_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
|
||||
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
|
||||
let dest_len =
|
||||
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
|
||||
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
|
||||
let src_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
|
||||
let src_len = src_arr.load_size(ctx, Some("src.len"));
|
||||
let src_len =
|
||||
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
|
||||
|
||||
// index in bound and positive should be done
|
||||
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
|
||||
// throw exception if not satisfied
|
||||
let src_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let dest_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let src_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
|
||||
let dest_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
|
||||
let src_eq_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
|
||||
.unwrap();
|
||||
let src_slt_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
|
||||
.unwrap();
|
||||
let dest_step_eq_one = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
dest_idx.2,
|
||||
dest_idx.2.get_type().const_int(1, false),
|
||||
"slice_dest_step_eq_one",
|
||||
)
|
||||
.unwrap();
|
||||
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
|
||||
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cond,
|
||||
"0:ValueError",
|
||||
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
|
||||
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let new_len = {
|
||||
let args = vec![
|
||||
dest_idx.0.into(), // dest start idx
|
||||
dest_idx.1.into(), // dest end idx
|
||||
dest_idx.2.into(), // dest step
|
||||
dest_arr_ptr.into(), // dest arr ptr
|
||||
dest_len.into(), // dest arr len
|
||||
src_idx.0.into(), // src start idx
|
||||
src_idx.1.into(), // src end idx
|
||||
src_idx.2.into(), // src step
|
||||
src_arr_ptr.into(), // src arr ptr
|
||||
src_len.into(), // src arr len
|
||||
{
|
||||
let s = match ty {
|
||||
BasicTypeEnum::FloatType(t) => t.size_of(),
|
||||
BasicTypeEnum::IntType(t) => t.size_of(),
|
||||
BasicTypeEnum::PointerType(t) => t.size_of(),
|
||||
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
|
||||
}
|
||||
.into(),
|
||||
];
|
||||
ctx.builder
|
||||
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// update length
|
||||
let need_update =
|
||||
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
|
||||
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||
let update_bb = ctx.ctx.append_basic_block(current, "update");
|
||||
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
||||
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(update_bb);
|
||||
let new_len =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
|
||||
dest_arr.store_size(ctx, new_len);
|
||||
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(cont_bb);
|
||||
}
|
@ -1,168 +0,0 @@
|
||||
use inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use crate::codegen::{
|
||||
macros::codegen_unreachable,
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
|
||||
// repeated squaring method adapted from GNU Scientific Library:
|
||||
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
base: IntValue<'ctx>,
|
||||
exp: IntValue<'ctx>,
|
||||
signed: bool,
|
||||
) -> IntValue<'ctx> {
|
||||
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
|
||||
(32, 32, true) => "__nac3_int_exp_int32_t",
|
||||
(64, 64, true) => "__nac3_int_exp_int64_t",
|
||||
(32, 32, false) => "__nac3_int_exp_uint32_t",
|
||||
(64, 64, false) => "__nac3_int_exp_uint64_t",
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
let base_type = base.get_type();
|
||||
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
|
||||
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
|
||||
ctx.module.add_function(symbol, fn_type, None)
|
||||
});
|
||||
// throw exception when exp < 0
|
||||
let ge_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SGE,
|
||||
exp,
|
||||
exp.get_type().const_zero(),
|
||||
"assert_int_pow_ge_0",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ge_zero,
|
||||
"0:ValueError",
|
||||
"integer power must be positive or zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
|
||||
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_isinf", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isinf")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
|
||||
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_isnan", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isnan")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gamma", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gamma")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gammaln", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gammaln")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_j0", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "j0")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
@ -1,29 +1,27 @@
|
||||
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
||||
|
||||
use super::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
|
||||
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||
},
|
||||
llvm_intrinsics,
|
||||
macros::codegen_unreachable,
|
||||
stmt::gen_for_callback_incrementing,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
context::Context,
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::Module,
|
||||
values::{BasicValue, BasicValueEnum, IntValue},
|
||||
IntPredicate,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
|
||||
use itertools::Either;
|
||||
use nac3parser::ast::Expr;
|
||||
|
||||
use super::{CodeGenContext, CodeGenerator};
|
||||
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
||||
pub use list::*;
|
||||
pub use math::*;
|
||||
pub use range::*;
|
||||
pub use slice::*;
|
||||
pub use string::*;
|
||||
|
||||
mod list;
|
||||
mod math;
|
||||
pub mod ndarray;
|
||||
mod range;
|
||||
mod slice;
|
||||
mod string;
|
||||
|
||||
#[must_use]
|
||||
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
|
||||
let bitcode_buf = MemoryBuffer::create_from_memory_range(
|
||||
@ -63,21 +61,86 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
|
||||
irrt_mod
|
||||
}
|
||||
|
||||
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
|
||||
///
|
||||
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
|
||||
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
|
||||
#[must_use]
|
||||
pub fn get_usize_dependent_function_name(ctx: &CodeGenContext<'_, '_>, name: &str) -> String {
|
||||
let mut name = name.to_owned();
|
||||
match ctx.get_size_type().get_bit_width() {
|
||||
32 => {}
|
||||
64 => name.push_str("64"),
|
||||
bit_width => {
|
||||
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
||||
}
|
||||
}
|
||||
name
|
||||
// repeated squaring method adapted from GNU Scientific Library:
|
||||
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
base: IntValue<'ctx>,
|
||||
exp: IntValue<'ctx>,
|
||||
signed: bool,
|
||||
) -> IntValue<'ctx> {
|
||||
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
|
||||
(32, 32, true) => "__nac3_int_exp_int32_t",
|
||||
(64, 64, true) => "__nac3_int_exp_int64_t",
|
||||
(32, 32, false) => "__nac3_int_exp_uint32_t",
|
||||
(64, 64, false) => "__nac3_int_exp_uint64_t",
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
let base_type = base.get_type();
|
||||
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
|
||||
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
|
||||
ctx.module.add_function(symbol, fn_type, None)
|
||||
});
|
||||
// throw exception when exp < 0
|
||||
let ge_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SGE,
|
||||
exp,
|
||||
exp.get_type().const_zero(),
|
||||
"assert_int_pow_ge_0",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ge_zero,
|
||||
"0:ValueError",
|
||||
"integer power must be positive or zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
start: IntValue<'ctx>,
|
||||
end: IntValue<'ctx>,
|
||||
step: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
const SYMBOL: &str = "__nac3_range_slice_len";
|
||||
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
// assert step != 0, throw exception if not
|
||||
let not_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
not_zero,
|
||||
"0:ValueError",
|
||||
"step must not be zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
|
||||
@ -128,11 +191,10 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
length: IntValue<'ctx>,
|
||||
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
let zero = llvm_i32.const_zero();
|
||||
let one = llvm_i32.const_int(1, false);
|
||||
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let zero = int32.const_zero();
|
||||
let one = int32.const_int(1, false);
|
||||
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap();
|
||||
Ok(Some(match (start, end, step) {
|
||||
(s, e, None) => (
|
||||
if let Some(s) = s.as_ref() {
|
||||
@ -141,7 +203,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
None => return Ok(None),
|
||||
}
|
||||
} else {
|
||||
llvm_i32.const_zero()
|
||||
int32.const_zero()
|
||||
},
|
||||
{
|
||||
let e = if let Some(s) = e.as_ref() {
|
||||
@ -246,3 +308,644 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
/// this function allows index out of range, since python
|
||||
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
|
||||
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
|
||||
i: &Expr<Option<Type>>,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
length: IntValue<'ctx>,
|
||||
) -> Result<Option<IntValue<'ctx>>, String> {
|
||||
const SYMBOL: &str = "__nac3_slice_index_bound";
|
||||
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
|
||||
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(None);
|
||||
};
|
||||
Ok(Some(
|
||||
ctx.builder
|
||||
.build_call(func, &[i.into(), length.into()], "bounded_ind")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap(),
|
||||
))
|
||||
}
|
||||
|
||||
/// This function handles 'end' **inclusively**.
|
||||
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
|
||||
/// Negative index should be handled before entering this function
|
||||
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
dest_arr: ListValue<'ctx>,
|
||||
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
src_arr: ListValue<'ctx>,
|
||||
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
) {
|
||||
let size_ty = generator.get_size_type(ctx.ctx);
|
||||
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
|
||||
let slice_assign_fun = {
|
||||
let ty_vec = vec![
|
||||
int32.into(), // dest start idx
|
||||
int32.into(), // dest end idx
|
||||
int32.into(), // dest step
|
||||
elem_ptr_type.into(), // dest arr ptr
|
||||
int32.into(), // dest arr len
|
||||
int32.into(), // src start idx
|
||||
int32.into(), // src end idx
|
||||
int32.into(), // src step
|
||||
elem_ptr_type.into(), // src arr ptr
|
||||
int32.into(), // src arr len
|
||||
int32.into(), // size
|
||||
];
|
||||
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
|
||||
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
|
||||
ctx.module.add_function(fun_symbol, fn_t, None)
|
||||
})
|
||||
};
|
||||
|
||||
let zero = int32.const_zero();
|
||||
let one = int32.const_int(1, false);
|
||||
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
|
||||
let dest_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
|
||||
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
|
||||
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
|
||||
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
|
||||
let src_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
|
||||
let src_len = src_arr.load_size(ctx, Some("src.len"));
|
||||
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
|
||||
|
||||
// index in bound and positive should be done
|
||||
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
|
||||
// throw exception if not satisfied
|
||||
let src_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let dest_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let src_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
|
||||
let dest_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
|
||||
let src_eq_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
|
||||
.unwrap();
|
||||
let src_slt_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
|
||||
.unwrap();
|
||||
let dest_step_eq_one = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
dest_idx.2,
|
||||
dest_idx.2.get_type().const_int(1, false),
|
||||
"slice_dest_step_eq_one",
|
||||
)
|
||||
.unwrap();
|
||||
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
|
||||
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cond,
|
||||
"0:ValueError",
|
||||
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
|
||||
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let new_len = {
|
||||
let args = vec![
|
||||
dest_idx.0.into(), // dest start idx
|
||||
dest_idx.1.into(), // dest end idx
|
||||
dest_idx.2.into(), // dest step
|
||||
dest_arr_ptr.into(), // dest arr ptr
|
||||
dest_len.into(), // dest arr len
|
||||
src_idx.0.into(), // src start idx
|
||||
src_idx.1.into(), // src end idx
|
||||
src_idx.2.into(), // src step
|
||||
src_arr_ptr.into(), // src arr ptr
|
||||
src_len.into(), // src arr len
|
||||
{
|
||||
let s = match ty {
|
||||
BasicTypeEnum::FloatType(t) => t.size_of(),
|
||||
BasicTypeEnum::IntType(t) => t.size_of(),
|
||||
BasicTypeEnum::PointerType(t) => t.size_of(),
|
||||
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
|
||||
}
|
||||
.into(),
|
||||
];
|
||||
ctx.builder
|
||||
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
};
|
||||
// update length
|
||||
let need_update =
|
||||
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
|
||||
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||
let update_bb = ctx.ctx.append_basic_block(current, "update");
|
||||
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
||||
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(update_bb);
|
||||
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
|
||||
dest_arr.store_size(ctx, generator, new_len);
|
||||
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(cont_bb);
|
||||
}
|
||||
|
||||
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
|
||||
ctx.module.add_function("__nac3_isinf", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isinf")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
|
||||
ctx.module.add_function("__nac3_isnan", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isnan")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gamma", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gamma")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gammaln", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gammaln")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_j0", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "j0")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
||||
/// calculated total size.
|
||||
///
|
||||
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
||||
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
||||
/// or [`None`] if starting from the first dimension and ending at the last dimension
|
||||
/// respectively.
|
||||
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dims: &Dims,
|
||||
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Dims: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_size",
|
||||
64 => "__nac3_ndarray_calc_size64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
let ndarray_calc_size_fn =
|
||||
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
||||
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
||||
});
|
||||
|
||||
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
||||
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_size_fn,
|
||||
&[
|
||||
dims.base_ptr(ctx, generator).into(),
|
||||
dims.size(ctx, generator).into(),
|
||||
begin.into(),
|
||||
end.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
||||
/// containing `i32` indices of the flattened index.
|
||||
///
|
||||
/// * `index` - The index to compute the multidimensional index for.
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_nd_indices",
|
||||
64 => "__nac3_ndarray_calc_nd_indices64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_nd_indices_fn =
|
||||
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_void.fn_type(
|
||||
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_nd_indices_fn,
|
||||
&[
|
||||
index.into(),
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Indices,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Indices: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
debug_assert_eq!(
|
||||
IntType::try_from(indices.element_type(ctx, generator))
|
||||
.map(IntType::get_bit_width)
|
||||
.unwrap_or_default(),
|
||||
llvm_i32.get_bit_width(),
|
||||
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
debug_assert_eq!(
|
||||
indices.size(ctx, generator).get_type().get_bit_width(),
|
||||
llvm_usize.get_bit_width(),
|
||||
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
|
||||
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_flatten_index",
|
||||
64 => "__nac3_ndarray_flatten_index64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_flatten_index_fn =
|
||||
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_call(
|
||||
ndarray_flatten_index_fn,
|
||||
&[
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.base_ptr(ctx, generator).into(),
|
||||
indices.size(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
index
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||
/// multidimensional index.
|
||||
///
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
/// * `indices` - The multidimensional index to compute the flattened index for.
|
||||
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Index,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Index: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
||||
/// dimension and size of each dimension of the resultant `ndarray`.
|
||||
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
lhs: NDArrayValue<'ctx>,
|
||||
rhs: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast",
|
||||
64 => "__nac3_ndarray_calc_broadcast64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(min_ndims, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
||||
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
||||
(
|
||||
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
)
|
||||
};
|
||||
|
||||
let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
||||
let lhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let rhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
||||
|
||||
let lhs_eq_rhs = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
||||
.unwrap();
|
||||
|
||||
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
is_compatible,
|
||||
"0:ValueError",
|
||||
"operands could not be broadcast together",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
||||
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
||||
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[
|
||||
lhs_dims.into(),
|
||||
lhs_ndims.into(),
|
||||
rhs_dims.into(),
|
||||
rhs_ndims.into(),
|
||||
out_dims.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
out_dims,
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
||||
/// array `broadcast_idx`.
|
||||
pub fn call_ndarray_calc_broadcast_index<
|
||||
'ctx,
|
||||
G: CodeGenerator + ?Sized,
|
||||
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
||||
>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
array: NDArrayValue<'ctx>,
|
||||
broadcast_idx: &BroadcastIdx,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast_idx",
|
||||
64 => "__nac3_ndarray_calc_broadcast_idx64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let broadcast_size = broadcast_idx.size(ctx, generator);
|
||||
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
||||
|
||||
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
|
||||
let array_ndims = array.load_ndims(ctx);
|
||||
let broadcast_idx_ptr = unsafe {
|
||||
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
@ -1,72 +0,0 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::IntValue};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
|
||||
///
|
||||
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
|
||||
/// there is any issue with the resultant `shape`.
|
||||
///
|
||||
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
|
||||
/// initialized to all `-1`s.
|
||||
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
list: ListValue<'ctx>,
|
||||
ndims: IntValue<'ctx>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
|
||||
assert_eq!(ndims.get_type(), llvm_usize);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name =
|
||||
get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_set_and_validate_list_shape");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
|
||||
///
|
||||
/// Copies the contents stored in `list` into `ndarray`.
|
||||
///
|
||||
/// The `ndarray` must fulfill the following preconditions:
|
||||
///
|
||||
/// - `ndarray.itemsize`: Must be initialized.
|
||||
/// - `ndarray.ndims`: Must be initialized.
|
||||
/// - `ndarray.shape`: Must be initialized.
|
||||
/// - `ndarray.data`: Must be allocated and contiguous.
|
||||
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
list: ListValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_write_list_to_array");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[list.as_base_value().into(), ndarray.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -1,295 +0,0 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::{create_and_call_function, infer_and_call_function},
|
||||
irrt::get_usize_dependent_function_name,
|
||||
types::ProxyType,
|
||||
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
|
||||
///
|
||||
/// Assets that `shape` does not contain negative dimensions.
|
||||
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name =
|
||||
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_shape_no_negative");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[
|
||||
(llvm_usize.into(), shape.size(ctx, generator).into()),
|
||||
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
|
||||
///
|
||||
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
|
||||
/// an `ndarray`.
|
||||
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name =
|
||||
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_output_shape_same");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[
|
||||
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
|
||||
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
|
||||
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
|
||||
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_size`.
|
||||
///
|
||||
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
|
||||
/// `ndarray`, corresponding to the value of `ndarray.size`.
|
||||
pub fn call_nac3_ndarray_size<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_size");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("size"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_nbytes`.
|
||||
///
|
||||
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
|
||||
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
|
||||
pub fn call_nac3_ndarray_nbytes<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_nbytes");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("nbytes"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_len`.
|
||||
///
|
||||
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
|
||||
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
|
||||
pub fn call_nac3_ndarray_len<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_len");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("len"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
|
||||
///
|
||||
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
|
||||
pub fn call_nac3_ndarray_is_c_contiguous<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_is_c_contiguous");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_i1.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("is_c_contiguous"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
|
||||
///
|
||||
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
|
||||
pub fn call_nac3_ndarray_get_nth_pelement<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
index: IntValue<'ctx>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
assert_eq!(index.get_type(), llvm_usize);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_nth_pelement");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_pi8.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
|
||||
Some("pelement"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
|
||||
///
|
||||
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
|
||||
///
|
||||
/// Returns a [`PointerValue`] to the element indexed by `indices`.
|
||||
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_pelement_by_indices");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_pi8.into()),
|
||||
&[
|
||||
(llvm_ndarray.into(), ndarray.as_base_value().into()),
|
||||
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
Some("pelement"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
|
||||
///
|
||||
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
|
||||
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_set_strides_by_shape");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_copy_data`.
|
||||
///
|
||||
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
|
||||
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
|
||||
/// `dst_ndarray`.
|
||||
pub fn call_nac3_ndarray_copy_data<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_copy_data");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -1,81 +0,0 @@
|
||||
use inkwell::values::IntValue;
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
types::{ndarray::ShapeEntryType, ProxyType},
|
||||
values::{
|
||||
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
|
||||
TypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_broadcast_to`.
|
||||
///
|
||||
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
|
||||
///
|
||||
/// `dst_ndarray` must meet the following preconditions:
|
||||
///
|
||||
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
|
||||
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
|
||||
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
|
||||
pub fn call_nac3_ndarray_broadcast_to<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_to");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
|
||||
///
|
||||
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
|
||||
/// writing the result to `dst_shape`.
|
||||
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
num_shape_entries: IntValue<'ctx>,
|
||||
shape_entries: ArraySliceValue<'ctx>,
|
||||
dst_ndims: IntValue<'ctx>,
|
||||
dst_shape: &Shape,
|
||||
) where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
|
||||
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
|
||||
{
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert_eq!(num_shape_entries.get_type(), llvm_usize);
|
||||
assert!(ShapeEntryType::is_type(
|
||||
generator,
|
||||
ctx.ctx,
|
||||
shape_entries.base_ptr(ctx, generator).get_type()
|
||||
)
|
||||
.is_ok());
|
||||
assert_eq!(dst_ndims.get_type(), llvm_usize);
|
||||
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_shapes");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
num_shape_entries.into(),
|
||||
shape_entries.base_ptr(ctx, generator).into(),
|
||||
dst_ndims.into(),
|
||||
dst_shape.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -1,34 +0,0 @@
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_index`.
|
||||
///
|
||||
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
|
||||
/// operation `dst_ndarray = src_ndarray[indices]`.
|
||||
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_index");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
indices.size(ctx, generator).into(),
|
||||
indices.base_ptr(ctx, generator).into(),
|
||||
src_ndarray.as_base_value().into(),
|
||||
dst_ndarray.as_base_value().into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -1,81 +0,0 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, IntValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::{create_and_call_function, infer_and_call_function},
|
||||
irrt::get_usize_dependent_function_name,
|
||||
types::ProxyType,
|
||||
values::{
|
||||
ndarray::{NDArrayValue, NDIterValue},
|
||||
ProxyValue, TypedArrayLikeAccessor,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_nditer_initialize`.
|
||||
///
|
||||
/// Initializes the `iter` object.
|
||||
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
iter: NDIterValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_initialize");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
(iter.get_type().as_base_type().into(), iter.as_base_value().into()),
|
||||
(ndarray.get_type().as_base_type().into(), ndarray.as_base_value().into()),
|
||||
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_nditer_initialize_has_element`.
|
||||
///
|
||||
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
|
||||
/// object.
|
||||
pub fn call_nac3_nditer_has_element<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
iter: NDIterValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_has_element");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(ctx.ctx.bool_type().into()),
|
||||
&[iter.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_nditer_next`.
|
||||
///
|
||||
/// Moves `iter` to point to the next element.
|
||||
pub fn call_nac3_nditer_next<'ctx>(ctx: &CodeGenContext<'ctx, '_>, iter: NDIterValue<'ctx>) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_next");
|
||||
|
||||
infer_and_call_function(ctx, &name, None, &[iter.as_base_value().into()], None, None);
|
||||
}
|
@ -1,65 +0,0 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::IntValue};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
|
||||
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
|
||||
///
|
||||
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
|
||||
/// `a @ b`.
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
final_ndims: IntValue<'ctx>,
|
||||
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_matmul_calculate_shapes");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
a_shape.size(ctx, generator).into(),
|
||||
a_shape.base_ptr(ctx, generator).into(),
|
||||
b_shape.size(ctx, generator).into(),
|
||||
b_shape.base_ptr(ctx, generator).into(),
|
||||
final_ndims.into(),
|
||||
new_a_shape.base_ptr(ctx, generator).into(),
|
||||
new_b_shape.base_ptr(ctx, generator).into(),
|
||||
dst_shape.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -1,17 +0,0 @@
|
||||
pub use array::*;
|
||||
pub use basic::*;
|
||||
pub use broadcast::*;
|
||||
pub use indexing::*;
|
||||
pub use iter::*;
|
||||
pub use matmul::*;
|
||||
pub use reshape::*;
|
||||
pub use transpose::*;
|
||||
|
||||
mod array;
|
||||
mod basic;
|
||||
mod broadcast;
|
||||
mod indexing;
|
||||
mod iter;
|
||||
mod matmul;
|
||||
mod reshape;
|
||||
mod transpose;
|
@ -1,39 +0,0 @@
|
||||
use inkwell::values::IntValue;
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ArrayLikeValue, ArraySliceValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
|
||||
///
|
||||
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
|
||||
/// assertion if multiple dimensions are unknown (`-1`).
|
||||
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
new_ndims: IntValue<'ctx>,
|
||||
new_shape: ArraySliceValue<'ctx>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert_eq!(size.get_type(), llvm_usize);
|
||||
assert_eq!(new_ndims.get_type(), llvm_usize);
|
||||
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
|
||||
|
||||
let name = get_usize_dependent_function_name(
|
||||
ctx,
|
||||
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
|
||||
);
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -1,48 +0,0 @@
|
||||
use inkwell::{values::IntValue, AddressSpace};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_transpose`.
|
||||
///
|
||||
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
|
||||
///
|
||||
/// `dst_ndarray` must fulfill the following preconditions:
|
||||
///
|
||||
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
|
||||
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
|
||||
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
|
||||
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
|
||||
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_transpose");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
src_ndarray.as_base_value().into(),
|
||||
dst_ndarray.as_base_value().into(),
|
||||
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
|
||||
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
|
||||
axes.base_ptr(ctx, generator)
|
||||
})
|
||||
.into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
@ -1,56 +0,0 @@
|
||||
use inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
/// Invokes the `__nac3_range_slice_len` in IRRT.
|
||||
///
|
||||
/// - `start`: The `i32` start value for the slice.
|
||||
/// - `end`: The `i32` end value for the slice.
|
||||
/// - `step`: The `i32` step value for the slice.
|
||||
///
|
||||
/// Returns an `i32` value of the length of the slice.
|
||||
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
start: IntValue<'ctx>,
|
||||
end: IntValue<'ctx>,
|
||||
step: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
const SYMBOL: &str = "__nac3_range_slice_len";
|
||||
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
assert_eq!(start.get_type(), llvm_i32);
|
||||
assert_eq!(end.get_type(), llvm_i32);
|
||||
assert_eq!(step.get_type(), llvm_i32);
|
||||
|
||||
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
// assert step != 0, throw exception if not
|
||||
let not_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
not_zero,
|
||||
"0:ValueError",
|
||||
"step must not be zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
ctx.builder
|
||||
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
@ -1,39 +0,0 @@
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue};
|
||||
use itertools::Either;
|
||||
|
||||
use nac3parser::ast::Expr;
|
||||
|
||||
use crate::{
|
||||
codegen::{CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
/// this function allows index out of range, since python
|
||||
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
|
||||
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
|
||||
i: &Expr<Option<Type>>,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
length: IntValue<'ctx>,
|
||||
) -> Result<Option<IntValue<'ctx>>, String> {
|
||||
const SYMBOL: &str = "__nac3_slice_index_bound";
|
||||
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
|
||||
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(None);
|
||||
};
|
||||
Ok(Some(
|
||||
ctx.builder
|
||||
.build_call(func, &[i.into(), length.into()], "bounded_ind")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap(),
|
||||
))
|
||||
}
|
@ -1,45 +0,0 @@
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
|
||||
use itertools::Either;
|
||||
|
||||
use super::get_usize_dependent_function_name;
|
||||
use crate::codegen::CodeGenContext;
|
||||
|
||||
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
|
||||
pub fn call_string_eq<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
str1_ptr: PointerValue<'ctx>,
|
||||
str1_len: IntValue<'ctx>,
|
||||
str2_ptr: PointerValue<'ctx>,
|
||||
str2_len: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let func_name = get_usize_dependent_function_name(ctx, "nac3_str_eq");
|
||||
|
||||
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
|
||||
ctx.module.add_function(
|
||||
&func_name,
|
||||
llvm_i1.fn_type(
|
||||
&[
|
||||
str1_ptr.get_type().into(),
|
||||
str1_len.get_type().into(),
|
||||
str2_ptr.get_type().into(),
|
||||
str2_len.get_type().into(),
|
||||
],
|
||||
false,
|
||||
),
|
||||
None,
|
||||
)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
func,
|
||||
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
|
||||
"str_eq_call",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
@ -1,12 +1,39 @@
|
||||
use inkwell::{
|
||||
intrinsics::Intrinsic,
|
||||
types::AnyTypeEnum::IntType,
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use crate::codegen::CodeGenContext;
|
||||
use inkwell::context::Context;
|
||||
use inkwell::intrinsics::Intrinsic;
|
||||
use inkwell::types::AnyTypeEnum::IntType;
|
||||
use inkwell::types::FloatType;
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
|
||||
use inkwell::AddressSpace;
|
||||
use itertools::Either;
|
||||
|
||||
use super::CodeGenContext;
|
||||
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
|
||||
/// functions.
|
||||
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
|
||||
// Standard LLVM floating-point types
|
||||
if ft == ctx.f16_type() {
|
||||
return "f16";
|
||||
}
|
||||
if ft == ctx.f32_type() {
|
||||
return "f32";
|
||||
}
|
||||
if ft == ctx.f64_type() {
|
||||
return "f64";
|
||||
}
|
||||
if ft == ctx.f128_type() {
|
||||
return "f128";
|
||||
}
|
||||
|
||||
// Non-standard floating-point types
|
||||
if ft == ctx.x86_f80_type() {
|
||||
return "f80";
|
||||
}
|
||||
if ft == ctx.ppc_f128_type() {
|
||||
return "ppcf128";
|
||||
}
|
||||
|
||||
unreachable!()
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
|
||||
/// intrinsic.
|
||||
@ -25,7 +52,7 @@ pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue
|
||||
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
|
||||
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
|
||||
const FN_NAME: &str = "llvm.va_end";
|
||||
@ -172,49 +199,6 @@ pub fn call_memcpy_generic<'ctx>(
|
||||
call_memcpy(ctx, dest, src, len, is_volatile);
|
||||
}
|
||||
|
||||
/// Invokes the `llvm.memcpy` intrinsic.
|
||||
///
|
||||
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
|
||||
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
|
||||
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
|
||||
/// copy).
|
||||
pub fn call_memcpy_generic_array<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dest: PointerValue<'ctx>,
|
||||
src: PointerValue<'ctx>,
|
||||
len: IntValue<'ctx>,
|
||||
is_volatile: IntValue<'ctx>,
|
||||
) {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
|
||||
|
||||
let dest_elem_t = dest.get_type().get_element_type();
|
||||
let src_elem_t = src.get_type().get_element_type();
|
||||
|
||||
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
|
||||
dest
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bit_cast(dest, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
|
||||
src
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bit_cast(src, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
|
||||
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
|
||||
|
||||
call_memcpy(ctx, dest, src, len, is_volatile);
|
||||
}
|
||||
|
||||
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
|
||||
///
|
||||
/// Arguments:
|
||||
@ -357,25 +341,3 @@ pub fn call_float_powi<'ctx>(
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
|
||||
pub fn call_int_ctpop<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> IntValue<'ctx> {
|
||||
const FN_NAME: &str = "llvm.ctpop";
|
||||
|
||||
let llvm_src_t = src.get_type();
|
||||
|
||||
let intrinsic_fn = Intrinsic::find(FN_NAME)
|
||||
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
|
||||
.unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
@ -1,13 +1,12 @@
|
||||
use std::{
|
||||
cell::OnceCell,
|
||||
collections::{HashMap, HashSet},
|
||||
sync::{
|
||||
atomic::{AtomicBool, Ordering},
|
||||
Arc,
|
||||
use crate::{
|
||||
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||
symbol_resolver::{StaticValue, SymbolResolver},
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
|
||||
typecheck::{
|
||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
},
|
||||
thread,
|
||||
};
|
||||
|
||||
use crossbeam::channel::{unbounded, Receiver, Sender};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
@ -20,32 +19,22 @@ use inkwell::{
|
||||
module::Module,
|
||||
passes::PassBuilderOptions,
|
||||
targets::{CodeModel, RelocMode, Target, TargetMachine, TargetTriple},
|
||||
types::{AnyType, BasicType, BasicTypeEnum, IntType},
|
||||
types::{AnyType, BasicType, BasicTypeEnum},
|
||||
values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use parking_lot::{Condvar, Mutex};
|
||||
|
||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||
|
||||
use crate::{
|
||||
symbol_resolver::{StaticValue, SymbolResolver},
|
||||
toplevel::{
|
||||
helper::{extract_ndims, PrimDef},
|
||||
numpy::unpack_ndarray_var_tys,
|
||||
TopLevelContext, TopLevelDef,
|
||||
},
|
||||
typecheck::{
|
||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
},
|
||||
use parking_lot::{Condvar, Mutex};
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::{
|
||||
atomic::{AtomicBool, Ordering},
|
||||
Arc,
|
||||
};
|
||||
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
|
||||
pub use generator::{CodeGenerator, DefaultCodeGenerator};
|
||||
use types::{ndarray::NDArrayType, ListType, ProxyType, RangeType, TupleType};
|
||||
use std::thread;
|
||||
|
||||
pub mod builtin_fns;
|
||||
pub mod classes;
|
||||
pub mod concrete_type;
|
||||
pub mod expr;
|
||||
pub mod extern_fns;
|
||||
@ -54,12 +43,13 @@ pub mod irrt;
|
||||
pub mod llvm_intrinsics;
|
||||
pub mod numpy;
|
||||
pub mod stmt;
|
||||
pub mod types;
|
||||
pub mod values;
|
||||
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
|
||||
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
|
||||
pub use generator::{CodeGenerator, DefaultCodeGenerator};
|
||||
|
||||
mod macros {
|
||||
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
|
||||
/// its first argument to provide Python source information to indicate the codegen location
|
||||
@ -227,33 +217,14 @@ pub struct CodeGenContext<'ctx, 'a> {
|
||||
|
||||
/// The current source location.
|
||||
pub current_loc: Location,
|
||||
|
||||
/// The cached type of `size_t`.
|
||||
llvm_usize: OnceCell<IntType<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> CodeGenContext<'ctx, '_> {
|
||||
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
||||
/// Whether the [current basic block][Builder::get_insert_block] referenced by `builder`
|
||||
/// contains a [terminator statement][BasicBlock::get_terminator].
|
||||
pub fn is_terminated(&self) -> bool {
|
||||
self.builder.get_insert_block().and_then(BasicBlock::get_terminator).is_some()
|
||||
}
|
||||
|
||||
/// Returns a [`IntType`] representing `size_t` for the compilation target as specified by
|
||||
/// [`self.registry`][WorkerRegistry].
|
||||
pub fn get_size_type(&self) -> IntType<'ctx> {
|
||||
*self.llvm_usize.get_or_init(|| {
|
||||
self.ctx.ptr_sized_int_type(
|
||||
&self
|
||||
.registry
|
||||
.llvm_options
|
||||
.create_target_machine()
|
||||
.map(|tm| tm.get_target_data())
|
||||
.unwrap(),
|
||||
None,
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
type Fp = Box<dyn Fn(&Module) + Send + Sync>;
|
||||
@ -501,38 +472,6 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
type_cache.get(&unifier.get_representative(ty)).copied().unwrap_or_else(|| {
|
||||
let ty_enum = unifier.get_ty(ty);
|
||||
let result = match &*ty_enum {
|
||||
TModule {module_id, attributes} => {
|
||||
let top_level_defs = top_level.definitions.read();
|
||||
let definition = top_level_defs.get(module_id.0).unwrap();
|
||||
let TopLevelDef::Module { name, attributes: attribute_fields, .. } = &*definition.read() else {
|
||||
unreachable!()
|
||||
};
|
||||
let ty: BasicTypeEnum<'_> = if let Some(t) = module.get_struct_type(&name.to_string()) {
|
||||
t.ptr_type(AddressSpace::default()).into()
|
||||
} else {
|
||||
let struct_type = ctx.opaque_struct_type(&name.to_string());
|
||||
type_cache.insert(
|
||||
unifier.get_representative(ty),
|
||||
struct_type.ptr_type(AddressSpace::default()).into(),
|
||||
);
|
||||
let module_fields: Vec<BasicTypeEnum<'_>> = attribute_fields.iter()
|
||||
.map(|f| {
|
||||
get_llvm_type(
|
||||
ctx,
|
||||
module,
|
||||
generator,
|
||||
unifier,
|
||||
top_level,
|
||||
type_cache,
|
||||
attributes[&f.0].0,
|
||||
)
|
||||
})
|
||||
.collect_vec();
|
||||
struct_type.set_body(&module_fields, false);
|
||||
struct_type.ptr_type(AddressSpace::default()).into()
|
||||
};
|
||||
return ty;
|
||||
},
|
||||
TObj { obj_id, fields, .. } => {
|
||||
// check to avoid treating non-class primitives as classes
|
||||
if PrimDef::contains_id(*obj_id) {
|
||||
@ -562,17 +501,16 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
*params.iter().next().unwrap().1,
|
||||
);
|
||||
|
||||
ListType::new_with_generator(generator, ctx, element_type).as_base_type().into()
|
||||
ListType::new(generator, ctx, element_type).as_base_type().into()
|
||||
}
|
||||
|
||||
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(unifier, ty);
|
||||
let ndims = extract_ndims(unifier, ndims);
|
||||
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
|
||||
let element_type = get_llvm_type(
|
||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new_with_generator(generator, ctx, element_type, ndims).as_base_type().into()
|
||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
@ -626,7 +564,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty)
|
||||
})
|
||||
.collect_vec();
|
||||
TupleType::new_with_generator(generator, ctx, &fields).as_base_type().into()
|
||||
ctx.struct_type(&fields, false).into()
|
||||
}
|
||||
TVirtual { .. } => unimplemented!(),
|
||||
_ => unreachable!("{}", ty_enum.get_type_name()),
|
||||
@ -910,9 +848,10 @@ pub fn gen_func_impl<
|
||||
builder.position_at_end(init_bb);
|
||||
let body_bb = context.append_basic_block(fn_val, "body");
|
||||
|
||||
// Store non-vararg argument values into local variables
|
||||
let mut var_assignment = HashMap::new();
|
||||
let offset = u32::from(has_sret);
|
||||
|
||||
// Store non-vararg argument values into local variables
|
||||
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
|
||||
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
|
||||
let local_type = get_llvm_type(
|
||||
@ -1039,20 +978,8 @@ pub fn gen_func_impl<
|
||||
need_sret: has_sret,
|
||||
current_loc: Location::default(),
|
||||
debug_info: (dibuilder, compile_unit, func_scope.as_debug_info_scope()),
|
||||
llvm_usize: OnceCell::default(),
|
||||
};
|
||||
|
||||
let target_llvm_usize = context.ptr_sized_int_type(
|
||||
®istry.llvm_options.create_target_machine().map(|tm| tm.get_target_data()).unwrap(),
|
||||
None,
|
||||
);
|
||||
let generator_llvm_usize = generator.get_size_type(context);
|
||||
assert_eq!(
|
||||
generator_llvm_usize,
|
||||
target_llvm_usize,
|
||||
"CodeGenerator (size_t = {generator_llvm_usize}) is not compatible with CodeGen Target (size_t = {target_llvm_usize})",
|
||||
);
|
||||
|
||||
let loc = code_gen_context.debug_info.0.create_debug_location(
|
||||
context,
|
||||
row as u32,
|
||||
@ -1188,106 +1115,3 @@ fn gen_in_range_check<'ctx>(
|
||||
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
|
||||
format!("__{}_va_count", &arg_name).into()
|
||||
}
|
||||
|
||||
/// Returns the alignment of the type.
|
||||
///
|
||||
/// This is necessary as `get_alignment` is not implemented as part of [`BasicType`].
|
||||
pub fn get_type_alignment<'ctx>(ty: impl Into<BasicTypeEnum<'ctx>>) -> IntValue<'ctx> {
|
||||
match ty.into() {
|
||||
BasicTypeEnum::ArrayType(ty) => ty.get_alignment(),
|
||||
BasicTypeEnum::FloatType(ty) => ty.get_alignment(),
|
||||
BasicTypeEnum::IntType(ty) => ty.get_alignment(),
|
||||
BasicTypeEnum::PointerType(ty) => ty.get_alignment(),
|
||||
BasicTypeEnum::StructType(ty) => ty.get_alignment(),
|
||||
BasicTypeEnum::VectorType(ty) => ty.get_alignment(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Inserts an `alloca` instruction with allocation `size` given in bytes and the alignment of the
|
||||
/// given type.
|
||||
///
|
||||
/// The returned [`PointerValue`] will have a type of `i8*`, a size of at least `size`, and will be
|
||||
/// aligned with the alignment of `align_ty`.
|
||||
pub fn type_aligned_alloca<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
align_ty: impl Into<BasicTypeEnum<'ctx>>,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
/// Round `val` up to its modulo `power_of_two`.
|
||||
fn round_up<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
val: IntValue<'ctx>,
|
||||
power_of_two: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
debug_assert_eq!(
|
||||
val.get_type().get_bit_width(),
|
||||
power_of_two.get_type().get_bit_width(),
|
||||
"`val` ({}) and `power_of_two` ({}) must be the same type",
|
||||
val.get_type(),
|
||||
power_of_two.get_type(),
|
||||
);
|
||||
|
||||
let llvm_val_t = val.get_type();
|
||||
|
||||
let max_rem =
|
||||
ctx.builder.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "").unwrap();
|
||||
ctx.builder
|
||||
.build_and(
|
||||
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
|
||||
ctx.builder.build_not(max_rem, "").unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let align_ty = align_ty.into();
|
||||
|
||||
let size = ctx.builder.build_int_truncate_or_bit_cast(size, llvm_usize, "").unwrap();
|
||||
|
||||
debug_assert_eq!(
|
||||
size.get_type().get_bit_width(),
|
||||
llvm_usize.get_bit_width(),
|
||||
"Expected size_t ({}) for parameter `size` of `aligned_alloca`, got {}",
|
||||
llvm_usize,
|
||||
size.get_type(),
|
||||
);
|
||||
|
||||
let alignment = get_type_alignment(align_ty);
|
||||
let alignment = ctx.builder.build_int_truncate_or_bit_cast(alignment, llvm_usize, "").unwrap();
|
||||
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let alignment_bitcount = llvm_intrinsics::call_int_ctpop(ctx, alignment, None);
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
alignment_bitcount,
|
||||
alignment_bitcount.get_type().const_int(1, false),
|
||||
"",
|
||||
)
|
||||
.unwrap(),
|
||||
"0:AssertionError",
|
||||
"Expected power-of-two alignment for aligned_alloca, got {0}",
|
||||
[Some(alignment), None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
let buffer_size = round_up(ctx, size, alignment);
|
||||
let aligned_slices = ctx.builder.build_int_unsigned_div(buffer_size, alignment, "").unwrap();
|
||||
|
||||
// Just to be absolutely sure, alloca in [i8 x alignment] slices
|
||||
let buffer = ctx.builder.build_array_alloca(align_ty, aligned_slices, "").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_bit_cast(buffer, llvm_pi8, name.unwrap_or_default())
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,27 +1,9 @@
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
basic_block::BasicBlock,
|
||||
builder::Builder,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::{izip, Itertools};
|
||||
|
||||
use nac3parser::ast::{
|
||||
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
||||
};
|
||||
|
||||
use super::{
|
||||
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
||||
expr::{destructure_range, gen_binop_expr},
|
||||
gen_in_range_check,
|
||||
irrt::{handle_slice_indices, list_slice_assignment},
|
||||
macros::codegen_unreachable,
|
||||
types::ndarray::NDArrayType,
|
||||
values::{
|
||||
ndarray::{RustNDIndex, ScalarOrNDArray},
|
||||
ArrayLikeIndexer, ArraySliceValue, ListValue, ProxyValue, RangeValue,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::{
|
||||
@ -32,6 +14,17 @@ use crate::{
|
||||
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
basic_block::BasicBlock,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::{izip, Itertools};
|
||||
use nac3parser::ast::{
|
||||
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
||||
};
|
||||
|
||||
/// See [`CodeGenerator::gen_var_alloc`].
|
||||
pub fn gen_var<'ctx>(
|
||||
@ -307,7 +300,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle list item assignment
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let target_item_ty = iter_type_vars(list_params).next().unwrap().ty;
|
||||
|
||||
let target = generator
|
||||
@ -315,7 +308,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?
|
||||
.into_pointer_value();
|
||||
let target = ListValue::from_pointer_value(target, llvm_usize, None);
|
||||
let target = ListValue::from_ptr_val(target, llvm_usize, None);
|
||||
|
||||
if let ExprKind::Slice { .. } = &key.node {
|
||||
// Handle assigning to a slice
|
||||
@ -336,7 +329,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
|
||||
let value =
|
||||
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
|
||||
let value = ListValue::from_pointer_value(value, llvm_usize, None);
|
||||
let value = ListValue::from_ptr_val(value, llvm_usize, None);
|
||||
|
||||
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
|
||||
let Some(src_ind) = handle_slice_indices(
|
||||
@ -368,8 +361,10 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, key_ty)?
|
||||
.into_int_value();
|
||||
let index =
|
||||
ctx.builder.build_int_s_extend(index, ctx.get_size_type(), "sext").unwrap();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_int_s_extend(index, generator.get_size_type(ctx.ctx), "sext")
|
||||
.unwrap();
|
||||
|
||||
// handle negative index
|
||||
let is_negative = ctx
|
||||
@ -377,7 +372,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
index,
|
||||
ctx.get_size_type().const_zero(),
|
||||
generator.get_size_type(ctx.ctx).const_zero(),
|
||||
"is_neg",
|
||||
)
|
||||
.unwrap();
|
||||
@ -414,51 +409,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle NDArray item assignment
|
||||
// Process target
|
||||
let target = generator
|
||||
.gen_expr(ctx, target)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||
|
||||
// Process key
|
||||
let key = RustNDIndex::from_subscript_expr(generator, ctx, key)?;
|
||||
|
||||
// Process value
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
|
||||
// Reference code:
|
||||
// ```python
|
||||
// target = target[key]
|
||||
// value = np.asarray(value)
|
||||
//
|
||||
// shape = np.broadcast_shape((target, value))
|
||||
//
|
||||
// target = np.broadcast_to(target, shape)
|
||||
// value = np.broadcast_to(value, shape)
|
||||
//
|
||||
// # ...and finally copy 1-1 from value to target.
|
||||
// ```
|
||||
|
||||
let target = NDArrayType::from_unifier_type(generator, ctx, target_ty)
|
||||
.map_value(target.into_pointer_value(), None);
|
||||
let target = target.index(generator, ctx, &key);
|
||||
|
||||
let value = ScalarOrNDArray::from_value(generator, ctx, (value_ty, value))
|
||||
.to_ndarray(generator, ctx);
|
||||
|
||||
let broadcast_ndims =
|
||||
[target.get_type().ndims(), value.get_type().ndims()].into_iter().max().unwrap();
|
||||
let broadcast_result = NDArrayType::new(
|
||||
ctx,
|
||||
value.get_type().element_type(),
|
||||
broadcast_ndims,
|
||||
)
|
||||
.broadcast(generator, ctx, &[target, value]);
|
||||
|
||||
let target = broadcast_result.ndarrays[0];
|
||||
let value = broadcast_result.ndarrays[1];
|
||||
|
||||
target.copy_data_from(ctx, value);
|
||||
todo!("ndarray subscript assignment is not yet implemented");
|
||||
}
|
||||
_ => {
|
||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||
@ -482,7 +433,7 @@ pub fn gen_for<G: CodeGenerator>(
|
||||
let var_assignment = ctx.var_assignment.clone();
|
||||
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let size_t = ctx.get_size_type();
|
||||
let size_t = generator.get_size_type(ctx.ctx);
|
||||
let zero = int32.const_zero();
|
||||
let current = ctx.builder.get_insert_block().and_then(BasicBlock::get_parent).unwrap();
|
||||
let body_bb = ctx.ctx.append_basic_block(current, "for.body");
|
||||
@ -510,8 +461,7 @@ pub fn gen_for<G: CodeGenerator>(
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let iter_val =
|
||||
RangeValue::from_pointer_value(iter_val.into_pointer_value(), Some("range"));
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
// Internal variable for loop; Cannot be assigned
|
||||
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
||||
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
||||
@ -663,25 +613,11 @@ pub fn gen_for<G: CodeGenerator>(
|
||||
#[derive(PartialEq, Eq, Debug, Clone, Copy, Hash)]
|
||||
pub struct BreakContinueHooks<'ctx> {
|
||||
/// The [exit block][`BasicBlock`] to branch to when `break`-ing out of a loop.
|
||||
exit_bb: BasicBlock<'ctx>,
|
||||
pub exit_bb: BasicBlock<'ctx>,
|
||||
|
||||
/// The [latch basic block][`BasicBlock`] to branch to for `continue`-ing to the next iteration
|
||||
/// of the loop.
|
||||
latch_bb: BasicBlock<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> BreakContinueHooks<'ctx> {
|
||||
/// Creates a [`br` instruction][Builder::build_unconditional_branch] to the exit
|
||||
/// [`BasicBlock`], as if by calling `break`.
|
||||
pub fn build_break_branch(&self, builder: &Builder<'ctx>) {
|
||||
builder.build_unconditional_branch(self.exit_bb).unwrap();
|
||||
}
|
||||
|
||||
/// Creates a [`br` instruction][Builder::build_unconditional_branch] to the latch
|
||||
/// [`BasicBlock`], as if by calling `continue`.
|
||||
pub fn build_continue_branch(&self, builder: &Builder<'ctx>) {
|
||||
builder.build_unconditional_branch(self.latch_bb).unwrap();
|
||||
}
|
||||
pub latch_bb: BasicBlock<'ctx>,
|
||||
}
|
||||
|
||||
/// Generates a C-style `for` construct using lambdas, similar to the following C code:
|
||||
@ -1890,37 +1826,6 @@ pub fn gen_stmt<G: CodeGenerator>(
|
||||
stmt.location,
|
||||
);
|
||||
}
|
||||
StmtKind::Global { names, .. } => {
|
||||
let registered_globals = ctx
|
||||
.top_level
|
||||
.definitions
|
||||
.read()
|
||||
.iter()
|
||||
.filter_map(|def| {
|
||||
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
|
||||
Some((*simple_name, *ty))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
for id in names {
|
||||
let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else {
|
||||
return Err(format!("{id} is not a global at {}", stmt.location));
|
||||
};
|
||||
|
||||
let resolver = ctx.resolver.clone();
|
||||
let ptr = resolver
|
||||
.get_symbol_value(*id, ctx, generator)
|
||||
.map(|val| val.to_basic_value_enum(ctx, generator, *ty))
|
||||
.transpose()?
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
ctx.var_assignment.insert(*id, (ptr, None, 0));
|
||||
}
|
||||
}
|
||||
_ => unimplemented!(),
|
||||
};
|
||||
Ok(())
|
||||
|
@ -1,41 +1,39 @@
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
sync::Arc,
|
||||
};
|
||||
|
||||
use indexmap::IndexMap;
|
||||
use indoc::indoc;
|
||||
use inkwell::{
|
||||
targets::{InitializationConfig, Target},
|
||||
OptimizationLevel,
|
||||
};
|
||||
use nac3parser::{
|
||||
ast::{fold::Fold, FileName, StrRef},
|
||||
parser::parse_program,
|
||||
};
|
||||
use parking_lot::RwLock;
|
||||
|
||||
use super::{
|
||||
concrete_type::ConcreteTypeStore,
|
||||
types::{ndarray::NDArrayType, ListType, ProxyType, RangeType},
|
||||
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
|
||||
DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
};
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||
concrete_type::ConcreteTypeStore,
|
||||
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
|
||||
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
},
|
||||
symbol_resolver::{SymbolResolver, ValueEnum},
|
||||
toplevel::{
|
||||
composer::{ComposerConfig, TopLevelComposer},
|
||||
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
|
||||
},
|
||||
typecheck::{
|
||||
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
|
||||
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
|
||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
||||
},
|
||||
};
|
||||
use indexmap::IndexMap;
|
||||
use indoc::indoc;
|
||||
use inkwell::{
|
||||
targets::{InitializationConfig, Target},
|
||||
OptimizationLevel,
|
||||
};
|
||||
use nac3parser::ast::FileName;
|
||||
use nac3parser::{
|
||||
ast::{fold::Fold, StrRef},
|
||||
parser::parse_program,
|
||||
};
|
||||
use parking_lot::RwLock;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::Arc;
|
||||
|
||||
struct Resolver {
|
||||
id_to_type: HashMap<StrRef, Type>,
|
||||
id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
|
||||
class_names: HashMap<StrRef, Type>,
|
||||
}
|
||||
|
||||
impl Resolver {
|
||||
@ -66,7 +64,6 @@ impl SymbolResolver for Resolver {
|
||||
&self,
|
||||
_: StrRef,
|
||||
_: &mut CodeGenContext<'ctx, '_>,
|
||||
_: &mut dyn CodeGenerator,
|
||||
) -> Option<ValueEnum<'ctx>> {
|
||||
unimplemented!()
|
||||
}
|
||||
@ -97,18 +94,19 @@ fn test_primitives() {
|
||||
"};
|
||||
let statements = parse_program(source, FileName::default()).unwrap();
|
||||
|
||||
let context = inkwell::context::Context::create();
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
|
||||
let mut unifier = composer.unifier.clone();
|
||||
let primitives = composer.primitives_ty;
|
||||
let top_level = Arc::new(composer.make_top_level_context());
|
||||
unifier.top_level = Some(top_level.clone());
|
||||
|
||||
let resolver =
|
||||
Arc::new(Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) })
|
||||
as Arc<dyn SymbolResolver + Send + Sync>;
|
||||
let resolver = Arc::new(Resolver {
|
||||
id_to_type: HashMap::new(),
|
||||
id_to_def: RwLock::new(HashMap::new()),
|
||||
class_names: HashMap::default(),
|
||||
}) as Arc<dyn SymbolResolver + Send + Sync>;
|
||||
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), context.i64_type()).into()];
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
|
||||
let signature = FunSignature {
|
||||
args: vec![
|
||||
FuncArg {
|
||||
@ -140,8 +138,7 @@ fn test_primitives() {
|
||||
};
|
||||
let mut virtual_checks = Vec::new();
|
||||
let mut calls = HashMap::new();
|
||||
let mut identifiers: HashMap<_, _> =
|
||||
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
|
||||
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into();
|
||||
let mut inferencer = Inferencer {
|
||||
top_level: &top_level,
|
||||
function_data: &mut function_data,
|
||||
@ -261,8 +258,7 @@ fn test_simple_call() {
|
||||
"};
|
||||
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
|
||||
|
||||
let context = inkwell::context::Context::create();
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
|
||||
let mut unifier = composer.unifier.clone();
|
||||
let primitives = composer.primitives_ty;
|
||||
let top_level = Arc::new(composer.make_top_level_context());
|
||||
@ -297,7 +293,11 @@ fn test_simple_call() {
|
||||
loc: None,
|
||||
})));
|
||||
|
||||
let resolver = Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) };
|
||||
let resolver = Resolver {
|
||||
id_to_type: HashMap::new(),
|
||||
id_to_def: RwLock::new(HashMap::new()),
|
||||
class_names: HashMap::default(),
|
||||
};
|
||||
resolver.add_id_def("foo".into(), DefinitionId(foo_id));
|
||||
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
|
||||
|
||||
@ -309,7 +309,7 @@ fn test_simple_call() {
|
||||
unreachable!()
|
||||
}
|
||||
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), context.i64_type()).into()];
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
|
||||
let mut function_data = FunctionData {
|
||||
resolver: resolver.clone(),
|
||||
bound_variables: Vec::new(),
|
||||
@ -317,8 +317,7 @@ fn test_simple_call() {
|
||||
};
|
||||
let mut virtual_checks = Vec::new();
|
||||
let mut calls = HashMap::new();
|
||||
let mut identifiers: HashMap<_, _> =
|
||||
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
|
||||
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into();
|
||||
let mut inferencer = Inferencer {
|
||||
top_level: &top_level,
|
||||
function_data: &mut function_data,
|
||||
@ -441,13 +440,13 @@ fn test_simple_call() {
|
||||
#[test]
|
||||
fn test_classes_list_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), ctx.i64_type());
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_list = ListType::new_with_generator(&generator, &ctx, llvm_i32.into());
|
||||
assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
|
||||
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -455,17 +454,17 @@ fn test_classes_range_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
|
||||
let llvm_range = RangeType::new(&ctx);
|
||||
assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
|
||||
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_ndarray_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), ctx.i64_type());
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_ndarray = NDArrayType::new_with_generator(&generator, &ctx, llvm_i32.into(), 2);
|
||||
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
@ -1,372 +0,0 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::{
|
||||
codegen::{
|
||||
types::structure::{
|
||||
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
|
||||
},
|
||||
values::{ListValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
||||
};
|
||||
|
||||
/// Proxy type for a `list` type in LLVM.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct ListType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
item: Option<BasicTypeEnum<'ctx>>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct ListStructFields<'ctx> {
|
||||
/// Array pointer to content.
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub items: StructField<'ctx, PointerValue<'ctx>>,
|
||||
|
||||
/// Number of items in the array.
|
||||
#[value_type(usize)]
|
||||
pub len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ListStructFields<'ctx> {
|
||||
#[must_use]
|
||||
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let mut counter = FieldIndexCounter::default();
|
||||
|
||||
ListStructFields {
|
||||
items: StructField::create(
|
||||
&mut counter,
|
||||
"items",
|
||||
item.ptr_type(AddressSpace::default()),
|
||||
),
|
||||
len: StructField::create(&mut counter, "len", llvm_usize),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ListType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
|
||||
};
|
||||
|
||||
let fields = ListStructFields::new(ctx, llvm_usize);
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
fields,
|
||||
llvm_ty,
|
||||
"list",
|
||||
&[(fields.items.name(), &|ty| {
|
||||
if ty.is_pointer_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected T* for `list.items`, got {ty}"))
|
||||
}
|
||||
})],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
|
||||
ListStructFields::new_typed(item, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`ListType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
|
||||
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `List`.
|
||||
#[must_use]
|
||||
fn llvm_type(
|
||||
ctx: &'ctx Context,
|
||||
element_type: Option<BasicTypeEnum<'ctx>>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> PointerType<'ctx> {
|
||||
let element_type = element_type.map_or(llvm_usize.into(), |ty| ty.as_basic_type_enum());
|
||||
|
||||
let field_tys =
|
||||
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(
|
||||
ctx: &'ctx Context,
|
||||
element_type: Option<BasicTypeEnum<'ctx>>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize);
|
||||
|
||||
Self { ty: llvm_list, item: element_type, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, element_type: &impl BasicType<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, Some(element_type.as_basic_type_enum()), ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
element_type: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, Some(element_type.as_basic_type_enum()), generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`] with an unknown element type.
|
||||
#[must_use]
|
||||
pub fn new_untyped(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, None, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`] with an unknown element type.
|
||||
#[must_use]
|
||||
pub fn new_untyped_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, None, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`ListType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
// Check unifier type and extract `item_type`
|
||||
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
|
||||
TypeEnum::TObj { obj_id, params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
iter_type_vars(params).next().unwrap().ty
|
||||
}
|
||||
|
||||
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
|
||||
};
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
|
||||
None
|
||||
} else {
|
||||
Some(ctx.get_llvm_type(generator, elem_type))
|
||||
};
|
||||
|
||||
Self::new_impl(ctx.ctx, llvm_elem_type, llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`ListType`] from a [`PointerType`].
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
let ctx = ptr_ty.get_context();
|
||||
|
||||
// We are just searching for the index off a field - Slot an arbitrary element type in.
|
||||
let item_field_idx =
|
||||
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
|
||||
let item = unsafe {
|
||||
ptr_ty
|
||||
.get_element_type()
|
||||
.into_struct_type()
|
||||
.get_field_type_at_index_unchecked(item_field_idx)
|
||||
.into_pointer_type()
|
||||
.get_element_type()
|
||||
};
|
||||
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
|
||||
panic!(
|
||||
"Expected BasicTypeEnum for list element type, got {}",
|
||||
ptr_ty.get_element_type().print_to_string()
|
||||
)
|
||||
});
|
||||
|
||||
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the type of the `size` field of this `list` type.
|
||||
#[must_use]
|
||||
pub fn size_type(&self) -> IntType<'ctx> {
|
||||
self.llvm_usize
|
||||
}
|
||||
|
||||
/// Returns the element type of this `list` type.
|
||||
#[must_use]
|
||||
pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
|
||||
self.item
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
|
||||
///
|
||||
/// The returned list will contain:
|
||||
///
|
||||
/// - `data`: Allocated with `len` number of elements.
|
||||
/// - `len`: Initialized to the value of `len` passed to this function.
|
||||
#[must_use]
|
||||
pub fn construct<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
|
||||
|
||||
// Generate a runtime assertion if allocating a non-empty list with unknown element type
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
|
||||
let len_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
len_eqz,
|
||||
"0:AssertionError",
|
||||
"Cannot allocate a non-empty list with unknown element type",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
let plist = self.alloca_var(generator, ctx, name);
|
||||
plist.store_size(ctx, len);
|
||||
|
||||
let item = self.item.unwrap_or(self.llvm_usize.into());
|
||||
plist.create_data(ctx, item, None);
|
||||
|
||||
plist
|
||||
}
|
||||
|
||||
/// Convenience function for creating a list with zero elements.
|
||||
///
|
||||
/// This function is preferred over [`ListType::construct`] if the length is known to always be
|
||||
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
|
||||
/// list is being allocated.
|
||||
///
|
||||
/// The returned list will contain:
|
||||
///
|
||||
/// - `data`: Initialized to `(T*) 0`.
|
||||
/// - `len`: Initialized to `0`.
|
||||
#[must_use]
|
||||
pub fn construct_empty<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let plist = self.alloca_var(generator, ctx, name);
|
||||
|
||||
plist.store_size(ctx, self.llvm_usize.const_zero());
|
||||
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
|
||||
|
||||
plist
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ListValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = ListValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: ListType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,125 +0,0 @@
|
||||
//! This module contains abstraction over all intrinsic composite types of NAC3.
|
||||
//!
|
||||
//! # `raw_alloca` vs `alloca` vs `construct`
|
||||
//!
|
||||
//! There are three ways of creating a new object instance using the abstractions provided by this
|
||||
//! module.
|
||||
//!
|
||||
//! - `raw_alloca`: Allocates the object on the stack, returning an instance of
|
||||
//! [`impl BasicValue`][inkwell::values::BasicValue]. This is similar to a `malloc` expression in
|
||||
//! C++ but the object is allocated on the stack.
|
||||
//! - `alloca`: Similar to `raw_alloca`, but also wraps the allocated object with
|
||||
//! [`<Self as ProxyType<'ctx>>::Value`][ProxyValue], and returns the wrapped object. The returned
|
||||
//! object will not initialize any value or fields. This is similar to a type-safe `malloc`
|
||||
//! expression in C++ but the object is allocated on the stack.
|
||||
//! - `construct`: Similar to `alloca`, but performs some initialization on the value or fields of
|
||||
//! the returned object. This is similar to a `new` expression in C++ but the object is allocated
|
||||
//! on the stack.
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::BasicType,
|
||||
values::{IntValue, PointerValue},
|
||||
};
|
||||
|
||||
use super::{
|
||||
values::{ArraySliceValue, ProxyValue},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
pub use list::*;
|
||||
pub use range::*;
|
||||
pub use tuple::*;
|
||||
|
||||
mod list;
|
||||
pub mod ndarray;
|
||||
mod range;
|
||||
pub mod structure;
|
||||
mod tuple;
|
||||
pub mod utils;
|
||||
|
||||
/// A LLVM type that is used to represent a corresponding type in NAC3.
|
||||
pub trait ProxyType<'ctx>: Into<Self::Base> {
|
||||
/// The LLVM type of which values of this type possess. This is usually a
|
||||
/// [LLVM pointer type][PointerType] for any non-primitive types.
|
||||
type Base: BasicType<'ctx>;
|
||||
|
||||
/// The type of values represented by this type.
|
||||
type Value: ProxyValue<'ctx, Type = Self>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String>;
|
||||
|
||||
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String>;
|
||||
|
||||
/// Returns the type that should be used in `alloca` IR statements.
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx>;
|
||||
|
||||
/// Creates a new value of this type by invoking `alloca` at the current builder location,
|
||||
/// returning a [`PointerValue`] instance representing the allocated value.
|
||||
fn raw_alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
ctx.builder
|
||||
.build_alloca(self.alloca_type().as_basic_type_enum(), name.unwrap_or_default())
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Creates a new value of this type by invoking `alloca` at the beginning of the function,
|
||||
/// returning a [`PointerValue`] instance representing the allocated value.
|
||||
fn raw_alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
generator.gen_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), name).unwrap()
|
||||
}
|
||||
|
||||
/// Creates a new array value of this type by invoking `alloca` at the current builder location,
|
||||
/// returning an [`ArraySliceValue`] encapsulating the resulting array.
|
||||
fn array_alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
ArraySliceValue::from_ptr_val(
|
||||
ctx.builder
|
||||
.build_array_alloca(
|
||||
self.alloca_type().as_basic_type_enum(),
|
||||
size,
|
||||
name.unwrap_or_default(),
|
||||
)
|
||||
.unwrap(),
|
||||
size,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a new array value of this type by invoking `alloca` at the beginning of the
|
||||
/// function, returning an [`ArraySliceValue`] encapsulating the resulting array.
|
||||
fn array_alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
generator
|
||||
.gen_array_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), size, name)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Returns the [base type][Self::Base] of this proxy.
|
||||
fn as_base_type(&self) -> Self::Base;
|
||||
}
|
@ -1,240 +0,0 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, IntValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt,
|
||||
stmt::gen_if_else_expr_callback,
|
||||
types::{ndarray::NDArrayType, ListType, ProxyType},
|
||||
values::{
|
||||
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
|
||||
TypedArrayLikeAdapter, TypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
|
||||
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list_ty: Type,
|
||||
) -> (BasicTypeEnum<'ctx>, u64) {
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
|
||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
|
||||
|
||||
(ctx.get_llvm_type(generator, dtype), ndims)
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Implementation of `np_array(<list>, copy=True)`
|
||||
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
assert!(self.ndims >= ndims_int);
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let list_value = list.as_i8_list(ctx);
|
||||
|
||||
// Validate `list` has a consistent shape.
|
||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||
let ndims = self.llvm_usize.const_int(ndims_int, false);
|
||||
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
|
||||
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
|
||||
let shape = TypedArrayLikeAdapter::from(
|
||||
shape,
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
|
||||
generator, ctx, list_value, ndims, &shape,
|
||||
);
|
||||
|
||||
let ndarray =
|
||||
Self::new(ctx, dtype, ndims_int).construct_uninitialized(generator, ctx, name);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
|
||||
unsafe { ndarray.create_data(generator, ctx) };
|
||||
|
||||
// Copy all contents from the list.
|
||||
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(ctx, list_value, ndarray);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=None)`
|
||||
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
// np_array without copying is only possible `list` is not nested.
|
||||
//
|
||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||
// to the array pointer of `list`.
|
||||
//
|
||||
// If `list` is `list[list[T]]` or worse, copy.
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
if ndims == 1 {
|
||||
// `list` is not nested
|
||||
assert_eq!(ndims, 1);
|
||||
assert!(self.ndims >= ndims);
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray = Self::new(ctx, dtype, 1).construct_uninitialized(generator, ctx, name);
|
||||
|
||||
// Set data
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
|
||||
.unwrap();
|
||||
ndarray.store_data(ctx, data);
|
||||
|
||||
// ndarray->shape[0] = list->len;
|
||||
let shape = ndarray.shape();
|
||||
let list_len = list.load_size(ctx, None);
|
||||
unsafe {
|
||||
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
|
||||
}
|
||||
|
||||
// Set strides, the `data` is contiguous
|
||||
ndarray.set_strides_contiguous(ctx);
|
||||
|
||||
ndarray
|
||||
} else {
|
||||
// `list` is nested, copy
|
||||
self.construct_numpy_array_from_list_copy_true_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=copy)`
|
||||
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy),
|
||||
|generator, ctx| {
|
||||
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
);
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
);
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
NDArrayType::new(ctx, dtype, ndims).map_value(ndarray, None)
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<ndarray>, copy=copy)`.
|
||||
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(ndarray.get_type().dtype, self.dtype);
|
||||
assert!(self.ndims >= ndarray.get_type().ndims);
|
||||
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
|
||||
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy),
|
||||
|generator, ctx| {
|
||||
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No need to copy. Return `ndarray` itself.
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
ndarray.get_type().map_value(ndarray_val, name)
|
||||
}
|
||||
|
||||
/// Create a new ndarray like
|
||||
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
|
||||
///
|
||||
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
|
||||
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
|
||||
/// with the exact number of dimensions is needed.
|
||||
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(object_ty, object): (Type, BasicValueEnum<'ctx>),
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
match &*ctx.unifier.get_ty_immutable(object_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListType::from_unifier_type(generator, ctx, object_ty)
|
||||
.map_value(object.into_pointer_value(), None);
|
||||
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
|
||||
.map_value(object.into_pointer_value(), None);
|
||||
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
|
||||
}
|
||||
|
||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
|
||||
}
|
||||
}
|
||||
}
|
@ -1,188 +0,0 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::codegen::{
|
||||
types::{
|
||||
structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
ProxyType,
|
||||
},
|
||||
values::{ndarray::ShapeEntryValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct ShapeEntryType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct ShapeEntryStructFields<'ctx> {
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ShapeEntryType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a [`ShapeEntryType`], returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ndarray_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
|
||||
return Err(format!(
|
||||
"Expected struct type for `ShapeEntry` type, got {llvm_ndarray_ty}"
|
||||
));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
Self::fields(ctx, llvm_usize),
|
||||
llvm_ndarray_ty,
|
||||
"NDArray",
|
||||
&[],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(
|
||||
ctx: impl AsContextRef<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> ShapeEntryStructFields<'ctx> {
|
||||
ShapeEntryStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`ShapeEntryStructFields::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> ShapeEntryStructFields<'ctx> {
|
||||
Self::fields(ctx, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `ShapeEntry`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_ty = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
Self { ty: llvm_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ShapeEntryType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ShapeEntryType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates a [`ShapeEntryType`] from a [`PointerType`] representing an `ShapeEntry`.
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ShapeEntryValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for ShapeEntryType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = ShapeEntryValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ShapeEntryType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: ShapeEntryType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,258 +0,0 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
types::{
|
||||
structure::{
|
||||
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
|
||||
},
|
||||
ProxyType,
|
||||
},
|
||||
values::{ndarray::ContiguousNDArrayValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::numpy::unpack_ndarray_var_tys,
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct ContiguousNDArrayType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct ContiguousNDArrayStructFields<'ctx> {
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ContiguousNDArrayStructFields<'ctx> {
|
||||
#[must_use]
|
||||
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let mut counter = FieldIndexCounter::default();
|
||||
|
||||
ContiguousNDArrayStructFields {
|
||||
ndims: StructField::create(&mut counter, "ndims", llvm_usize),
|
||||
shape: StructField::create(
|
||||
&mut counter,
|
||||
"shape",
|
||||
llvm_usize.ptr_type(AddressSpace::default()),
|
||||
),
|
||||
data: StructField::create(&mut counter, "data", item.ptr_type(AddressSpace::default())),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ContiguousNDArrayType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!(
|
||||
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
|
||||
));
|
||||
};
|
||||
|
||||
let fields = ContiguousNDArrayStructFields::new(ctx, llvm_usize);
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
fields,
|
||||
llvm_ty,
|
||||
"ContiguousNDArray",
|
||||
&[(fields.data.name(), &|ty| {
|
||||
if ty.is_pointer_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected T* for `ContiguousNDArray.data`, got {ty}"))
|
||||
}
|
||||
})],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> ContiguousNDArrayStructFields<'ctx> {
|
||||
ContiguousNDArrayStructFields::new_typed(item, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`NDArrayType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self) -> ContiguousNDArrayStructFields<'ctx> {
|
||||
Self::fields(self.item, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
|
||||
#[must_use]
|
||||
fn llvm_type(
|
||||
ctx: &'ctx Context,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(item, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_cndarray = Self::llvm_type(ctx, item, llvm_usize);
|
||||
|
||||
Self { ty: llvm_cndarray, item, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ContiguousNDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, item: &impl BasicType<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, item.as_basic_type_enum(), ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ContiguousNDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, item, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`ContiguousNDArrayType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
|
||||
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
|
||||
|
||||
Self::new_impl(ctx.ctx, llvm_dtype, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an [`ContiguousNDArrayType`] from a [`PointerType`] representing an `NDArray`.
|
||||
#[must_use]
|
||||
pub fn from_type(
|
||||
ptr_ty: PointerType<'ctx>,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, item, llvm_usize }
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
|
||||
/// type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.item,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
|
||||
/// type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.item,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ContiguousNDArrayValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
self.item,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for ContiguousNDArrayType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = ContiguousNDArrayValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ContiguousNDArrayType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: ContiguousNDArrayType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,236 +0,0 @@
|
||||
use inkwell::{
|
||||
values::{BasicValueEnum, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
|
||||
use super::NDArrayType;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt, types::ProxyType, values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
/// Get the zero value in `np.zeros()` of a `dtype`.
|
||||
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i32_type().const_zero().into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the one value in `np.ones()` of a `dtype`.
|
||||
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_float(1.0).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Create an ndarray like
|
||||
/// [`np.empty`](https://numpy.org/doc/stable/reference/generated/numpy.empty.html).
|
||||
pub fn construct_numpy_empty<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndarray = self.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
// Validate `shape`
|
||||
irrt::ndarray::call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape);
|
||||
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
|
||||
unsafe { ndarray.create_data(generator, ctx) };
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.full`](https://numpy.org/doc/stable/reference/generated/numpy.full.html).
|
||||
pub fn construct_numpy_full<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndarray = self.construct_numpy_empty(generator, ctx, shape, name);
|
||||
ndarray.fill(generator, ctx, fill_value);
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.zero`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html).
|
||||
pub fn construct_numpy_zeros<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(
|
||||
ctx.get_llvm_type(generator, dtype),
|
||||
self.dtype,
|
||||
"Expected LLVM dtype={} but got {}",
|
||||
self.dtype.print_to_string(),
|
||||
ctx.get_llvm_type(generator, dtype).print_to_string(),
|
||||
);
|
||||
|
||||
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
||||
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.ones`](https://numpy.org/doc/stable/reference/generated/numpy.ones.html).
|
||||
pub fn construct_numpy_ones<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(
|
||||
ctx.get_llvm_type(generator, dtype),
|
||||
self.dtype,
|
||||
"Expected LLVM dtype={} but got {}",
|
||||
self.dtype.print_to_string(),
|
||||
ctx.get_llvm_type(generator, dtype).print_to_string(),
|
||||
);
|
||||
|
||||
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
||||
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.eye`](https://numpy.org/doc/stable/reference/generated/numpy.eye.html).
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn construct_numpy_eye<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
nrows: IntValue<'ctx>,
|
||||
ncols: IntValue<'ctx>,
|
||||
offset: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(
|
||||
ctx.get_llvm_type(generator, dtype),
|
||||
self.dtype,
|
||||
"Expected LLVM dtype={} but got {}",
|
||||
self.dtype.print_to_string(),
|
||||
ctx.get_llvm_type(generator, dtype).print_to_string(),
|
||||
);
|
||||
assert_eq!(nrows.get_type(), self.llvm_usize);
|
||||
assert_eq!(ncols.get_type(), self.llvm_usize);
|
||||
assert_eq!(offset.get_type(), self.llvm_usize);
|
||||
|
||||
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
||||
let ndone = ndarray_one_value(generator, ctx, dtype);
|
||||
|
||||
let ndarray = self.construct_dyn_shape(generator, ctx, &[nrows, ncols], name);
|
||||
|
||||
// Create data and make the matrix like look np.eye()
|
||||
unsafe {
|
||||
ndarray.create_data(generator, ctx);
|
||||
}
|
||||
ndarray
|
||||
.foreach(generator, ctx, |generator, ctx, _, nditer| {
|
||||
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
||||
// and this loop would not execute.
|
||||
|
||||
let indices = nditer.get_indices();
|
||||
|
||||
let row_i = unsafe {
|
||||
indices.get_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), None)
|
||||
};
|
||||
let col_i = unsafe {
|
||||
indices.get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&self.llvm_usize.const_int(1, false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
|
||||
let be_one = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
ctx.builder.build_int_add(row_i, offset, "").unwrap(),
|
||||
col_i,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let value = ctx.builder.build_select(be_one, ndone, ndzero, "value").unwrap();
|
||||
|
||||
let p = nditer.get_pointer(ctx);
|
||||
ctx.builder.build_store(p, value).unwrap();
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.identity`](https://numpy.org/doc/stable/reference/generated/numpy.identity.html).
|
||||
pub fn construct_numpy_identity<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let offset = self.llvm_usize.const_zero();
|
||||
self.construct_numpy_eye(generator, ctx, dtype, size, size, offset, name)
|
||||
}
|
||||
}
|
@ -1,216 +0,0 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::codegen::{
|
||||
types::{
|
||||
structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
ProxyType,
|
||||
},
|
||||
values::{
|
||||
ndarray::{NDIndexValue, RustNDIndex},
|
||||
ArrayLikeIndexer, ArraySliceValue, ProxyValue,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct NDIndexType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDIndexStructFields<'ctx> {
|
||||
#[value_type(i8_type())]
|
||||
pub type_: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIndexType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `ndindex` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!(
|
||||
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
|
||||
));
|
||||
};
|
||||
|
||||
let fields = NDIndexStructFields::new(ctx, llvm_usize);
|
||||
|
||||
check_struct_type_matches_fields(fields, llvm_ty, "NDIndex", &[])
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn fields(
|
||||
ctx: impl AsContextRef<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> NDIndexStructFields<'ctx> {
|
||||
NDIndexStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn get_fields(&self) -> NDIndexStructFields<'ctx> {
|
||||
Self::fields(self.ty.get_context(), self.llvm_usize)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_ndindex = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
Self { ty: llvm_ndindex, llvm_usize }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type())
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Serialize a list of [`RustNDIndex`] as a newly allocated LLVM array of [`NDIndexValue`].
|
||||
#[must_use]
|
||||
pub fn construct_ndindices<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
in_ndindices: &[RustNDIndex<'ctx>],
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
// Allocate the LLVM ndindices.
|
||||
let num_ndindices = self.llvm_usize.const_int(in_ndindices.len() as u64, false);
|
||||
let ndindices = self.array_alloca_var(generator, ctx, num_ndindices, None);
|
||||
|
||||
// Initialize all of them.
|
||||
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
|
||||
let pndindex = unsafe {
|
||||
ndindices.ptr_offset_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&ctx.ctx.i64_type().const_int(u64::try_from(i).unwrap(), false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
|
||||
in_ndindex.write_to_ndindex(
|
||||
generator,
|
||||
ctx,
|
||||
NDIndexValue::from_pointer_value(pndindex, self.llvm_usize, None),
|
||||
);
|
||||
}
|
||||
|
||||
ndindices
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for NDIndexType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = NDIndexValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<NDIndexType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: NDIndexType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,183 +0,0 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{
|
||||
stmt::gen_for_callback,
|
||||
types::{
|
||||
ndarray::{NDArrayType, NDIterType},
|
||||
ProxyType,
|
||||
},
|
||||
values::{
|
||||
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
|
||||
ArrayLikeValue, ProxyValue,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
|
||||
/// elementwise.
|
||||
///
|
||||
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
|
||||
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
|
||||
/// result of the elementwise operation.
|
||||
///
|
||||
/// `out` specifies whether the result should be a new ndarray or to be written an existing
|
||||
/// ndarray.
|
||||
pub fn broadcast_starmap<'a, G, MappingFn>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ndarrays: &[NDArrayValue<'ctx>],
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: MappingFn,
|
||||
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Broadcast inputs
|
||||
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
|
||||
|
||||
let out_ndarray = match out {
|
||||
NDArrayOut::NewNDArray { dtype } => {
|
||||
// Create a new ndarray based on the broadcast shape.
|
||||
let result_ndarray = NDArrayType::new(ctx, dtype, broadcast_result.ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
result_ndarray.copy_shape_from_array(
|
||||
generator,
|
||||
ctx,
|
||||
broadcast_result.shape.base_ptr(ctx, generator),
|
||||
);
|
||||
unsafe {
|
||||
result_ndarray.create_data(generator, ctx);
|
||||
}
|
||||
result_ndarray
|
||||
}
|
||||
|
||||
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||
// Use an existing ndarray.
|
||||
|
||||
// Check that its shape is compatible with the broadcast shape.
|
||||
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
|
||||
result_ndarray
|
||||
}
|
||||
};
|
||||
|
||||
// Map element-wise and store results into `mapped_ndarray`.
|
||||
let nditer = NDIterType::new(ctx).construct(generator, ctx, out_ndarray);
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("broadcast_starmap"),
|
||||
|generator, ctx| {
|
||||
// Create NDIters for all broadcasted input ndarrays.
|
||||
let other_nditers = broadcast_result
|
||||
.ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| NDIterType::new(ctx).construct(generator, ctx, *ndarray))
|
||||
.collect_vec();
|
||||
Ok((nditer, other_nditers))
|
||||
},
|
||||
|_, ctx, (out_nditer, _in_nditers)| {
|
||||
// We can simply use `out_nditer`'s `has_element()`.
|
||||
// `in_nditers`' `has_element()`s should return the same value.
|
||||
Ok(out_nditer.has_element(ctx))
|
||||
},
|
||||
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||
// and write to `out_ndarray`.
|
||||
let in_scalars =
|
||||
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
|
||||
|
||||
let result = mapping(generator, ctx, &in_scalars)?;
|
||||
|
||||
let p = out_nditer.get_pointer(ctx);
|
||||
ctx.builder.build_store(p, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, (out_nditer, in_nditers)| {
|
||||
// Advance all iterators
|
||||
out_nditer.next(ctx);
|
||||
in_nditers.iter().for_each(|nditer| nditer.next(ctx));
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(out_ndarray)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
|
||||
/// scalar.
|
||||
///
|
||||
/// This function is very helpful when implementing NumPy functions that takes on either scalars
|
||||
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
|
||||
/// or a scalar if all its inputs are all scalars.
|
||||
///
|
||||
/// For example ,this function can be used to implement `np.add`, which has the following
|
||||
/// behaviors:
|
||||
///
|
||||
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
|
||||
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
|
||||
/// converted into an ndarray and broadcasted.
|
||||
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
|
||||
/// ndarray; there is broadcasting.
|
||||
///
|
||||
/// ## Details:
|
||||
///
|
||||
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
|
||||
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
|
||||
///
|
||||
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
|
||||
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
|
||||
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
|
||||
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
inputs: &[ScalarOrNDArray<'ctx>],
|
||||
ret_dtype: BasicTypeEnum<'ctx>,
|
||||
mapping: MappingFn,
|
||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Check if all inputs are Scalars
|
||||
let all_scalars: Option<Vec<_>> =
|
||||
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
|
||||
|
||||
if let Some(scalars) = all_scalars {
|
||||
let scalars = scalars.iter().copied().collect_vec();
|
||||
let value = mapping(generator, ctx, &scalars)?;
|
||||
|
||||
Ok(ScalarOrNDArray::Scalar(value))
|
||||
} else {
|
||||
// Promote all input to ndarrays and map through them.
|
||||
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
|
||||
let ndarray = NDArrayType::new_broadcast(
|
||||
ctx,
|
||||
ret_dtype,
|
||||
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
|
||||
)
|
||||
.broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&inputs,
|
||||
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||
mapping,
|
||||
)?;
|
||||
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||
}
|
||||
}
|
||||
}
|
@ -1,486 +0,0 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{BasicValue, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use super::{
|
||||
structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
ProxyType,
|
||||
};
|
||||
use crate::{
|
||||
codegen::{
|
||||
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeMutator},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
},
|
||||
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
pub use broadcast::*;
|
||||
pub use contiguous::*;
|
||||
pub use indexing::*;
|
||||
pub use nditer::*;
|
||||
|
||||
mod array;
|
||||
mod broadcast;
|
||||
mod contiguous;
|
||||
pub mod factory;
|
||||
mod indexing;
|
||||
mod map;
|
||||
mod nditer;
|
||||
|
||||
/// Proxy type for a `ndarray` type in LLVM.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct NDArrayType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDArrayStructFields<'ctx> {
|
||||
/// The size of each `NDArray` element in bytes.
|
||||
#[value_type(usize)]
|
||||
pub itemsize: StructField<'ctx, IntValue<'ctx>>,
|
||||
/// Number of dimensions in the array.
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
/// Pointer to an array containing the shape of the `NDArray`.
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
/// Pointer to an array indicating the number of bytes between each element at a dimension
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub strides: StructField<'ctx, PointerValue<'ctx>>,
|
||||
/// Pointer to an array containing the array data
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ndarray_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
|
||||
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
Self::fields(ctx, llvm_usize),
|
||||
llvm_ndarray_ty,
|
||||
"NDArray",
|
||||
&[],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(
|
||||
ctx: impl AsContextRef<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> NDArrayStructFields<'ctx> {
|
||||
NDArrayStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`NDArrayType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDArrayStructFields<'ctx> {
|
||||
Self::fields(ctx, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
NDArrayType { ty: llvm_ndarray, dtype, ndims, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, dtype: BasicTypeEnum<'ctx>, ndims: u64) -> Self {
|
||||
Self::new_impl(ctx.ctx, dtype, ndims, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, dtype, ndims, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
|
||||
/// `ndarray` operands.
|
||||
#[must_use]
|
||||
pub fn new_broadcast(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
inputs: &[NDArrayType<'ctx>],
|
||||
) -> Self {
|
||||
assert!(!inputs.is_empty());
|
||||
|
||||
Self::new_impl(
|
||||
ctx.ctx,
|
||||
dtype,
|
||||
inputs.iter().map(NDArrayType::ndims).max().unwrap(),
|
||||
ctx.get_size_type(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
|
||||
/// `ndarray` operands.
|
||||
#[must_use]
|
||||
pub fn new_broadcast_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
inputs: &[NDArrayType<'ctx>],
|
||||
) -> Self {
|
||||
assert!(!inputs.is_empty());
|
||||
|
||||
Self::new_impl(
|
||||
ctx,
|
||||
dtype,
|
||||
inputs.iter().map(NDArrayType::ndims).max().unwrap(),
|
||||
generator.get_size_type(ctx),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
|
||||
#[must_use]
|
||||
pub fn new_unsized(ctx: &CodeGenContext<'ctx, '_>, dtype: BasicTypeEnum<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, dtype, 0, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
|
||||
#[must_use]
|
||||
pub fn new_unsized_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, dtype, 0, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
|
||||
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
|
||||
Self::new_impl(ctx.ctx, llvm_dtype, ndims, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
|
||||
#[must_use]
|
||||
pub fn from_type(
|
||||
ptr_ty: PointerType<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
NDArrayType { ty: ptr_ty, dtype, ndims, llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the type of the `size` field of this `ndarray` type.
|
||||
#[must_use]
|
||||
pub fn size_type(&self) -> IntType<'ctx> {
|
||||
self.llvm_usize
|
||||
}
|
||||
|
||||
/// Returns the element type of this `ndarray` type.
|
||||
#[must_use]
|
||||
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
/// Returns the number of dimensions of this `ndarray` type.
|
||||
#[must_use]
|
||||
pub fn ndims(&self) -> u64 {
|
||||
self.ndims
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.dtype,
|
||||
self.ndims,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.dtype,
|
||||
self.ndims,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an [`NDArrayValue`] on the stack and initializes all fields as follows:
|
||||
///
|
||||
/// - `data`: uninitialized.
|
||||
/// - `itemsize`: set to the size of `self.dtype`.
|
||||
/// - `ndims`: set to the value of `ndims`.
|
||||
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
|
||||
/// values.
|
||||
#[must_use]
|
||||
fn construct_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndims: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndarray = self.alloca_var(generator, ctx, name);
|
||||
|
||||
let itemsize = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
|
||||
.unwrap();
|
||||
ndarray.store_itemsize(ctx, itemsize);
|
||||
|
||||
ndarray.store_ndims(ctx, ndims);
|
||||
|
||||
ndarray.create_shape(ctx, self.llvm_usize, ndims);
|
||||
ndarray.create_strides(ctx, self.llvm_usize, ndims);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Allocate an [`NDArrayValue`] on the stack using `dtype` and `ndims` of this [`NDArrayType`]
|
||||
/// instance.
|
||||
///
|
||||
/// The returned ndarray's content will be:
|
||||
/// - `data`: uninitialized.
|
||||
/// - `itemsize`: set to the size of `dtype`.
|
||||
/// - `ndims`: set to the value of `self.ndims`.
|
||||
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
|
||||
/// values.
|
||||
#[must_use]
|
||||
pub fn construct_uninitialized<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndims = self.llvm_usize.const_int(self.ndims, false);
|
||||
|
||||
self.construct_impl(generator, ctx, ndims, name)
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayValue`] with a statically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
|
||||
#[must_use]
|
||||
pub fn construct_const_shape<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &[u64],
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(shape.len() as u64, self.ndims);
|
||||
|
||||
let ndarray = Self::new(ctx, self.dtype, shape.len() as u64)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
// Write shape
|
||||
let ndarray_shape = ndarray.shape();
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
let dim = llvm_usize.const_int(*dim, false);
|
||||
unsafe {
|
||||
ndarray_shape.set_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(i as u64, false),
|
||||
dim,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayValue`] with a dynamically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
|
||||
#[must_use]
|
||||
pub fn construct_dyn_shape<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &[IntValue<'ctx>],
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(shape.len() as u64, self.ndims);
|
||||
|
||||
let ndarray = Self::new(ctx, self.dtype, shape.len() as u64)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
// Write shape
|
||||
let ndarray_shape = ndarray.shape();
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
assert_eq!(
|
||||
dim.get_type(),
|
||||
llvm_usize,
|
||||
"Expected {} but got {}",
|
||||
llvm_usize.print_to_string(),
|
||||
dim.get_type().print_to_string()
|
||||
);
|
||||
unsafe {
|
||||
ndarray_shape.set_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(i as u64, false),
|
||||
*dim,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an unsized ndarray to contain `value`.
|
||||
#[must_use]
|
||||
pub fn construct_unsized<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: &impl BasicValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> NDArrayValue<'ctx> {
|
||||
let value = value.as_basic_value_enum();
|
||||
|
||||
assert_eq!(value.get_type(), self.dtype);
|
||||
assert_eq!(self.ndims, 0);
|
||||
|
||||
// We have to put the value on the stack to get a data pointer.
|
||||
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
|
||||
ctx.builder.build_store(data, value).unwrap();
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
|
||||
.unwrap();
|
||||
|
||||
let ndarray =
|
||||
Self::new_unsized(ctx, value.get_type()).construct_uninitialized(generator, ctx, name);
|
||||
ctx.builder.build_store(ndarray.ptr_to_data(ctx), data).unwrap();
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`NDArrayValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
self.dtype,
|
||||
self.ndims,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = NDArrayValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: NDArrayType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,244 +0,0 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::codegen::{
|
||||
irrt,
|
||||
types::structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
values::{
|
||||
ndarray::{NDArrayValue, NDIterValue},
|
||||
ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAdapter,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct NDIterType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDIterStructFields<'ctx> {
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub strides: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub indices: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub nth: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub element: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub size: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIterType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `nditer` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ty else {
|
||||
return Err(format!("Expected struct type for `NDIter` type, got {llvm_ty}"));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
Self::fields(ctx, llvm_usize),
|
||||
llvm_ndarray_ty,
|
||||
"NDIter",
|
||||
&[],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> NDIterStructFields<'ctx> {
|
||||
NDIterStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`NDIterType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDIterStructFields<'ctx> {
|
||||
Self::fields(ctx, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of an `NDIter`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_nditer = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
Self { ty: llvm_nditer, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDIter`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDIter`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`NDIterType`] from a [`PointerType`] representing an `NDIter`.
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the type of the `size` field of this `nditer` type.
|
||||
#[must_use]
|
||||
pub fn size_type(&self) -> IntType<'ctx> {
|
||||
self.llvm_usize
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
parent: NDArrayValue<'ctx>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
parent,
|
||||
indices,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
parent: NDArrayValue<'ctx>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
parent,
|
||||
indices,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocate an [`NDIter`] that iterates through the given `ndarray`.
|
||||
#[must_use]
|
||||
pub fn construct<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let nditer = self.raw_alloca_var(generator, ctx, None);
|
||||
let ndims = self.llvm_usize.const_int(ndarray.get_type().ndims(), false);
|
||||
|
||||
// The caller has the responsibility to allocate 'indices' for `NDIter`.
|
||||
let indices =
|
||||
generator.gen_array_var_alloc(ctx, self.llvm_usize.into(), ndims, None).unwrap();
|
||||
let indices =
|
||||
TypedArrayLikeAdapter::from(indices, |_, _, v| v.into_int_value(), |_, _, v| v.into());
|
||||
|
||||
let nditer = self.map_value(nditer, ndarray, indices.as_slice_value(ctx, generator), None);
|
||||
|
||||
irrt::ndarray::call_nac3_nditer_initialize(generator, ctx, nditer, ndarray, &indices);
|
||||
|
||||
nditer
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
parent: NDArrayValue<'ctx>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
parent,
|
||||
indices,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for NDIterType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = NDIterValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<NDIterType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: NDIterType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,155 +0,0 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::codegen::{
|
||||
values::{ProxyValue, RangeValue},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
|
||||
/// Proxy type for a `range` type in LLVM.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct RangeType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> RangeType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `range` type, returning [Err] if it does not.
|
||||
pub fn is_representable(llvm_ty: PointerType<'ctx>) -> Result<(), String> {
|
||||
let llvm_range_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::ArrayType(llvm_range_ty) = llvm_range_ty else {
|
||||
return Err(format!("Expected array type for `range` type, got {llvm_range_ty}"));
|
||||
};
|
||||
if llvm_range_ty.len() != 3 {
|
||||
return Err(format!(
|
||||
"Expected 3 elements for `range` type, got {}",
|
||||
llvm_range_ty.len()
|
||||
));
|
||||
}
|
||||
|
||||
let llvm_range_elem_ty = llvm_range_ty.get_element_type();
|
||||
let Ok(llvm_range_elem_ty) = IntType::try_from(llvm_range_elem_ty) else {
|
||||
return Err(format!(
|
||||
"Expected int type for `range` element type, got {llvm_range_elem_ty}"
|
||||
));
|
||||
};
|
||||
if llvm_range_elem_ty.get_bit_width() != 32 {
|
||||
return Err(format!(
|
||||
"Expected 32-bit int type for `range` element type, got {}",
|
||||
llvm_range_elem_ty.get_bit_width()
|
||||
));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `Range`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context) -> PointerType<'ctx> {
|
||||
// typedef int32_t Range[3];
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
llvm_i32.array_type(3).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`RangeType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &'ctx Context) -> Self {
|
||||
let llvm_range = Self::llvm_type(ctx);
|
||||
|
||||
RangeType::from_type(llvm_range)
|
||||
}
|
||||
|
||||
/// Creates an [`RangeType`] from a [`PointerType`].
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty).is_ok());
|
||||
|
||||
RangeType { ty: ptr_ty }
|
||||
}
|
||||
|
||||
/// Returns the type of all fields of this `range` type.
|
||||
#[must_use]
|
||||
pub fn value_type(&self) -> IntType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_array_type().get_element_type().into_int_type()
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(self.raw_alloca(ctx, name), name)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`RangeValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = RangeValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
_: &G,
|
||||
_: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty)
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<RangeType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: RangeType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,270 +0,0 @@
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use inkwell::{
|
||||
context::AsContextRef,
|
||||
types::{BasicTypeEnum, IntType, StructType},
|
||||
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::CodeGenContext;
|
||||
|
||||
/// Trait indicating that the structure is a field-wise representation of an LLVM structure.
|
||||
///
|
||||
/// # Usage
|
||||
///
|
||||
/// For example, for a simple C-slice LLVM structure:
|
||||
///
|
||||
/// ```ignore
|
||||
/// struct CSliceFields<'ctx> {
|
||||
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
/// len: StructField<'ctx, IntValue<'ctx>>
|
||||
/// }
|
||||
/// ```
|
||||
pub trait StructFields<'ctx>: Eq + Copy {
|
||||
/// Creates an instance of [`StructFields`] using the given `ctx` and `size_t` types.
|
||||
fn new(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> Self;
|
||||
|
||||
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
|
||||
/// the type definition.
|
||||
#[must_use]
|
||||
fn to_vec(&self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>;
|
||||
|
||||
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
|
||||
/// in the type definition.
|
||||
#[must_use]
|
||||
fn iter(&self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)> {
|
||||
self.to_vec().into_iter()
|
||||
}
|
||||
|
||||
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
|
||||
/// the type definition.
|
||||
#[must_use]
|
||||
fn into_vec(self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
self.to_vec()
|
||||
}
|
||||
|
||||
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
|
||||
/// in the type definition.
|
||||
#[must_use]
|
||||
fn into_iter(self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
self.into_vec().into_iter()
|
||||
}
|
||||
|
||||
/// Returns the field index of a field in this structure.
|
||||
fn index_of_field<V>(&self, name: impl FnOnce(&Self) -> StructField<'ctx, V>) -> u32
|
||||
where
|
||||
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
let field_name = name(self).name;
|
||||
self.index_of_field_name(field_name).unwrap()
|
||||
}
|
||||
|
||||
/// Returns the field index of a field with the given name in this structure.
|
||||
fn index_of_field_name(&self, field_name: &str) -> Option<u32> {
|
||||
self.iter().find_position(|(name, _)| *name == field_name).map(|(idx, _)| idx as u32)
|
||||
}
|
||||
}
|
||||
|
||||
/// A single field of an LLVM structure.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct StructField<'ctx, Value>
|
||||
where
|
||||
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
/// The index of this field within the structure.
|
||||
index: u32,
|
||||
|
||||
/// The name of this field.
|
||||
name: &'static str,
|
||||
|
||||
/// The type of this field.
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
|
||||
/// Instance of [`PhantomData`] containing [`Value`], used to implement automatic downcasts.
|
||||
_value_ty: PhantomData<Value>,
|
||||
}
|
||||
|
||||
impl<'ctx, Value> StructField<'ctx, Value>
|
||||
where
|
||||
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
/// Creates an instance of [`StructField`].
|
||||
///
|
||||
/// * `idx_counter` - The instance of [`FieldIndexCounter`] used to track the current field
|
||||
/// index.
|
||||
/// * `name` - Name of the field.
|
||||
/// * `ty` - The type of this field.
|
||||
pub fn create(
|
||||
idx_counter: &mut FieldIndexCounter,
|
||||
name: &'static str,
|
||||
ty: impl Into<BasicTypeEnum<'ctx>>,
|
||||
) -> Self {
|
||||
StructField { index: idx_counter.increment(), name, ty: ty.into(), _value_ty: PhantomData }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`StructField`] with a given index.
|
||||
///
|
||||
/// * `index` - The index of this field within its enclosing structure.
|
||||
/// * `name` - Name of the field.
|
||||
/// * `ty` - The type of this field.
|
||||
pub fn create_at(index: u32, name: &'static str, ty: impl Into<BasicTypeEnum<'ctx>>) -> Self {
|
||||
StructField { index, name, ty: ty.into(), _value_ty: PhantomData }
|
||||
}
|
||||
|
||||
/// Returns the name of this field.
|
||||
#[must_use]
|
||||
pub fn name(&self) -> &'static str {
|
||||
self.name
|
||||
}
|
||||
|
||||
/// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32
|
||||
/// {idx...}, i32 {self.index}`.
|
||||
pub fn ptr_by_array_gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
idx: &[IntValue<'ctx>],
|
||||
) -> PointerValue<'ctx> {
|
||||
unsafe {
|
||||
ctx.builder.build_in_bounds_gep(
|
||||
pobj,
|
||||
&[idx, &[ctx.ctx.i32_type().const_int(u64::from(self.index), false)]].concat(),
|
||||
"",
|
||||
)
|
||||
}
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Creates a pointer to this field in an arbitrary structure by performing the equivalent of
|
||||
/// `getelementptr i32 0, i32 {self.index}`.
|
||||
pub fn ptr_by_gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
obj_name: Option<&'ctx str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
ctx.builder
|
||||
.build_struct_gep(
|
||||
pobj,
|
||||
self.index,
|
||||
&obj_name.map(|name| format!("{name}.{}.addr", self.name)).unwrap_or_default(),
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Gets the value of this field for a given `obj`.
|
||||
#[must_use]
|
||||
pub fn get_from_value(&self, obj: StructValue<'ctx>) -> Value {
|
||||
obj.get_field_at_index(self.index).and_then(|value| Value::try_from(value).ok()).unwrap()
|
||||
}
|
||||
|
||||
/// Sets the value of this field for a given `obj`.
|
||||
pub fn set_for_value(&self, obj: StructValue<'ctx>, value: Value) {
|
||||
obj.set_field_at_index(self.index, value);
|
||||
}
|
||||
|
||||
/// Gets the value of this field for a pointer-to-structure.
|
||||
pub fn get(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
obj_name: Option<&'ctx str>,
|
||||
) -> Value {
|
||||
ctx.builder
|
||||
.build_load(
|
||||
self.ptr_by_gep(ctx, pobj, obj_name),
|
||||
&obj_name.map(|name| format!("{name}.{}", self.name)).unwrap_or_default(),
|
||||
)
|
||||
.map_err(|_| ())
|
||||
.and_then(|value| Value::try_from(value))
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Sets the value of this field for a pointer-to-structure.
|
||||
pub fn set(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
value: Value,
|
||||
obj_name: Option<&'ctx str>,
|
||||
) {
|
||||
ctx.builder.build_store(self.ptr_by_gep(ctx, pobj, obj_name), value).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Value> From<StructField<'ctx, Value>> for (&'static str, BasicTypeEnum<'ctx>)
|
||||
where
|
||||
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
fn from(value: StructField<'ctx, Value>) -> Self {
|
||||
(value.name, value.ty)
|
||||
}
|
||||
}
|
||||
|
||||
/// A counter that tracks the next index of a field using a monotonically increasing counter.
|
||||
#[derive(Default, Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct FieldIndexCounter(u32);
|
||||
|
||||
impl FieldIndexCounter {
|
||||
/// Increments the number stored by this counter, returning the previous value.
|
||||
///
|
||||
/// Functionally equivalent to `i++` in C-based languages.
|
||||
pub fn increment(&mut self) -> u32 {
|
||||
let v = self.0;
|
||||
self.0 += 1;
|
||||
v
|
||||
}
|
||||
}
|
||||
|
||||
type FieldTypeVerifier<'ctx> = dyn Fn(BasicTypeEnum<'ctx>) -> Result<(), String>;
|
||||
|
||||
/// Checks whether [`llvm_ty`][StructType] contains the fields described by the given
|
||||
/// [`StructFields`] instance.
|
||||
///
|
||||
/// By default, this function will compare the type of each field in `expected_fields` against
|
||||
/// `llvm_ty`. To override this behavior for individual fields, pass in overrides to
|
||||
/// `custom_verifiers`, which will use the specified verifier when a field with the matching field
|
||||
/// name is being checked.
|
||||
pub(super) fn check_struct_type_matches_fields<'ctx>(
|
||||
expected_fields: impl StructFields<'ctx>,
|
||||
llvm_ty: StructType<'ctx>,
|
||||
ty_name: &'static str,
|
||||
custom_verifiers: &[(&str, &FieldTypeVerifier<'ctx>)],
|
||||
) -> Result<(), String> {
|
||||
let expected_fields = expected_fields.to_vec();
|
||||
|
||||
if llvm_ty.count_fields() != u32::try_from(expected_fields.len()).unwrap() {
|
||||
return Err(format!(
|
||||
"Expected {} fields in `{ty_name}`, got {}",
|
||||
expected_fields.len(),
|
||||
llvm_ty.count_fields(),
|
||||
));
|
||||
}
|
||||
|
||||
expected_fields
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, (field_name, expected_ty))| {
|
||||
(field_name, expected_ty, llvm_ty.get_field_type_at_index(i as u32).unwrap())
|
||||
})
|
||||
.try_for_each(|(field_name, expected_ty, actual_ty)| {
|
||||
if let Some((_, verifier)) =
|
||||
custom_verifiers.iter().find(|verifier| verifier.0 == field_name)
|
||||
{
|
||||
verifier(actual_ty)
|
||||
} else if expected_ty == actual_ty {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected {expected_ty} for `{ty_name}.{field_name}`, got {actual_ty}"))
|
||||
}
|
||||
})?;
|
||||
|
||||
Ok(())
|
||||
}
|
@ -1,201 +0,0 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, IntType, StructType},
|
||||
values::BasicValueEnum,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::{
|
||||
codegen::{
|
||||
values::{ProxyValue, TupleValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||
pub struct TupleType<'ctx> {
|
||||
ty: StructType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> TupleType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents any tuple type, returning [Err] if it does not.
|
||||
pub fn is_representable(_value: StructType<'ctx>) -> Result<(), String> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a tuple.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, tys: &[BasicTypeEnum<'ctx>]) -> StructType<'ctx> {
|
||||
ctx.struct_type(tys, false)
|
||||
}
|
||||
|
||||
fn new_impl(
|
||||
ctx: &'ctx Context,
|
||||
tys: &[BasicTypeEnum<'ctx>],
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_tuple = Self::llvm_type(ctx, tys);
|
||||
|
||||
Self { ty: llvm_tuple, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`TupleType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, tys: &[impl BasicType<'ctx>]) -> Self {
|
||||
Self::new_impl(
|
||||
ctx.ctx,
|
||||
&tys.iter().map(BasicType::as_basic_type_enum).collect_vec(),
|
||||
ctx.get_size_type(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates an instance of [`TupleType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
tys: &[BasicTypeEnum<'ctx>],
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, tys, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`TupleType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
// Sanity check on object type.
|
||||
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty_immutable(ty) else {
|
||||
panic!("Expected type to be a TypeEnum::TTuple, got {}", ctx.unifier.stringify(ty));
|
||||
};
|
||||
|
||||
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
||||
Self { ty: Self::llvm_type(ctx.ctx, &llvm_tys), llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an [`TupleType`] from a [`StructType`].
|
||||
#[must_use]
|
||||
pub fn from_type(struct_ty: StructType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(struct_ty).is_ok());
|
||||
|
||||
TupleType { ty: struct_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the number of elements present in this [`TupleType`].
|
||||
#[must_use]
|
||||
pub fn num_elements(&self) -> u32 {
|
||||
self.ty.count_fields()
|
||||
}
|
||||
|
||||
/// Returns the type of the tuple element at the given `index`, or [`None`] if `index` is out of
|
||||
/// range.
|
||||
#[must_use]
|
||||
pub fn type_at_index(&self, index: u32) -> Option<BasicTypeEnum<'ctx>> {
|
||||
if index < self.num_elements() {
|
||||
Some(unsafe { self.type_at_index_unchecked(index) })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the type of the tuple element at the given `index`.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The caller must ensure that the index is valid.
|
||||
#[must_use]
|
||||
pub unsafe fn type_at_index_unchecked(&self, index: u32) -> BasicTypeEnum<'ctx> {
|
||||
self.ty.get_field_type_at_index_unchecked(index)
|
||||
}
|
||||
|
||||
/// Constructs a [`TupleValue`] from this type by zero-initializing the tuple value.
|
||||
#[must_use]
|
||||
pub fn construct(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
self.map_value(Self::llvm_type(ctx.ctx, &self.ty.get_field_types()).const_zero(), name)
|
||||
}
|
||||
|
||||
/// Constructs a [`TupleValue`] from `objects`. The resulting tuple preserves the order of
|
||||
/// objects.
|
||||
#[must_use]
|
||||
pub fn construct_from_objects<I: IntoIterator<Item = BasicValueEnum<'ctx>>>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
objects: I,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let values = objects.into_iter().collect_vec();
|
||||
|
||||
assert_eq!(values.len(), self.num_elements() as usize);
|
||||
assert!(values
|
||||
.iter()
|
||||
.enumerate()
|
||||
.all(|(i, v)| { v.get_type() == unsafe { self.type_at_index_unchecked(i as u32) } }));
|
||||
|
||||
let mut value = self.construct(ctx, name);
|
||||
for (i, val) in values.into_iter().enumerate() {
|
||||
value.store_element(ctx, i as u32, val);
|
||||
}
|
||||
|
||||
value
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ListValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_struct_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for TupleType<'ctx> {
|
||||
type Base = StructType<'ctx>;
|
||||
type Value = TupleValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::StructType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected struct type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty)
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<TupleType<'ctx>> for StructType<'ctx> {
|
||||
fn from(value: TupleType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,3 +0,0 @@
|
||||
pub use slice::*;
|
||||
|
||||
mod slice;
|
@ -1,257 +0,0 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context, ContextRef},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::IntValue,
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::codegen::{
|
||||
types::{
|
||||
structure::{
|
||||
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
|
||||
},
|
||||
ProxyType,
|
||||
},
|
||||
values::{utils::SliceValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct SliceType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
int_ty: IntType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceFields<'ctx> {
|
||||
#[value_type(bool_type())]
|
||||
pub start_defined: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub start: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(bool_type())]
|
||||
pub stop_defined: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub stop: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(bool_type())]
|
||||
pub step_defined: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub step: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> SliceFields<'ctx> {
|
||||
/// Creates a new instance of [`SliceFields`] with a custom integer type for its range values.
|
||||
#[must_use]
|
||||
pub fn new_sized(ctx: &impl AsContextRef<'ctx>, int_ty: IntType<'ctx>) -> Self {
|
||||
let ctx = unsafe { ContextRef::new(ctx.as_ctx_ref()) };
|
||||
let mut counter = FieldIndexCounter::default();
|
||||
|
||||
SliceFields {
|
||||
start_defined: StructField::create(&mut counter, "start_defined", ctx.bool_type()),
|
||||
start: StructField::create(&mut counter, "start", int_ty),
|
||||
stop_defined: StructField::create(&mut counter, "stop_defined", ctx.bool_type()),
|
||||
stop: StructField::create(&mut counter, "stop", int_ty),
|
||||
step_defined: StructField::create(&mut counter, "step_defined", ctx.bool_type()),
|
||||
step: StructField::create(&mut counter, "step", int_ty),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> SliceType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `slice` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let fields = SliceFields::new(ctx, llvm_usize);
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!("Expected struct type for `Slice` type, got {llvm_ty}"));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
fields,
|
||||
llvm_ty,
|
||||
"Slice",
|
||||
&[
|
||||
(fields.start.name(), &|ty| {
|
||||
if ty.is_int_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected int type for `Slice.start`, got {ty}"))
|
||||
}
|
||||
}),
|
||||
(fields.stop.name(), &|ty| {
|
||||
if ty.is_int_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected int type for `Slice.stop`, got {ty}"))
|
||||
}
|
||||
}),
|
||||
(fields.step.name(), &|ty| {
|
||||
if ty.is_int_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected int type for `Slice.step`, got {ty}"))
|
||||
}
|
||||
}),
|
||||
],
|
||||
)
|
||||
}
|
||||
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self) -> SliceFields<'ctx> {
|
||||
SliceFields::new_sized(&self.int_ty.get_context(), self.int_ty)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `Slice`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, int_ty: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys = SliceFields::new_sized(&int_ty.get_context(), int_ty)
|
||||
.into_iter()
|
||||
.map(|field| field.1)
|
||||
.collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, int_ty: IntType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_ty = Self::llvm_type(ctx, int_ty);
|
||||
|
||||
Self { ty: llvm_ty, int_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`SliceType`] with `int_ty` as its backing integer type.
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, int_ty: IntType<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, int_ty, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`SliceType`] with `usize` as its backing integer type.
|
||||
#[must_use]
|
||||
pub fn new_usize(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type(), ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`SliceType`] with `usize` as its backing integer type.
|
||||
#[must_use]
|
||||
pub fn new_usize_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx), generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`SliceType`] from a [`PointerType`] representing a `slice`.
|
||||
#[must_use]
|
||||
pub fn from_type(
|
||||
ptr_ty: PointerType<'ctx>,
|
||||
int_ty: IntType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, int_ty).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, int_ty, llvm_usize }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn element_type(&self) -> IntType<'ctx> {
|
||||
self.int_ty
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.int_ty,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.int_ty,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ContiguousNDArrayValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
self.int_ty,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for SliceType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = SliceValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<SliceType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: SliceType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
@ -1,439 +0,0 @@
|
||||
use inkwell::{
|
||||
types::AnyTypeEnum,
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
IntPredicate,
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
/// An LLVM value that is array-like, i.e. it contains a contiguous, sequenced collection of
|
||||
/// elements.
|
||||
pub trait ArrayLikeValue<'ctx> {
|
||||
/// Returns the element type of this array-like value.
|
||||
fn element_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
) -> AnyTypeEnum<'ctx>;
|
||||
|
||||
/// Returns the base pointer to the array.
|
||||
fn base_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
) -> PointerValue<'ctx>;
|
||||
|
||||
/// Returns the size of this array-like value.
|
||||
fn size<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
) -> IntValue<'ctx>;
|
||||
|
||||
/// Returns a [`ArraySliceValue`] representing this value.
|
||||
fn as_slice_value<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
ArraySliceValue::from_ptr_val(
|
||||
self.base_ptr(ctx, generator),
|
||||
self.size(ctx, generator),
|
||||
None,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// An array-like value that can be indexed by memory offset.
|
||||
pub trait ArrayLikeIndexer<'ctx, Index = IntValue<'ctx>>: ArrayLikeValue<'ctx> {
|
||||
/// # Safety
|
||||
///
|
||||
/// This function should be called with a valid index.
|
||||
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx>;
|
||||
|
||||
/// Returns the pointer to the data at the `idx`-th index.
|
||||
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx>;
|
||||
}
|
||||
|
||||
/// An array-like value that can have its array elements accessed as a [`BasicValueEnum`].
|
||||
pub trait UntypedArrayLikeAccessor<'ctx, Index = IntValue<'ctx>>:
|
||||
ArrayLikeIndexer<'ctx, Index>
|
||||
{
|
||||
/// # Safety
|
||||
///
|
||||
/// This function should be called with a valid index.
|
||||
unsafe fn get_unchecked<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
|
||||
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
|
||||
}
|
||||
|
||||
/// Returns the data at the `idx`-th index.
|
||||
fn get<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
let ptr = self.ptr_offset(ctx, generator, idx, name);
|
||||
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// An array-like value that can have its array elements mutated as a [`BasicValueEnum`].
|
||||
pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
|
||||
ArrayLikeIndexer<'ctx, Index>
|
||||
{
|
||||
/// # Safety
|
||||
///
|
||||
/// This function should be called with a valid index.
|
||||
unsafe fn set_unchecked<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
idx: &Index,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, None) };
|
||||
ctx.builder.build_store(ptr, value).unwrap();
|
||||
}
|
||||
|
||||
/// Sets the data at the `idx`-th index.
|
||||
fn set<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
idx: &Index,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
let ptr = self.ptr_offset(ctx, generator, idx, None);
|
||||
ctx.builder.build_store(ptr, value).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
/// An array-like value that can have its array elements accessed as an arbitrary type `T`.
|
||||
pub trait TypedArrayLikeAccessor<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
|
||||
UntypedArrayLikeAccessor<'ctx, Index>
|
||||
{
|
||||
/// Casts an element from [`BasicValueEnum`] into `T`.
|
||||
fn downcast_to_type(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) -> T;
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// This function should be called with a valid index.
|
||||
unsafe fn get_typed_unchecked(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> T {
|
||||
let value = unsafe { self.get_unchecked(ctx, generator, idx, name) };
|
||||
self.downcast_to_type(ctx, generator, value)
|
||||
}
|
||||
|
||||
/// Returns the data at the `idx`-th index.
|
||||
fn get_typed(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> T {
|
||||
let value = self.get(ctx, generator, idx, name);
|
||||
self.downcast_to_type(ctx, generator, value)
|
||||
}
|
||||
}
|
||||
|
||||
/// An array-like value that can have its array elements mutated as an arbitrary type `T`.
|
||||
pub trait TypedArrayLikeMutator<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
|
||||
UntypedArrayLikeMutator<'ctx, Index>
|
||||
{
|
||||
/// Casts an element from T into [`BasicValueEnum`].
|
||||
fn upcast_from_type(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
value: T,
|
||||
) -> BasicValueEnum<'ctx>;
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// This function should be called with a valid index.
|
||||
unsafe fn set_typed_unchecked(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
idx: &Index,
|
||||
value: T,
|
||||
) {
|
||||
let value = self.upcast_from_type(ctx, generator, value);
|
||||
unsafe { self.set_unchecked(ctx, generator, idx, value) }
|
||||
}
|
||||
|
||||
/// Sets the data at the `idx`-th index.
|
||||
fn set_typed(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
idx: &Index,
|
||||
value: T,
|
||||
) {
|
||||
let value = self.upcast_from_type(ctx, generator, value);
|
||||
self.set(ctx, generator, idx, value);
|
||||
}
|
||||
}
|
||||
|
||||
/// An adapter for constraining untyped array values as typed values.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct TypedArrayLikeAdapter<
|
||||
'ctx,
|
||||
G: CodeGenerator + ?Sized,
|
||||
T,
|
||||
Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>,
|
||||
> {
|
||||
adapted: Adapted,
|
||||
downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
|
||||
upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> TypedArrayLikeAdapter<'ctx, G, T, Adapted>
|
||||
where
|
||||
Adapted: ArrayLikeValue<'ctx>,
|
||||
{
|
||||
/// Creates a [`TypedArrayLikeAdapter`].
|
||||
///
|
||||
/// * `adapted` - The value to be adapted.
|
||||
/// * `downcast_fn` - The function converting a [`BasicValueEnum`] into a `T`.
|
||||
/// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`].
|
||||
pub fn from(
|
||||
adapted: Adapted,
|
||||
downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
|
||||
upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
|
||||
) -> Self {
|
||||
TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> ArrayLikeValue<'ctx>
|
||||
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
|
||||
where
|
||||
Adapted: ArrayLikeValue<'ctx>,
|
||||
{
|
||||
fn element_type<CG: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &CG,
|
||||
) -> AnyTypeEnum<'ctx> {
|
||||
self.adapted.element_type(ctx, generator)
|
||||
}
|
||||
|
||||
fn base_ptr<CG: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &CG,
|
||||
) -> PointerValue<'ctx> {
|
||||
self.adapted.base_ptr(ctx, generator)
|
||||
}
|
||||
|
||||
fn size<CG: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &CG,
|
||||
) -> IntValue<'ctx> {
|
||||
self.adapted.size(ctx, generator)
|
||||
}
|
||||
|
||||
fn as_slice_value<CG: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &CG,
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
self.adapted.as_slice_value(ctx, generator)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
|
||||
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
|
||||
where
|
||||
Adapted: ArrayLikeIndexer<'ctx, Index>,
|
||||
{
|
||||
unsafe fn ptr_offset_unchecked<CG: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &CG,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) }
|
||||
}
|
||||
|
||||
fn ptr_offset<CG: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut CG,
|
||||
idx: &Index,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
self.adapted.ptr_offset(ctx, generator, idx, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
|
||||
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
|
||||
where
|
||||
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
|
||||
{
|
||||
}
|
||||
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
|
||||
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
|
||||
where
|
||||
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
|
||||
{
|
||||
}
|
||||
|
||||
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, G, T, Index>
|
||||
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
|
||||
where
|
||||
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
|
||||
{
|
||||
fn downcast_to_type(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) -> T {
|
||||
(self.downcast_fn)(ctx, generator, value)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeMutator<'ctx, G, T, Index>
|
||||
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
|
||||
where
|
||||
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
|
||||
{
|
||||
fn upcast_from_type(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
value: T,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
(self.upcast_fn)(ctx, generator, value)
|
||||
}
|
||||
}
|
||||
|
||||
/// An LLVM value representing an array slice, consisting of a pointer to the data and the size of
|
||||
/// the slice.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct ArraySliceValue<'ctx>(PointerValue<'ctx>, IntValue<'ctx>, Option<&'ctx str>);
|
||||
|
||||
impl<'ctx> ArraySliceValue<'ctx> {
|
||||
/// Creates an [`ArraySliceValue`] from a [`PointerValue`] and its size.
|
||||
#[must_use]
|
||||
pub fn from_ptr_val(
|
||||
ptr: PointerValue<'ctx>,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Self {
|
||||
ArraySliceValue(ptr, size, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ArraySliceValue<'ctx>> for PointerValue<'ctx> {
|
||||
fn from(value: ArraySliceValue<'ctx>) -> Self {
|
||||
value.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ArrayLikeValue<'ctx> for ArraySliceValue<'ctx> {
|
||||
fn element_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_: &CodeGenContext<'ctx, '_>,
|
||||
_: &G,
|
||||
) -> AnyTypeEnum<'ctx> {
|
||||
self.0.get_type().get_element_type()
|
||||
}
|
||||
|
||||
fn base_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_: &CodeGenContext<'ctx, '_>,
|
||||
_: &G,
|
||||
) -> PointerValue<'ctx> {
|
||||
self.0
|
||||
}
|
||||
|
||||
fn size<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_: &CodeGenContext<'ctx, '_>,
|
||||
_: &G,
|
||||
) -> IntValue<'ctx> {
|
||||
self.1
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> {
|
||||
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
idx: &IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let var_name = name.or(self.2).map(|v| format!("{v}.addr")).unwrap_or_default();
|
||||
|
||||
unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
idx: &IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
debug_assert_eq!(idx.get_type(), ctx.get_size_type());
|
||||
|
||||
let size = self.size(ctx, generator);
|
||||
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
in_range,
|
||||
"0:IndexError",
|
||||
"list index out of range",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ArraySliceValue<'ctx> {}
|
||||
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ArraySliceValue<'ctx> {}
|
@ -1,225 +0,0 @@
|
||||
use inkwell::{
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
|
||||
use super::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
|
||||
};
|
||||
use crate::codegen::{
|
||||
types::{structure::StructField, ListType, ProxyType},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
|
||||
/// Proxy type for accessing a `list` value in LLVM.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct ListValue<'ctx> {
|
||||
value: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
}
|
||||
|
||||
impl<'ctx> ListValue<'ctx> {
|
||||
/// Checks whether `value` is an instance of `list`, returning [Err] if `value` is not an
|
||||
/// instance.
|
||||
pub fn is_representable(
|
||||
value: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
ListType::is_representable(value.get_type(), llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`ListValue`] from a [`PointerValue`].
|
||||
#[must_use]
|
||||
pub fn from_pointer_value(
|
||||
ptr: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
|
||||
|
||||
ListValue { value: ptr, llvm_usize, name }
|
||||
}
|
||||
|
||||
fn items_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
|
||||
self.get_type().get_fields(&ctx.ctx).items
|
||||
}
|
||||
|
||||
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
|
||||
/// on the field.
|
||||
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
self.items_field(ctx).ptr_by_gep(ctx, self.value, self.name)
|
||||
}
|
||||
|
||||
/// Stores the array of data elements `data` into this instance.
|
||||
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
|
||||
self.items_field(ctx).set(ctx, self.value, data, self.name);
|
||||
}
|
||||
|
||||
/// Convenience method for creating a new array storing data elements with the given element
|
||||
/// type `elem_ty` and `size`.
|
||||
///
|
||||
/// If `size` is [None], the size stored in the field of this instance is used instead. If
|
||||
/// `size` is resolved to `0` at runtime, `(T*) 0` will be assigned to `data`.
|
||||
pub fn create_data(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: BasicTypeEnum<'ctx>,
|
||||
size: Option<IntValue<'ctx>>,
|
||||
) {
|
||||
let size = size.unwrap_or_else(|| self.load_size(ctx, None));
|
||||
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder
|
||||
.build_int_compare(IntPredicate::NE, size, self.llvm_usize.const_zero(), "")
|
||||
.unwrap(),
|
||||
ctx.builder.build_array_alloca(elem_ty, size, "").unwrap(),
|
||||
elem_ty.ptr_type(AddressSpace::default()).const_zero(),
|
||||
"",
|
||||
)
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
self.store_data(ctx, data);
|
||||
}
|
||||
|
||||
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
|
||||
/// on the field.
|
||||
#[must_use]
|
||||
pub fn data(&self) -> ListDataProxy<'ctx, '_> {
|
||||
ListDataProxy(self)
|
||||
}
|
||||
|
||||
fn len_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
|
||||
self.get_type().get_fields(&ctx.ctx).len
|
||||
}
|
||||
|
||||
/// Stores the `size` of this `list` into this instance.
|
||||
pub fn store_size(&self, ctx: &CodeGenContext<'ctx, '_>, size: IntValue<'ctx>) {
|
||||
debug_assert_eq!(size.get_type(), ctx.get_size_type());
|
||||
|
||||
self.len_field(ctx).set(ctx, self.value, size, self.name);
|
||||
}
|
||||
|
||||
/// Returns the size of this `list` as a value.
|
||||
pub fn load_size(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> IntValue<'ctx> {
|
||||
self.len_field(ctx).get(ctx, self.value, name)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`ListValue`] with the `items` pointer cast to `i8*`.
|
||||
#[must_use]
|
||||
pub fn as_i8_list(&self, ctx: &CodeGenContext<'ctx, '_>) -> ListValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_list_i8 = <Self as ProxyValue>::Type::new(ctx, &llvm_i8);
|
||||
|
||||
Self::from_pointer_value(
|
||||
ctx.builder.build_pointer_cast(self.value, llvm_list_i8.as_base_type(), "").unwrap(),
|
||||
self.llvm_usize,
|
||||
self.name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyValue<'ctx> for ListValue<'ctx> {
|
||||
type Base = PointerValue<'ctx>;
|
||||
type Type = ListType<'ctx>;
|
||||
|
||||
fn get_type(&self) -> Self::Type {
|
||||
ListType::from_type(self.as_base_value().get_type(), self.llvm_usize)
|
||||
}
|
||||
|
||||
fn as_base_value(&self) -> Self::Base {
|
||||
self.value
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ListValue<'ctx>> for PointerValue<'ctx> {
|
||||
fn from(value: ListValue<'ctx>) -> Self {
|
||||
value.as_base_value()
|
||||
}
|
||||
}
|
||||
|
||||
/// Proxy type for accessing the `data` array of an `list` instance in LLVM.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct ListDataProxy<'ctx, 'a>(&'a ListValue<'ctx>);
|
||||
|
||||
impl<'ctx> ArrayLikeValue<'ctx> for ListDataProxy<'ctx, '_> {
|
||||
fn element_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_: &CodeGenContext<'ctx, '_>,
|
||||
_: &G,
|
||||
) -> AnyTypeEnum<'ctx> {
|
||||
self.0.value.get_type().get_element_type()
|
||||
}
|
||||
|
||||
fn base_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
_: &G,
|
||||
) -> PointerValue<'ctx> {
|
||||
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
|
||||
|
||||
ctx.builder
|
||||
.build_load(self.0.pptr_to_data(ctx), var_name.as_str())
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
fn size<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
_: &G,
|
||||
) -> IntValue<'ctx> {
|
||||
self.0.load_size(ctx, None)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
|
||||
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
idx: &IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
|
||||
|
||||
unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
idx: &IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
debug_assert_eq!(idx.get_type(), ctx.get_size_type());
|
||||
|
||||
let size = self.size(ctx, generator);
|
||||
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
in_range,
|
||||
"0:IndexError",
|
||||
"list index out of range",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ListDataProxy<'ctx, '_> {}
|
||||
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ListDataProxy<'ctx, '_> {}
|
@ -1,49 +0,0 @@
|
||||
use inkwell::{context::Context, values::BasicValue};
|
||||
|
||||
use super::types::ProxyType;
|
||||
use crate::codegen::CodeGenerator;
|
||||
pub use array::*;
|
||||
pub use list::*;
|
||||
pub use range::*;
|
||||
pub use tuple::*;
|
||||
|
||||
mod array;
|
||||
mod list;
|
||||
pub mod ndarray;
|
||||
mod range;
|
||||
mod tuple;
|
||||
pub mod utils;
|
||||
|
||||
/// A LLVM type that is used to represent a non-primitive value in NAC3.
|
||||
pub trait ProxyValue<'ctx>: Into<Self::Base> {
|
||||
/// The type of LLVM values represented by this instance. This is usually the
|
||||
/// [LLVM pointer type][PointerValue].
|
||||
type Base: BasicValue<'ctx>;
|
||||
|
||||
/// The type of this value.
|
||||
type Type: ProxyType<'ctx, Value = Self>;
|
||||
|
||||
/// Checks whether `value` can be represented by this [`ProxyValue`].
|
||||
fn is_instance<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
value: impl BasicValue<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
Self::Type::is_type(generator, ctx, value.as_basic_value_enum().get_type())
|
||||
}
|
||||
|
||||
/// Checks whether `value` can be represented by this [`ProxyValue`].
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
value: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_instance(generator, ctx, value.as_basic_value_enum())
|
||||
}
|
||||
|
||||
/// Returns the [type][ProxyType] of this value.
|
||||
fn get_type(&self) -> Self::Type;
|
||||
|
||||
/// Returns the [base value][Self::Base] of this proxy.
|
||||
fn as_base_value(&self) -> Self::Base;
|
||||
}
|
@ -1,243 +0,0 @@
|
||||
use inkwell::{
|
||||
types::IntType,
|
||||
values::{IntValue, PointerValue},
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{
|
||||
irrt,
|
||||
types::{
|
||||
ndarray::{NDArrayType, ShapeEntryType},
|
||||
structure::StructField,
|
||||
ProxyType,
|
||||
},
|
||||
values::{
|
||||
ndarray::NDArrayValue, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ProxyValue,
|
||||
TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct ShapeEntryValue<'ctx> {
|
||||
value: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
}
|
||||
|
||||
impl<'ctx> ShapeEntryValue<'ctx> {
|
||||
/// Checks whether `value` is an instance of `ShapeEntry`, returning [Err] if `value` is
|
||||
/// not an instance.
|
||||
pub fn is_representable(
|
||||
value: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`ShapeEntryValue`] from a [`PointerValue`].
|
||||
#[must_use]
|
||||
pub fn from_pointer_value(
|
||||
ptr: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
|
||||
|
||||
Self { value: ptr, llvm_usize, name }
|
||||
}
|
||||
|
||||
fn ndims_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
|
||||
self.get_type().get_fields(self.value.get_type().get_context()).ndims
|
||||
}
|
||||
|
||||
/// Stores the number of dimensions into this value.
|
||||
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
|
||||
self.ndims_field().set(ctx, self.value, value, self.name);
|
||||
}
|
||||
|
||||
fn shape_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
|
||||
self.get_type().get_fields(self.value.get_type().get_context()).shape
|
||||
}
|
||||
|
||||
/// Stores the shape into this value.
|
||||
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
|
||||
self.shape_field().set(ctx, self.value, value, self.name);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyValue<'ctx> for ShapeEntryValue<'ctx> {
|
||||
type Base = PointerValue<'ctx>;
|
||||
type Type = ShapeEntryType<'ctx>;
|
||||
|
||||
fn get_type(&self) -> Self::Type {
|
||||
Self::Type::from_type(self.value.get_type(), self.llvm_usize)
|
||||
}
|
||||
|
||||
fn as_base_value(&self) -> Self::Base {
|
||||
self.value
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ShapeEntryValue<'ctx>> for PointerValue<'ctx> {
|
||||
fn from(value: ShapeEntryValue<'ctx>) -> Self {
|
||||
value.as_base_value()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayValue<'ctx> {
|
||||
/// Create a broadcast view on this ndarray with a target shape.
|
||||
///
|
||||
/// The input shape will be checked to make sure that it contains no negative values.
|
||||
///
|
||||
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
||||
/// The caller has to figure this out for this function.
|
||||
/// * `target_shape` - An array pointer pointing to the target shape.
|
||||
#[must_use]
|
||||
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target_ndims: u64,
|
||||
target_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) -> Self {
|
||||
assert!(self.ndims <= target_ndims);
|
||||
assert_eq!(target_shape.element_type(ctx, generator), self.llvm_usize.into());
|
||||
|
||||
let broadcast_ndarray = NDArrayType::new(ctx, self.dtype, target_ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
broadcast_ndarray.copy_shape_from_array(
|
||||
generator,
|
||||
ctx,
|
||||
target_shape.base_ptr(ctx, generator),
|
||||
);
|
||||
|
||||
irrt::ndarray::call_nac3_ndarray_broadcast_to(ctx, *self, broadcast_ndarray);
|
||||
broadcast_ndarray
|
||||
}
|
||||
}
|
||||
|
||||
/// A result produced by [`broadcast_all_ndarrays`]
|
||||
#[derive(Clone)]
|
||||
pub struct BroadcastAllResult<'ctx, G: CodeGenerator + ?Sized> {
|
||||
/// The statically known `ndims` of the broadcast result.
|
||||
pub ndims: u64,
|
||||
|
||||
/// The broadcasting shape.
|
||||
pub shape: TypedArrayLikeAdapter<'ctx, G, IntValue<'ctx>>,
|
||||
|
||||
/// Broadcasted views on the inputs.
|
||||
///
|
||||
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
||||
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
||||
/// is the same as the input.
|
||||
pub ndarrays: Vec<NDArrayValue<'ctx>>,
|
||||
}
|
||||
|
||||
/// Helper function to call [`irrt::ndarray::call_nac3_ndarray_broadcast_shapes`].
|
||||
fn broadcast_shapes<'ctx, G, Shape>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
in_shape_entries: &[(ArraySliceValue<'ctx>, u64)], // (shape, shape's length/ndims)
|
||||
broadcast_ndims: u64,
|
||||
broadcast_shape: &Shape,
|
||||
) where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
|
||||
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
|
||||
{
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_shape_ty = ShapeEntryType::new(ctx);
|
||||
|
||||
assert!(in_shape_entries
|
||||
.iter()
|
||||
.all(|entry| entry.0.element_type(ctx, generator) == llvm_usize.into()));
|
||||
assert_eq!(broadcast_shape.element_type(ctx, generator), llvm_usize.into());
|
||||
|
||||
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
|
||||
let num_shape_entries =
|
||||
llvm_usize.const_int(u64::try_from(in_shape_entries.len()).unwrap(), false);
|
||||
let shape_entries = llvm_shape_ty.array_alloca(ctx, num_shape_entries, None);
|
||||
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
|
||||
let pshape_entry = unsafe {
|
||||
shape_entries.ptr_offset_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(i as u64, false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
let shape_entry = llvm_shape_ty.map_value(pshape_entry, None);
|
||||
|
||||
let in_ndims = llvm_usize.const_int(*in_ndims, false);
|
||||
shape_entry.store_ndims(ctx, in_ndims);
|
||||
|
||||
shape_entry.store_shape(ctx, in_shape.base_ptr(ctx, generator));
|
||||
}
|
||||
|
||||
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims, false);
|
||||
irrt::ndarray::call_nac3_ndarray_broadcast_shapes(
|
||||
generator,
|
||||
ctx,
|
||||
num_shape_entries,
|
||||
shape_entries,
|
||||
broadcast_ndims,
|
||||
broadcast_shape,
|
||||
);
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Broadcast all ndarrays according to
|
||||
/// [`np.broadcast()`](https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html)
|
||||
/// and return a [`BroadcastAllResult`] containing all the information of the result of the
|
||||
/// broadcast operation.
|
||||
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarrays: &[NDArrayValue<'ctx>],
|
||||
) -> BroadcastAllResult<'ctx, G> {
|
||||
assert!(!ndarrays.is_empty());
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
// Infer the broadcast output ndims.
|
||||
let broadcast_ndims_int =
|
||||
ndarrays.iter().map(|ndarray| ndarray.get_type().ndims()).max().unwrap();
|
||||
assert!(self.ndims() >= broadcast_ndims_int);
|
||||
|
||||
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims_int, false);
|
||||
let broadcast_shape = ArraySliceValue::from_ptr_val(
|
||||
ctx.builder.build_array_alloca(llvm_usize, broadcast_ndims, "").unwrap(),
|
||||
broadcast_ndims,
|
||||
None,
|
||||
);
|
||||
let broadcast_shape = TypedArrayLikeAdapter::from(
|
||||
broadcast_shape,
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
|
||||
let shape_entries = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| {
|
||||
(ndarray.shape().as_slice_value(ctx, generator), ndarray.get_type().ndims())
|
||||
})
|
||||
.collect_vec();
|
||||
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, &broadcast_shape);
|
||||
|
||||
// Broadcast all the inputs to shape `dst_shape`.
|
||||
let broadcast_ndarrays = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| {
|
||||
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, &broadcast_shape)
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
BroadcastAllResult {
|
||||
ndims: broadcast_ndims_int,
|
||||
shape: broadcast_shape,
|
||||
ndarrays: broadcast_ndarrays,
|
||||
}
|
||||
}
|
||||
}
|
@ -1,203 +0,0 @@
|
||||
use inkwell::{
|
||||
types::{BasicType, BasicTypeEnum, IntType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use super::{ArrayLikeValue, NDArrayValue, ProxyValue};
|
||||
use crate::codegen::{
|
||||
stmt::gen_if_callback,
|
||||
types::{
|
||||
ndarray::{ContiguousNDArrayType, NDArrayType},
|
||||
structure::StructField,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct ContiguousNDArrayValue<'ctx> {
|
||||
value: PointerValue<'ctx>,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
}
|
||||
|
||||
impl<'ctx> ContiguousNDArrayValue<'ctx> {
|
||||
/// Checks whether `value` is an instance of `ContiguousNDArray`, returning [Err] if `value` is
|
||||
/// not an instance.
|
||||
pub fn is_representable(
|
||||
value: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`ContiguousNDArrayValue`] from a [`PointerValue`].
|
||||
#[must_use]
|
||||
pub fn from_pointer_value(
|
||||
ptr: PointerValue<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
|
||||
|
||||
Self { value: ptr, item: dtype, llvm_usize, name }
|
||||
}
|
||||
|
||||
fn ndims_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
|
||||
self.get_type().get_fields().ndims
|
||||
}
|
||||
|
||||
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
|
||||
self.ndims_field().set(ctx, self.as_base_value(), value, self.name);
|
||||
}
|
||||
|
||||
fn shape_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
|
||||
self.get_type().get_fields().shape
|
||||
}
|
||||
|
||||
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
|
||||
self.shape_field().set(ctx, self.as_base_value(), value, self.name);
|
||||
}
|
||||
|
||||
pub fn load_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
self.shape_field().get(ctx, self.value, self.name)
|
||||
}
|
||||
|
||||
fn data_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
|
||||
self.get_type().get_fields().data
|
||||
}
|
||||
|
||||
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
|
||||
self.data_field().set(ctx, self.as_base_value(), value, self.name);
|
||||
}
|
||||
|
||||
pub fn load_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
self.data_field().get(ctx, self.value, self.name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyValue<'ctx> for ContiguousNDArrayValue<'ctx> {
|
||||
type Base = PointerValue<'ctx>;
|
||||
type Type = ContiguousNDArrayType<'ctx>;
|
||||
|
||||
fn get_type(&self) -> Self::Type {
|
||||
<Self as ProxyValue<'ctx>>::Type::from_type(
|
||||
self.as_base_value().get_type(),
|
||||
self.item,
|
||||
self.llvm_usize,
|
||||
)
|
||||
}
|
||||
|
||||
fn as_base_value(&self) -> Self::Base {
|
||||
self.value
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ContiguousNDArrayValue<'ctx>> for PointerValue<'ctx> {
|
||||
fn from(value: ContiguousNDArrayValue<'ctx>) -> Self {
|
||||
value.as_base_value()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayValue<'ctx> {
|
||||
/// Create a [`ContiguousNDArrayValue`] from the contents of this ndarray.
|
||||
///
|
||||
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
|
||||
///
|
||||
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the
|
||||
/// `data` field of the returned [`ContiguousNDArrayValue`] and copy contents of this ndarray to
|
||||
/// there.
|
||||
///
|
||||
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created
|
||||
/// [`ContiguousNDArrayValue`] will share memory with this ndarray.
|
||||
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> ContiguousNDArrayValue<'ctx> {
|
||||
let result =
|
||||
ContiguousNDArrayType::new(ctx, &self.dtype).alloca_var(generator, ctx, self.name);
|
||||
|
||||
// Set ndims and shape.
|
||||
let ndims = self.llvm_usize.const_int(self.ndims, false);
|
||||
result.store_ndims(ctx, ndims);
|
||||
|
||||
let shape = self.shape();
|
||||
result.store_shape(ctx, shape.base_ptr(ctx, generator));
|
||||
|
||||
gen_if_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| Ok(self.is_c_contiguous(ctx)),
|
||||
|_, ctx| {
|
||||
// This ndarray is contiguous.
|
||||
let data = self.data_field(ctx).get(ctx, self.as_base_value(), self.name);
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(data, result.item.ptr_type(AddressSpace::default()), "")
|
||||
.unwrap();
|
||||
result.store_data(ctx, data);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|generator, ctx| {
|
||||
// This ndarray is not contiguous. Do a full-copy on `data`. `make_copy` produces an
|
||||
// ndarray with contiguous `data`.
|
||||
let copied_ndarray = self.make_copy(generator, ctx);
|
||||
let data = copied_ndarray.data().base_ptr(ctx, generator);
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(data, result.item.ptr_type(AddressSpace::default()), "")
|
||||
.unwrap();
|
||||
result.store_data(ctx, data);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// Create an [`NDArrayValue`] from a [`ContiguousNDArrayValue`].
|
||||
///
|
||||
/// The operation is cheap. The newly created [`NDArrayValue`] will share the same memory as the
|
||||
/// [`ContiguousNDArrayValue`].
|
||||
///
|
||||
/// `ndims` has to be provided as [`NDArrayValue`] requires a statically known `ndims` value,
|
||||
/// despite the fact that the information should be contained within the
|
||||
/// [`ContiguousNDArrayValue`].
|
||||
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
carray: ContiguousNDArrayValue<'ctx>,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
|
||||
|
||||
// Allocate the resulting ndarray.
|
||||
let ndarray = NDArrayType::new(ctx, carray.item, ndims).construct_uninitialized(
|
||||
generator,
|
||||
ctx,
|
||||
carray.name,
|
||||
);
|
||||
|
||||
// Copy shape and update strides
|
||||
let shape = carray.load_shape(ctx);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.set_strides_contiguous(ctx);
|
||||
|
||||
// Share data
|
||||
let data = carray.load_data(ctx);
|
||||
ndarray.store_data(
|
||||
ctx,
|
||||
ctx.builder
|
||||
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
|
||||
.unwrap(),
|
||||
);
|
||||
|
||||
ndarray
|
||||
}
|
||||
}
|
@ -1,101 +0,0 @@
|
||||
use inkwell::values::{BasicValue, BasicValueEnum};
|
||||
|
||||
use super::{NDArrayValue, NDIterValue, ScalarOrNDArray};
|
||||
use crate::codegen::{
|
||||
stmt::{gen_for_callback, BreakContinueHooks},
|
||||
types::ndarray::NDIterType,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
impl<'ctx> NDArrayValue<'ctx> {
|
||||
/// Folds the elements of this ndarray into an accumulator value by applying `f`, returning the
|
||||
/// final value.
|
||||
///
|
||||
/// `f` has access to [`BreakContinueHooks`] to short-circuit the `fold` operation, an instance
|
||||
/// of `V` representing the current accumulated value, and an [`NDIterValue`] to get the
|
||||
/// properties of the current iterated element.
|
||||
pub fn fold<'a, G, V, F>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
init: V,
|
||||
f: F,
|
||||
) -> Result<V, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>,
|
||||
<V as TryFrom<BasicValueEnum<'ctx>>>::Error: std::fmt::Debug,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
V,
|
||||
NDIterValue<'ctx>,
|
||||
) -> Result<V, String>,
|
||||
{
|
||||
let acc_ptr =
|
||||
generator.gen_var_alloc(ctx, init.as_basic_value_enum().get_type(), None).unwrap();
|
||||
ctx.builder.build_store(acc_ptr, init).unwrap();
|
||||
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("ndarray_fold"),
|
||||
|generator, ctx| Ok(NDIterType::new(ctx).construct(generator, ctx, *self)),
|
||||
|_, ctx, nditer| Ok(nditer.has_element(ctx)),
|
||||
|generator, ctx, hooks, nditer| {
|
||||
let acc = V::try_from(ctx.builder.build_load(acc_ptr, "").unwrap()).unwrap();
|
||||
let acc = f(generator, ctx, hooks, acc, nditer)?;
|
||||
ctx.builder.build_store(acc_ptr, acc).unwrap();
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, nditer| {
|
||||
nditer.next(ctx);
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
let acc = ctx.builder.build_load(acc_ptr, "").unwrap();
|
||||
Ok(V::try_from(acc).unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// See [`NDArrayValue::fold`].
|
||||
///
|
||||
/// The primary differences between this function and `NDArrayValue::fold` are:
|
||||
///
|
||||
/// - The 3rd parameter of `f` is an `Option` of hooks, since `break`/`continue` hooks are not
|
||||
/// available if this instance represents a scalar value.
|
||||
/// - The 5th parameter of `f` is a [`BasicValueEnum`], since no [iterator][`NDIterValue`] will
|
||||
/// be created if this instance represents a scalar value.
|
||||
pub fn fold<'a, G, V, F>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
init: V,
|
||||
f: F,
|
||||
) -> Result<V, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>,
|
||||
<V as TryFrom<BasicValueEnum<'ctx>>>::Error: std::fmt::Debug,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
Option<&BreakContinueHooks<'ctx>>,
|
||||
V,
|
||||
BasicValueEnum<'ctx>,
|
||||
) -> Result<V, String>,
|
||||
{
|
||||
match self {
|
||||
ScalarOrNDArray::Scalar(v) => f(generator, ctx, None, init, *v),
|
||||
ScalarOrNDArray::NDArray(v) => {
|
||||
v.fold(generator, ctx, init, |generator, ctx, hooks, acc, nditer| {
|
||||
let elem = nditer.get_scalar(ctx);
|
||||
f(generator, ctx, Some(&hooks), acc, elem)
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,258 +0,0 @@
|
||||
use inkwell::{
|
||||
types::IntType,
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3parser::ast::{Expr, ExprKind};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt,
|
||||
types::{
|
||||
ndarray::{NDArrayType, NDIndexType},
|
||||
structure::StructField,
|
||||
utils::SliceType,
|
||||
},
|
||||
values::{ndarray::NDArrayValue, utils::RustSlice, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
/// An IRRT representation of an ndarray subscript index.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct NDIndexValue<'ctx> {
|
||||
value: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIndexValue<'ctx> {
|
||||
/// Checks whether `value` is an instance of `ndindex`, returning [Err] if `value` is not an
|
||||
/// instance.
|
||||
pub fn is_representable(
|
||||
value: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`NDIndexValue`] from a [`PointerValue`].
|
||||
#[must_use]
|
||||
pub fn from_pointer_value(
|
||||
ptr: PointerValue<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
|
||||
|
||||
Self { value: ptr, llvm_usize, name }
|
||||
}
|
||||
|
||||
fn type_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
|
||||
self.get_type().get_fields().type_
|
||||
}
|
||||
|
||||
pub fn load_type(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||
self.type_field().get(ctx, self.value, self.name)
|
||||
}
|
||||
|
||||
pub fn store_type(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
|
||||
self.type_field().set(ctx, self.value, value, self.name);
|
||||
}
|
||||
|
||||
fn data_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
|
||||
self.get_type().get_fields().data
|
||||
}
|
||||
|
||||
pub fn load_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
self.data_field().get(ctx, self.value, self.name)
|
||||
}
|
||||
|
||||
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
|
||||
self.data_field().set(ctx, self.value, value, self.name);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyValue<'ctx> for NDIndexValue<'ctx> {
|
||||
type Base = PointerValue<'ctx>;
|
||||
type Type = NDIndexType<'ctx>;
|
||||
|
||||
fn get_type(&self) -> Self::Type {
|
||||
Self::Type::from_type(self.value.get_type(), self.llvm_usize)
|
||||
}
|
||||
|
||||
fn as_base_value(&self) -> Self::Base {
|
||||
self.value
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<NDIndexValue<'ctx>> for PointerValue<'ctx> {
|
||||
fn from(value: NDIndexValue<'ctx>) -> Self {
|
||||
value.as_base_value()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayValue<'ctx> {
|
||||
/// Get the expected `ndims` after indexing with `indices`.
|
||||
#[must_use]
|
||||
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
|
||||
let mut ndims = self.ndims;
|
||||
|
||||
for index in indices {
|
||||
match index {
|
||||
RustNDIndex::SingleElement(_) => {
|
||||
ndims -= 1; // Single elements decrements ndims
|
||||
}
|
||||
RustNDIndex::NewAxis => {
|
||||
ndims += 1; // `np.newaxis` / `none` adds a new axis
|
||||
}
|
||||
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
|
||||
}
|
||||
}
|
||||
|
||||
ndims
|
||||
}
|
||||
|
||||
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
||||
///
|
||||
/// This function behaves like NumPy's ndarray indexing, but if the indices index
|
||||
/// into a single element, an unsized ndarray is returned.
|
||||
#[must_use]
|
||||
pub fn index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: &[RustNDIndex<'ctx>],
|
||||
) -> Self {
|
||||
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
|
||||
let dst_ndarray = NDArrayType::new(ctx, self.dtype, dst_ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
|
||||
let indices = NDIndexType::new(ctx).construct_ndindices(generator, ctx, indices);
|
||||
irrt::ndarray::call_nac3_ndarray_index(generator, ctx, indices, *self, dst_ndarray);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
}
|
||||
|
||||
/// A convenience enum representing a [`NDIndexValue`].
|
||||
// TODO: Rename to CTConstNDIndex
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum RustNDIndex<'ctx> {
|
||||
SingleElement(IntValue<'ctx>),
|
||||
Slice(RustSlice<'ctx>),
|
||||
NewAxis,
|
||||
Ellipsis,
|
||||
}
|
||||
|
||||
impl<'ctx> RustNDIndex<'ctx> {
|
||||
/// Generate LLVM code to transform an ndarray subscript expression to
|
||||
/// its list of [`RustNDIndex`]
|
||||
///
|
||||
/// i.e.,
|
||||
/// ```python
|
||||
/// my_ndarray[::3, 1, :2:]
|
||||
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
|
||||
/// ```
|
||||
pub fn from_subscript_expr<G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
subscript: &Expr<Option<Type>>,
|
||||
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
|
||||
// Annoying notes about `slice`
|
||||
// - `my_array[5]`
|
||||
// - slice is a `Constant`
|
||||
// - `my_array[:5]`
|
||||
// - slice is a `Slice`
|
||||
// - `my_array[:]`
|
||||
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||
// - `my_array[:, :]`
|
||||
// - slice is now a `Tuple` of two `Slice`-s
|
||||
//
|
||||
// In summary:
|
||||
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||
//
|
||||
// So we first "flatten" out the slice expression
|
||||
let index_exprs = match &subscript.node {
|
||||
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
|
||||
_ => vec![subscript],
|
||||
};
|
||||
|
||||
// Process all index expressions
|
||||
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
|
||||
for index_expr in index_exprs {
|
||||
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
|
||||
// Handle slices
|
||||
let slice = RustSlice::from_slice_expr(generator, ctx, lower, upper, step)?;
|
||||
RustNDIndex::Slice(slice)
|
||||
} else {
|
||||
// Treat and handle everything else as a single element index.
|
||||
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.primitives.int32, // Must be int32, this checks for illegal values
|
||||
)?;
|
||||
let index = index.into_int_value();
|
||||
|
||||
RustNDIndex::SingleElement(index)
|
||||
};
|
||||
rust_ndindices.push(ndindex);
|
||||
}
|
||||
Ok(rust_ndindices)
|
||||
}
|
||||
|
||||
/// Get the value to set `NDIndex::type` for this variant.
|
||||
#[must_use]
|
||||
pub fn get_type_id(&self) -> u64 {
|
||||
// Defined in IRRT, must be in sync
|
||||
match self {
|
||||
RustNDIndex::SingleElement(_) => 0,
|
||||
RustNDIndex::Slice(_) => 1,
|
||||
RustNDIndex::NewAxis => 2,
|
||||
RustNDIndex::Ellipsis => 3,
|
||||
}
|
||||
}
|
||||
|
||||
/// Serialize this [`RustNDIndex`] by writing it into an LLVM [`NDIndexValue`].
|
||||
pub fn write_to_ndindex<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dst_ndindex: NDIndexValue<'ctx>,
|
||||
) {
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
|
||||
// Set `dst_ndindex.type`
|
||||
dst_ndindex.store_type(ctx, ctx.ctx.i8_type().const_int(self.get_type_id(), false));
|
||||
|
||||
// Set `dst_ndindex_ptr->data`
|
||||
match self {
|
||||
RustNDIndex::SingleElement(in_index) => {
|
||||
let index_ptr = ctx.builder.build_alloca(ctx.ctx.i32_type(), "").unwrap();
|
||||
ctx.builder.build_store(index_ptr, *in_index).unwrap();
|
||||
|
||||
dst_ndindex.store_data(
|
||||
ctx,
|
||||
ctx.builder.build_pointer_cast(index_ptr, llvm_pi8, "").unwrap(),
|
||||
);
|
||||
}
|
||||
RustNDIndex::Slice(in_rust_slice) => {
|
||||
let user_slice_ptr =
|
||||
SliceType::new(ctx, ctx.ctx.i32_type()).alloca_var(generator, ctx, None);
|
||||
in_rust_slice.write_to_slice(ctx, user_slice_ptr);
|
||||
|
||||
dst_ndindex.store_data(
|
||||
ctx,
|
||||
ctx.builder.build_pointer_cast(user_slice_ptr.into(), llvm_pi8, "").unwrap(),
|
||||
);
|
||||
}
|
||||
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,69 +0,0 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
|
||||
|
||||
use crate::codegen::{
|
||||
values::{
|
||||
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
|
||||
ProxyValue,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
impl<'ctx> NDArrayValue<'ctx> {
|
||||
/// Map through this ndarray with an elementwise function.
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: Mapping,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BasicValueEnum<'ctx>,
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
self.get_type().broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
out,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
|
||||
///
|
||||
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a
|
||||
/// [`ScalarOrNDArray::Scalar`] of that result.
|
||||
///
|
||||
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new
|
||||
/// ndarray of the results will be created and returned as a [`ScalarOrNDArray::NDArray`].
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ret_dtype: BasicTypeEnum<'ctx>,
|
||||
mapping: Mapping,
|
||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BasicValueEnum<'ctx>,
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
ScalarOrNDArray::broadcasting_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
ret_dtype,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
@ -1,323 +0,0 @@
|
||||
use std::cmp::max;
|
||||
|
||||
use nac3parser::ast::Operator;
|
||||
|
||||
use super::{NDArrayOut, NDArrayValue, RustNDIndex};
|
||||
use crate::{
|
||||
codegen::{
|
||||
expr::gen_binop_expr_with_values,
|
||||
irrt,
|
||||
stmt::gen_for_callback_incrementing,
|
||||
types::ndarray::NDArrayType,
|
||||
values::{
|
||||
ArrayLikeValue, ArraySliceValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
|
||||
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::arraylike_flatten_element_type,
|
||||
typecheck::{magic_methods::Binop, typedef::Type},
|
||||
};
|
||||
|
||||
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
|
||||
///
|
||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dst_dtype: Type,
|
||||
(in_a_ty, in_a): (Type, NDArrayValue<'ctx>),
|
||||
(in_b_ty, in_b): (Type, NDArrayValue<'ctx>),
|
||||
) -> NDArrayValue<'ctx> {
|
||||
assert!(in_a.ndims >= 2, "in_a (which is {}) must be >= 2", in_a.ndims);
|
||||
assert!(in_b.ndims >= 2, "in_b (which is {}) must be >= 2", in_b.ndims);
|
||||
|
||||
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_a_ty);
|
||||
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_b_ty);
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_dst_dtype = ctx.get_llvm_type(generator, dst_dtype);
|
||||
|
||||
// Deduce ndims of the result of matmul.
|
||||
let ndims_int = max(in_a.ndims, in_b.ndims);
|
||||
let ndims = llvm_usize.const_int(ndims_int, false);
|
||||
|
||||
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
|
||||
// destination ndarray to store the result of matmul.
|
||||
let (lhs, rhs, dst) = {
|
||||
let in_lhs_ndims = llvm_usize.const_int(in_a.ndims, false);
|
||||
let in_lhs_shape = TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(
|
||||
in_a.shape().base_ptr(ctx, generator),
|
||||
in_lhs_ndims,
|
||||
None,
|
||||
),
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
let in_rhs_ndims = llvm_usize.const_int(in_b.ndims, false);
|
||||
let in_rhs_shape = TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(
|
||||
in_b.shape().base_ptr(ctx, generator),
|
||||
in_rhs_ndims,
|
||||
None,
|
||||
),
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
let lhs_shape = TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(
|
||||
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
|
||||
ndims,
|
||||
None,
|
||||
),
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
let rhs_shape = TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(
|
||||
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
|
||||
ndims,
|
||||
None,
|
||||
),
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
let dst_shape = TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(
|
||||
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
|
||||
ndims,
|
||||
None,
|
||||
),
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
|
||||
// Matmul dimension compatibility is checked here.
|
||||
irrt::ndarray::call_nac3_ndarray_matmul_calculate_shapes(
|
||||
generator,
|
||||
ctx,
|
||||
&in_lhs_shape,
|
||||
&in_rhs_shape,
|
||||
ndims,
|
||||
&lhs_shape,
|
||||
&rhs_shape,
|
||||
&dst_shape,
|
||||
);
|
||||
|
||||
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, &lhs_shape);
|
||||
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, &rhs_shape);
|
||||
|
||||
let dst = NDArrayType::new(ctx, llvm_dst_dtype, ndims_int)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
dst.copy_shape_from_array(generator, ctx, dst_shape.base_ptr(ctx, generator));
|
||||
unsafe {
|
||||
dst.create_data(generator, ctx);
|
||||
}
|
||||
|
||||
(lhs, rhs, dst)
|
||||
};
|
||||
|
||||
let len = unsafe {
|
||||
lhs.shape().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(ndims_int - 1, false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
|
||||
let at_row = i64::try_from(ndims_int - 2).unwrap();
|
||||
let at_col = i64::try_from(ndims_int - 1).unwrap();
|
||||
|
||||
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
|
||||
let dst_zero = dst_dtype_llvm.const_zero();
|
||||
|
||||
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||
let pdst_ij = hdl.get_pointer(ctx);
|
||||
|
||||
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
|
||||
|
||||
let indices = hdl.get_indices::<G>();
|
||||
let i = unsafe {
|
||||
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_row as u64, true), None)
|
||||
};
|
||||
let j = unsafe {
|
||||
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_col as u64, true), None)
|
||||
};
|
||||
|
||||
let num_0 = llvm_usize.const_int(0, false);
|
||||
let num_1 = llvm_usize.const_int(1, false);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
num_0,
|
||||
(len, false),
|
||||
|generator, ctx, _, k| {
|
||||
// `indices` is modified to index into `a` and `b`, and restored.
|
||||
unsafe {
|
||||
indices.set_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(at_row as u64, true),
|
||||
i,
|
||||
);
|
||||
indices.set_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(at_col as u64, true),
|
||||
k.into(),
|
||||
);
|
||||
}
|
||||
let a_ik = unsafe { lhs.data().get_unchecked(ctx, generator, &indices, None) };
|
||||
|
||||
unsafe {
|
||||
indices.set_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(at_row as u64, true),
|
||||
k.into(),
|
||||
);
|
||||
indices.set_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(at_col as u64, true),
|
||||
j,
|
||||
);
|
||||
}
|
||||
let b_kj = unsafe { rhs.data().get_unchecked(ctx, generator, &indices, None) };
|
||||
|
||||
// Restore `indices`.
|
||||
unsafe {
|
||||
indices.set_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(at_row as u64, true),
|
||||
i,
|
||||
);
|
||||
indices.set_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(at_col as u64, true),
|
||||
j,
|
||||
);
|
||||
}
|
||||
|
||||
// x = a_[...]ik * b_[...]kj
|
||||
let x = gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(lhs_dtype), a_ik),
|
||||
Binop::normal(Operator::Mult),
|
||||
(&Some(rhs_dtype), b_kj),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||
|
||||
// dst_[...]ij += x
|
||||
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
|
||||
let dst_ij = gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(dst_dtype), dst_ij),
|
||||
Binop::normal(Operator::Add),
|
||||
(&Some(dst_dtype), x),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
num_1,
|
||||
)
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
dst
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayValue<'ctx> {
|
||||
/// Perform [`np.matmul`](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
|
||||
///
|
||||
/// This function always return an [`NDArrayValue`]. You may want to use
|
||||
/// [`NDArrayValue::split_unsized`] to handle when the output could be a scalar.
|
||||
///
|
||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||
#[must_use]
|
||||
pub fn matmul<G: CodeGenerator>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
self_ty: Type,
|
||||
(other_ty, other): (Type, Self),
|
||||
(out_dtype, out): (Type, NDArrayOut<'ctx>),
|
||||
) -> Self {
|
||||
// Sanity check, but type inference should prevent this.
|
||||
assert!(self.ndims > 0 && other.ndims > 0, "np.matmul disallows scalar input");
|
||||
|
||||
// If both arguments are 2-D they are multiplied like conventional matrices.
|
||||
//
|
||||
// If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the
|
||||
// last two indices and broadcast accordingly.
|
||||
//
|
||||
// If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its
|
||||
// dimensions. After matrix multiplication the prepended 1 is removed.
|
||||
//
|
||||
// If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its
|
||||
// dimensions. After matrix multiplication the appended 1 is removed.
|
||||
|
||||
let new_a = if self.ndims == 1 {
|
||||
// Prepend 1 to its dimensions
|
||||
self.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
|
||||
} else {
|
||||
*self
|
||||
};
|
||||
|
||||
let new_b = if other.ndims == 1 {
|
||||
// Append 1 to its dimensions
|
||||
other.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
|
||||
} else {
|
||||
other
|
||||
};
|
||||
|
||||
// NOTE: `result` will always be a newly allocated ndarray.
|
||||
// Current implementation cannot do in-place matrix muliplication.
|
||||
let mut result =
|
||||
matmul_at_least_2d(generator, ctx, out_dtype, (self_ty, new_a), (other_ty, new_b));
|
||||
|
||||
// Postprocessing on the result to remove prepended/appended axes.
|
||||
let mut postindices = vec![];
|
||||
let zero = ctx.ctx.i32_type().const_zero();
|
||||
|
||||
if self.ndims == 1 {
|
||||
// Remove the prepended 1
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
}
|
||||
|
||||
if other.ndims == 1 {
|
||||
// Remove the appended 1
|
||||
postindices.push(RustNDIndex::Ellipsis);
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
}
|
||||
|
||||
if !postindices.is_empty() {
|
||||
result = result.index(generator, ctx, &postindices);
|
||||
}
|
||||
|
||||
match out {
|
||||
NDArrayOut::NewNDArray { .. } => result,
|
||||
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
|
||||
let result_shape = result.shape();
|
||||
out_ndarray.assert_can_be_written_by_out(generator, ctx, result_shape);
|
||||
|
||||
out_ndarray.copy_data_from(ctx, result);
|
||||
out_ndarray
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user