Compare commits

..

14 Commits

Author SHA1 Message Date
be218fc0d4 a mess.. 2021-01-19 13:55:13 +08:00
7d06c903e3 added get_expression_unknowns 2021-01-15 15:19:41 +08:00
5fce6cf069 updated lifetime 2021-01-15 14:37:55 +08:00
d466b7bc2b simplified lifetime 2021-01-11 11:12:37 +08:00
b6e4e68587 started adding error types
* converted to string to avoid breaking interface, would be fixed later
* tests would not check error messages now, as messages are not
  finalized
2021-01-11 10:40:32 +08:00
779288d685 added todo 2021-01-08 17:16:25 +08:00
3ecf57a588 fixed bugs 2021-01-08 16:54:34 +08:00
ebe1027ffa added resolve signature 2021-01-08 16:24:25 +08:00
7c6349520c started getting signatures 2021-01-08 14:52:48 +08:00
04f121403a moved type check code to submodule 2021-01-08 12:58:33 +08:00
b51168a5ab added statement tests 2021-01-05 13:35:44 +08:00
007843c1ef added aug assign for primitives 2021-01-05 13:21:39 +08:00
ff41cdb000 implemented statement check 2021-01-05 12:17:45 +08:00
e1efb47ad2 statement inference: assignment 2021-01-04 17:07:14 +08:00
269 changed files with 4577 additions and 67181 deletions

View File

@ -1,32 +0,0 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

View File

@ -1 +0,0 @@
doc-valid-idents = ["CPython", "NumPy", ".."]

2
.gitignore vendored
View File

@ -1,4 +1,2 @@
__pycache__ __pycache__
/target /target
/nac3standalone/demo/linalg/target
nix/windows/msys2

View File

@ -1,24 +0,0 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
default_stages: [pre-commit]
repos:
- repo: local
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [develop, -c, cargo, fmt, --all]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [develop, -c, cargo, clippy, --tests]

1598
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +1,6 @@
[workspace] [workspace]
members = [ members = [
"nac3ld",
"nac3ast",
"nac3parser",
"nac3core", "nac3core",
"nac3core/nac3core_derive",
"nac3standalone", "nac3standalone",
"nac3artiq", "nac3embedded",
"runkernel",
] ]
resolver = "2"
[profile.release]
debug = true

View File

@ -1,62 +0,0 @@
<div align="center">
![icon](https://git.m-labs.hk/M-Labs/nac3/raw/branch/master/nac3.svg)
</div>
# NAC3
NAC3 is a major, backward-incompatible rewrite of the compiler for the [ARTIQ](https://m-labs.hk/artiq) physics experiment control and data acquisition system. It features greatly improved compilation speeds, a much better type system, and more predictable and transparent operation.
NAC3 has a modular design and its applicability reaches beyond ARTIQ. The ``nac3core`` module does not contain anything specific to ARTIQ, and can be used in any project that requires compiling Python to machine code.
**WARNING: NAC3 is currently experimental software and several important features are not implemented yet.**
## Packaging
NAC3 is packaged using the [Nix](https://nixos.org) Flakes system. Install Nix 2.8+ and enable flakes by adding ``experimental-features = nix-command flakes`` to ``nix.conf`` (e.g. ``~/.config/nix/nix.conf``).
## Try NAC3
### Linux
After setting up Nix as above, use ``nix shell git+https://github.com/m-labs/artiq.git?ref=nac3`` to get a shell with the NAC3 version of ARTIQ. See the ``examples`` directory in ARTIQ (``nac3`` Git branch) for some samples of NAC3 kernel code.
### Windows
Install [MSYS2](https://www.msys2.org/), and open "MSYS2 CLANG64". Edit ``/etc/pacman.conf`` to add:
```
[artiq]
SigLevel = Optional TrustAll
Server = https://msys2.m-labs.hk/artiq-nac3
```
Then run the following commands:
```
pacman -Syu
pacman -S mingw-w64-clang-x86_64-artiq
```
## For developers
This repository contains:
- ``nac3ast``: Python abstract syntax tree definition (based on RustPython).
- ``nac3parser``: Python parser (based on RustPython).
- ``nac3core``: Core compiler library, containing type-checking and code generation.
- ``nac3standalone``: Standalone compiler tool (core language only).
- ``nac3ld``: Minimalist RISC-V and ARM linker.
- ``nac3artiq``: Integration with ARTIQ and implementation of ARTIQ-specific extensions to the core language.
- ``runkernel``: Simple program that runs compiled ARTIQ kernels on the host and displays RTIO operations. Useful for testing without hardware.
Use ``nix develop`` in this repository to enter a development shell.
If you are using a different shell than bash you can use e.g. ``nix develop --command fish``.
Build NAC3 with ``cargo build --release``. See the demonstrations in ``nac3artiq`` and ``nac3standalone``.
### Pre-Commit Hooks
You are strongly recommended to use the provided pre-commit hooks to automatically reformat files and check for non-optimal Rust practices using Clippy. Run `pre-commit install` to install the hook and `pre-commit` will automatically run `cargo fmt` and `cargo clippy` for you.
Several things to note:
- If `cargo fmt` or `cargo clippy` returns an error, the pre-commit hook will fail. You should fix all errors before trying to commit again.
- If `cargo fmt` reformats some files, the pre-commit hook will also fail. You should review the changes and, if satisfied, try to commit again.

27
flake.lock generated
View File

@ -1,27 +0,0 @@
{
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1736798957,
"narHash": "sha256-qwpCtZhSsSNQtK4xYGzMiyEDhkNzOCz/Vfu4oL2ETsQ=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "9abb87b552b7f55ac8916b6fc9e5cb486656a2f3",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",
"version": 7
}

212
flake.nix
View File

@ -1,212 +0,0 @@
{
description = "The third-generation ARTIQ compiler";
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-unstable;
outputs = { self, nixpkgs }:
let
pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec {
packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
llvm-tools-irrt = pkgs.runCommandNoCC "llvm-tools-irrt" {}
''
mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq";
outputs = [ "out" "runkernel" "standalone" ];
src = self;
cargoLock = {
lockFile = ./Cargo.lock;
};
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase =
''
echo "Checking nac3standalone demos..."
pushd nac3standalone/demo
patchShebangs .
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd
echo "Running Cargo tests..."
cargoCheckHook
'';
installPhase =
''
PYTHON_SITEPACKAGES=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $PYTHON_SITEPACKAGES
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $PYTHON_SITEPACKAGES/nac3artiq.so
mkdir -p $runkernel/bin
cp target/x86_64-unknown-linux-gnu/release/runkernel $runkernel/bin
mkdir -p $standalone/bin
cp target/x86_64-unknown-linux-gnu/release/nac3standalone $standalone/bin
'';
}
);
python3-mimalloc = pkgs.python3 // rec {
withMimalloc = pkgs.python3.buildEnv.override({ makeWrapperArgs = [ "--set LD_PRELOAD ${pkgs.mimalloc}/lib/libmimalloc.so" ]; });
withPackages = f: let packages = f pkgs.python3.pkgs; in withMimalloc.override { extraLibs = packages; };
};
# LLVM PGO support
llvm-nac3-instrumented = pkgs.callPackage ./nix/llvm {
stdenv = pkgs.llvmPackages_14.stdenv;
extraCmakeFlags = [ "-DLLVM_BUILD_INSTRUMENTED=IR" ];
};
nac3artiq-instrumented = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage {
name = "nac3artiq-instrumented";
src = self;
inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-instrumented ];
buildInputs = [ pkgs.python3 llvm-nac3-instrumented ];
cargoBuildFlags = [ "--package" "nac3artiq" "--features" "init-llvm-profile" ];
doCheck = false;
configurePhase =
''
export CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_RUSTFLAGS="-C link-arg=-L${pkgs.llvmPackages_14.compiler-rt}/lib/linux -C link-arg=-lclang_rt.profile-x86_64"
'';
installPhase =
''
TARGET_DIR=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $TARGET_DIR
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $TARGET_DIR/nac3artiq.so
'';
}
);
nac3artiq-profile = pkgs.stdenvNoCC.mkDerivation {
name = "nac3artiq-profile";
srcs = [
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "sipyco";
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
})
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "artiq";
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
})
];
buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out
];
phases = [ "buildPhase" "installPhase" ];
buildPhase =
''
srcs=($srcs)
sipyco=''${srcs[0]}
artiq=''${srcs[1]}
export PYTHONPATH=$sipyco:$artiq
python -m artiq.frontend.artiq_ddb_template $artiq/artiq/examples/nac3devices/nac3devices.json > device_db.py
cp $artiq/artiq/examples/nac3devices/nac3devices.py .
python -m artiq.frontend.artiq_compile nac3devices.py
'';
installPhase =
''
mkdir $out
llvm-profdata merge -o $out/llvm.profdata /build/llvm/build/profiles/*
'';
};
llvm-nac3-pgo = pkgs.callPackage ./nix/llvm {
stdenv = pkgs.llvmPackages_14.stdenv;
extraCmakeFlags = [ "-DLLVM_PROFDATA_FILE=${nac3artiq-profile}/llvm.profdata" ];
};
nac3artiq-pgo = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage {
name = "nac3artiq-pgo";
src = self;
inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-pgo ];
buildInputs = [ pkgs.python3 llvm-nac3-pgo ];
cargoBuildFlags = [ "--package" "nac3artiq" ];
cargoTestFlags = [ "--package" "nac3ast" "--package" "nac3parser" "--package" "nac3core" "--package" "nac3artiq" ];
installPhase =
''
TARGET_DIR=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $TARGET_DIR
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $TARGET_DIR/nac3artiq.so
'';
}
);
};
packages.x86_64-w64-mingw32 = import ./nix/windows { inherit pkgs; };
devShells.x86_64-linux.default = pkgs.mkShell {
name = "nac3-dev-shell";
buildInputs = with pkgs; [
# build dependencies
packages.x86_64-linux.llvm-nac3
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
packages.x86_64-linux.llvm-tools-irrt
cargo
rustc
# runtime dependencies
lld_14 # for running kernels on the host
(packages.x86_64-linux.python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ]))
# development tools
cargo-insta
clippy
pre-commit
rustfmt
];
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";
buildInputs = with pkgs; [
curl
pacman
fakeroot
packages.x86_64-w64-mingw32.wine-msys2
];
};
hydraJobs = {
inherit (packages.x86_64-linux) llvm-nac3 nac3artiq nac3artiq-pgo;
llvm-nac3-msys2 = packages.x86_64-w64-mingw32.llvm-nac3;
nac3artiq-msys2 = packages.x86_64-w64-mingw32.nac3artiq;
nac3artiq-msys2-pkg = packages.x86_64-w64-mingw32.nac3artiq-pkg;
};
};
nixConfig = {
extra-trusted-public-keys = "nixbld.m-labs.hk-1:5aSRVA5b320xbNvu30tqxVPXpld73bhtOeH6uAjRyHc=";
extra-substituters = "https://nixbld.m-labs.hk";
};
}

View File

@ -1,56 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
id="a"
width="128"
height="128"
viewBox="0 0 95.99999 95.99999"
version="1.1"
sodipodi:docname="nac3.svg"
inkscape:version="1.1.1 (3bf5ae0d25, 2021-09-20)"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg">
<defs
id="defs11" />
<sodipodi:namedview
id="namedview9"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageshadow="2"
inkscape:pageopacity="0.0"
inkscape:pagecheckerboard="0"
inkscape:document-units="mm"
showgrid="false"
units="px"
width="128px"
inkscape:zoom="5.9448568"
inkscape:cx="60.472441"
inkscape:cy="60.556547"
inkscape:window-width="2560"
inkscape:window-height="1371"
inkscape:window-x="0"
inkscape:window-y="32"
inkscape:window-maximized="1"
inkscape:current-layer="a" />
<rect
x="40.072601"
y="-26.776209"
width="55.668747"
height="55.668747"
transform="matrix(0.71803815,0.69600374,-0.71803815,0.69600374,0,0)"
style="fill:#be211e;stroke:#000000;stroke-width:4.37375px;stroke-linecap:round;stroke-linejoin:round"
id="rect2" />
<line
x1="38.00692"
y1="63.457153"
x2="57.993061"
y2="63.457153"
style="fill:none;stroke:#000000;stroke-width:4.37269px;stroke-linecap:round;stroke-linejoin:round"
id="line4" />
<path
d="m 48.007301,57.843329 c -1.943097,0 -3.877522,-0.41727 -5.686157,-1.246007 -3.218257,-1.474616 -5.650382,-4.075418 -6.849639,-7.323671 -2.065624,-5.588921 -1.192751,-10.226647 2.575258,-13.827 0.611554,-0.584909 1.518048,-0.773041 2.323689,-0.488206 0.80673,0.286405 1.369495,0.998486 1.447563,1.827234 0.237469,2.549302 2.439719,5.917376 4.28414,6.55273 0.396859,0.13506 0.820953,-0.05859 1.097084,-0.35222 0.339254,-0.360754 0.451065,-0.961893 -1.013597,-3.191372 -2.089851,-3.181137 -4.638728,-8.754903 -0.262407,-15.069853 0.494457,-0.713491 1.384673,-1.068907 2.256469,-0.909156 0.871795,0.161332 1.583757,0.806404 1.752251,1.651189 0.716448,3.591862 2.962357,6.151755 5.199306,8.023138 1.935503,1.61861 4.344688,3.867387 5.435687,7.096643 2.283183,6.758017 -1.202511,14.114988 -8.060822,16.494025 -1.467083,0.509226 -2.98513,0.762536 -4.498836,0.762536 z M 39.358865,40.002192 c -0.304711,0.696206 -0.541636,2.080524 -0.56865,2.237454 -0.330316,1.918771 0.168305,3.803963 0.846157,5.539951 0.856828,2.19436 2.437543,3.942467 4.583411,4.925713 2.143691,0.981675 4.554131,1.097816 6.789992,0.322666 4.571485,-1.586549 6.977584,-6.532238 5.363036,-11.02597 v -5.27e-4 C 55.455481,39.447968 54.023463,38.162043 52.221335,36.65432 50.876945,35.529534 49.409662,33.987726 48.417983,32.135555 48.01343,31.37996 47.79547,30.34303 47.76669,29.413263 c -0.187481,0.669514 -0.212441,2.325923 -0.150396,2.93691 0.179209,1.764456 1.333476,3.644546 2.340611,5.171243 1.311568,1.988179 2.72058,6.037272 0.459681,8.367985 -1.54192,1.58953 -4.038511,2.052034 -5.839973,1.38492 -2.398314,-0.888147 -3.942744,-2.690627 -4.941118,-4.768029 -0.121194,-0.25217 -0.532464,-1.174187 -0.276619,-2.5041 z"
id="path6"
style="stroke-width:1.09317" />
</svg>

Before

Width:  |  Height:  |  Size: 3.3 KiB

View File

@ -1,21 +0,0 @@
[package]
name = "nac3artiq"
version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[lib]
name = "nac3artiq"
crate-type = ["cdylib"]
[dependencies]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12"
tempfile = "3.13"
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -1,26 +0,0 @@
from min_artiq import *
@nac3
class Demo:
core: KernelInvariant[Core]
led0: KernelInvariant[TTLOut]
led1: KernelInvariant[TTLOut]
def __init__(self):
self.core = Core()
self.led0 = TTLOut(self.core, 18)
self.led1 = TTLOut(self.core, 19)
@kernel
def run(self):
self.core.reset()
while True:
with parallel:
self.led0.pulse(100.*ms)
self.led1.pulse(100.*ms)
self.core.delay(100.*ms)
if __name__ == "__main__":
Demo().run()

View File

@ -1,16 +0,0 @@
# python demo.py
# artiq_run module.elf
device_db = {
"core": {
"type": "local",
"module": "artiq.coredevice.core",
"class": "Core",
"arguments": {
"host": "kc705",
"ref_period": 1e-9,
"ref_multiplier": 8,
"target": "rv32g"
}
},
}

View File

@ -1,24 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

View File

@ -1,339 +0,0 @@
from inspect import getfullargspec
from functools import wraps
from types import SimpleNamespace
from numpy import int32, int64
from typing import Generic, TypeVar
from math import floor, ceil
import nac3artiq
__all__ = [
"Kernel", "KernelInvariant", "virtual", "ConstGeneric",
"Option", "Some", "none", "UnwrapNoneError",
"round64", "floor64", "ceil64",
"extern", "kernel", "portable", "nac3",
"rpc", "ms", "us", "ns",
"print_int32", "print_int64",
"Core", "TTLOut",
"parallel", "sequential"
]
T = TypeVar('T')
class Kernel(Generic[T]):
pass
class KernelInvariant(Generic[T]):
pass
# The virtual class must exist before nac3artiq.NAC3 is created.
class virtual(Generic[T]):
pass
class Option(Generic[T]):
_nac3_option: T
def __init__(self, v: T):
self._nac3_option = v
def is_none(self):
return self._nac3_option is None
def is_some(self):
return not self.is_none()
def unwrap(self):
if self.is_none():
raise UnwrapNoneError()
return self._nac3_option
def __repr__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(repr(self._nac3_option))
def __str__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(str(self._nac3_option))
def Some(v: T) -> Option[T]:
return Option(v)
none = Option(None)
class _ConstGenericMarker:
pass
def ConstGeneric(name, constraint):
return TypeVar(name, _ConstGenericMarker, constraint)
def round64(x):
return round(x)
def floor64(x):
return floor(x)
def ceil64(x):
return ceil(x)
import device_db
core_arguments = device_db.device_db["core"]["arguments"]
artiq_builtins = {
"none": none,
"virtual": virtual,
"_ConstGenericMarker": _ConstGenericMarker,
"Option": Option,
}
compiler = nac3artiq.NAC3(core_arguments["target"], artiq_builtins)
allow_registration = True
# Delay NAC3 analysis until all referenced variables are supposed to exist on the CPython side.
registered_functions = set()
registered_classes = set()
def register_function(fun):
assert allow_registration
registered_functions.add(fun)
def register_class(cls):
assert allow_registration
registered_classes.add(cls)
def extern(function):
"""Decorates a function declaration defined by the core device runtime."""
register_function(function)
return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device."""
register_function(function_or_method)
argspec = getfullargspec(function_or_method)
if argspec.args and argspec.args[0] == "self":
@wraps(function_or_method)
def run_on_core(self, *args, **kwargs):
fake_method = SimpleNamespace(__self__=self, __name__=function_or_method.__name__)
self.core.run(fake_method, *args, **kwargs)
else:
@wraps(function_or_method)
def run_on_core(*args, **kwargs):
raise RuntimeError("Kernel functions need explicit core.run()")
return run_on_core
def portable(function):
"""Decorates a function or method to be executed on the same device (host/core device) as the caller."""
register_function(function)
return function
def nac3(cls):
"""
Decorates a class to be analyzed by NAC3.
All classes containing kernels or portable methods must use this decorator.
"""
register_class(cls)
return cls
ms = 1e-3
us = 1e-6
ns = 1e-9
@extern
def rtio_init():
raise NotImplementedError("syscall not simulated")
@extern
def rtio_get_counter() -> int64:
raise NotImplementedError("syscall not simulated")
@extern
def rtio_output(target: int32, data: int32):
raise NotImplementedError("syscall not simulated")
@extern
def rtio_input_timestamp(timeout_mu: int64, channel: int32) -> int64:
raise NotImplementedError("syscall not simulated")
@extern
def rtio_input_data(channel: int32) -> int32:
raise NotImplementedError("syscall not simulated")
# These is not part of ARTIQ and only available in runkernel. Defined here for convenience.
@extern
def print_int32(x: int32):
raise NotImplementedError("syscall not simulated")
@extern
def print_int64(x: int64):
raise NotImplementedError("syscall not simulated")
class EmbeddingMap:
def __init__(self):
self.object_inverse_map = {}
self.object_map = {}
self.string_map = {}
self.string_reverse_map = {}
self.function_map = {}
self.attributes_writeback = []
def store_function(self, key, fun):
self.function_map[key] = fun
return key
def store_object(self, obj):
obj_id = id(obj)
if obj_id in self.object_inverse_map:
return self.object_inverse_map[obj_id]
key = len(self.object_map) + 1
self.object_map[key] = obj
self.object_inverse_map[obj_id] = key
return key
def store_str(self, s):
if s in self.string_reverse_map:
return self.string_reverse_map[s]
key = len(self.string_map)
self.string_map[key] = s
self.string_reverse_map[s] = key
return key
def retrieve_function(self, key):
return self.function_map[key]
def retrieve_object(self, key):
return self.object_map[key]
def retrieve_str(self, key):
return self.string_map[key]
@nac3
class Core:
ref_period: KernelInvariant[float]
def __init__(self):
self.ref_period = core_arguments["ref_period"]
def run(self, method, *args, **kwargs):
global allow_registration
embedding = EmbeddingMap()
if allow_registration:
compiler.analyze(registered_functions, registered_classes, set())
allow_registration = False
if hasattr(method, "__self__"):
obj = method.__self__
name = method.__name__
else:
obj = method
name = ""
compiler.compile_method_to_file(obj, name, args, "module.elf", embedding)
@kernel
def reset(self):
rtio_init()
at_mu(rtio_get_counter() + int64(125000))
@kernel
def break_realtime(self):
min_now = rtio_get_counter() + int64(125000)
if now_mu() < min_now:
at_mu(min_now)
@portable
def seconds_to_mu(self, seconds: float) -> int64:
return int64(round(seconds/self.ref_period))
@portable
def mu_to_seconds(self, mu: int64) -> float:
return float(mu)*self.ref_period
@kernel
def delay(self, dt: float):
delay_mu(self.seconds_to_mu(dt))
@nac3
class TTLOut:
core: KernelInvariant[Core]
channel: KernelInvariant[int32]
target_o: KernelInvariant[int32]
def __init__(self, core: Core, channel: int32):
self.core = core
self.channel = channel
self.target_o = channel << 8
@kernel
def output(self):
pass
@kernel
def set_o(self, o: bool):
rtio_output(self.target_o, 1 if o else 0)
@kernel
def on(self):
self.set_o(True)
@kernel
def off(self):
self.set_o(False)
@kernel
def pulse_mu(self, duration: int64):
self.on()
delay_mu(duration)
self.off()
@kernel
def pulse(self, duration: float):
self.on()
self.core.delay(duration)
self.off()
@nac3
class KernelContextManager:
@kernel
def __enter__(self):
pass
@kernel
def __exit__(self):
pass
@nac3
class UnwrapNoneError(Exception):
"""raised when unwrapping a none value"""
artiq_builtin = True
parallel = KernelContextManager()
sequential = KernelContextManager()

View File

@ -1,26 +0,0 @@
from min_artiq import *
from numpy import int32
# Global Variable Definition
X: Kernel[int32] = 1
# TopLevelFunction Defintion
@kernel
def display_X():
print_int32(X)
# TopLevel Class Definition
@nac3
class A:
@kernel
def __init__(self):
self.set_x(1)
@kernel
def set_x(self, new_val: int32):
global X
X = new_val
@kernel
def get_X(self) -> int32:
return X

View File

@ -1,26 +0,0 @@
from min_artiq import *
import module as module_definition
@nac3
class TestModuleSupport:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def run(self):
# Accessing classes
obj = module_definition.A()
obj.get_X()
obj.set_x(2)
# Calling functions
module_definition.display_X()
# Updating global variables
module_definition.X = 9
module_definition.display_X()
if __name__ == "__main__":
TestModuleSupport().run()

View File

@ -1 +0,0 @@
../../target/release/libnac3artiq.so

View File

@ -1,29 +0,0 @@
from min_artiq import *
import numpy
from numpy import int32
@nac3
class NumpyBoolDecay:
core: KernelInvariant[Core]
np_true: KernelInvariant[bool]
np_false: KernelInvariant[bool]
np_int: KernelInvariant[int32]
np_float: KernelInvariant[float]
np_str: KernelInvariant[str]
def __init__(self):
self.core = Core()
self.np_true = numpy.True_
self.np_false = numpy.False_
self.np_int = numpy.int32(0)
self.np_float = numpy.float64(0.0)
self.np_str = numpy.str_("")
@kernel
def run(self):
pass
if __name__ == "__main__":
NumpyBoolDecay().run()

View File

@ -1,26 +0,0 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

File diff suppressed because it is too large Load Diff

View File

@ -1,56 +0,0 @@
/* Force ld to make the ELF header as loadable. */
PHDRS
{
headers PT_LOAD FILEHDR PHDRS ;
text PT_LOAD ;
data PT_LOAD ;
dynamic PT_DYNAMIC ;
eh_frame PT_GNU_EH_FRAME ;
}
SECTIONS
{
/* Push back .text section enough so that ld.lld not complain */
. = SIZEOF_HEADERS;
.text :
{
*(.text .text.*)
} : text
.rodata :
{
*(.rodata .rodata.*)
}
.eh_frame :
{
KEEP(*(.eh_frame))
} : text
.eh_frame_hdr :
{
KEEP(*(.eh_frame_hdr))
} : text : eh_frame
.data :
{
*(.data)
} : data
.dynamic :
{
*(.dynamic)
} : data : dynamic
.bss (NOLOAD) : ALIGN(4)
{
__bss_start = .;
*(.sbss .sbss.* .bss .bss.*);
. = ALIGN(4);
_end = .;
}
. = ALIGN(0x1000);
_sstack_guard = .;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,324 +0,0 @@
use itertools::Either;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
/// Functions for manipulating the timeline.
pub trait TimeFns {
/// Emits LLVM IR for `now_mu`.
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx>;
/// Emits LLVM IR for `at_mu`.
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>);
/// Emits LLVM IR for `delay_mu`.
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>);
}
pub struct NowPinningTimeFns64 {}
// For FPGA design reasons, on VexRiscv with 64-bit data bus, the "now" CSR is split into two 32-bit
// values that are each padded to 64-bits.
impl TimeFns for NowPinningTimeFns64 {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let i64_type = ctx.ctx.i64_type();
let i32_type = ctx.ctx.i32_type();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
ctx.builder.build_or(shifted_hi, zext_lo, "now_mu").map(Into::into).unwrap()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let time = t.into_int_value();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type,
"",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
let i64_type = ctx.ctx.i64_type();
let i32_type = ctx.ctx.i32_type();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let dt = dt.into_int_value();
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder
.build_right_shift(time, i64_type.const_int(32, false), false, "")
.unwrap(),
i32_type,
"time.hi",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
}
pub static NOW_PINNING_TIME_FNS_64: NowPinningTimeFns64 = NowPinningTimeFns64 {};
pub struct NowPinningTimeFns {}
impl TimeFns for NowPinningTimeFns {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let i64_type = ctx.ctx.i64_type();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx
.builder
.build_load(now.as_pointer_value(), "now")
.map(BasicValueEnum::into_int_value)
.unwrap();
let i64_32 = i64_type.const_int(32, false);
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
ctx.builder.build_or(now_lo, now_hi, "now_mu").map(Into::into).unwrap()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let time = t.into_int_value();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "").unwrap(),
i32_type,
"time.hi",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc").unwrap();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
}
.unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx
.builder
.build_load(now.as_pointer_value(), "")
.map(BasicValueEnum::into_int_value)
.unwrap();
let dt = dt.into_int_value();
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_val").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type,
"now_trunc",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
}
.unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
}
pub static NOW_PINNING_TIME_FNS: NowPinningTimeFns = NowPinningTimeFns {};
pub struct ExternTimeFns {}
impl TimeFns for ExternTimeFns {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let now_mu = ctx.module.get_function("now_mu").unwrap_or_else(|| {
ctx.module.add_function("now_mu", ctx.ctx.i64_type().fn_type(&[], false), None)
});
ctx.builder
.build_call(now_mu, &[], "now_mu")
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
let at_mu = ctx.module.get_function("at_mu").unwrap_or_else(|| {
ctx.module.add_function(
"at_mu",
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false),
None,
)
});
ctx.builder.build_call(at_mu, &[t.into()], "at_mu").unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
let delay_mu = ctx.module.get_function("delay_mu").unwrap_or_else(|| {
ctx.module.add_function(
"delay_mu",
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false),
None,
)
});
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu").unwrap();
}
}
pub static EXTERN_TIME_FNS: ExternTimeFns = ExternTimeFns {};

View File

@ -1,15 +0,0 @@
[package]
name = "nac3ast"
version = "0.1.0"
authors = ["RustPython Team", "M-Labs"]
edition = "2021"
[features]
default = ["constant-optimization", "fold"]
constant-optimization = ["fold"]
fold = []
[dependencies]
parking_lot = "0.12"
string-interner = "0.17"
fxhash = "0.2"

View File

@ -1,127 +0,0 @@
-- ASDL's 4 builtin types are:
-- identifier, int, string, constant
module Python
{
mod = Module(stmt* body, type_ignore* type_ignores)
| Interactive(stmt* body)
| Expression(expr body)
| FunctionType(expr* argtypes, expr returns)
stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment, identifier* config_comment)
| AsyncFunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment, identifier* config_comment)
| ClassDef(identifier name,
expr* bases,
keyword* keywords,
stmt* body,
expr* decorator_list, identifier* config_comment)
| Return(expr? value, identifier* config_comment)
| Delete(expr* targets, identifier* config_comment)
| Assign(expr* targets, expr value, string? type_comment, identifier* config_comment)
| AugAssign(expr target, operator op, expr value, identifier* config_comment)
-- 'simple' indicates that we annotate simple name without parens
| AnnAssign(expr target, expr annotation, expr? value, bool simple, identifier* config_comment)
-- use 'orelse' because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment, identifier* config_comment)
| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment, identifier* config_comment)
| While(expr test, stmt* body, stmt* orelse, identifier* config_comment)
| If(expr test, stmt* body, stmt* orelse, identifier* config_comment)
| With(withitem* items, stmt* body, string? type_comment, identifier* config_comment)
| AsyncWith(withitem* items, stmt* body, string? type_comment, identifier* config_comment)
| Raise(expr? exc, expr? cause, identifier* config_comment)
| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody, identifier* config_comment)
| Assert(expr test, expr? msg, identifier* config_comment)
| Import(alias* names, identifier* config_comment)
| ImportFrom(identifier? module, alias* names, int level, identifier* config_comment)
| Global(identifier* names, identifier* config_comment)
| Nonlocal(identifier* names, identifier* config_comment)
| Expr(expr value, identifier* config_comment)
| Pass(identifier* config_comment)
| Break(identifier* config_comment)
| Continue(identifier* config_comment)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr?* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Await(expr value)
| Yield(expr? value)
| YieldFrom(expr value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords)
| FormattedValue(expr value, conversion_flag? conversion, expr? format_spec)
| JoinedStr(expr* values)
| Constant(constant value, string? kind)
-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, expr slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)
-- can appear only in Subscript
| Slice(expr? lower, expr? upper, expr? step)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
expr_context = Load | Store | Del
boolop = And | Or
operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv
unaryop = Invert | Not | UAdd | USub
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn
comprehension = (expr target, expr iter, expr* ifs, bool is_async)
excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,
expr?* kw_defaults, arg? kwarg, expr* defaults)
arg = (identifier arg, expr? annotation, string? type_comment)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- keyword arguments supplied to call (NULL identifier for **kwargs)
keyword = (identifier? arg, expr value)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- import name with optional 'as' alias.
alias = (identifier name, identifier? asname)
withitem = (expr context_expr, expr? optional_vars)
type_ignore = TypeIgnore(int lineno, string tag)
}

View File

@ -1,385 +0,0 @@
#-------------------------------------------------------------------------------
# Parser for ASDL [1] definition files. Reads in an ASDL description and parses
# it into an AST that describes it.
#
# The EBNF we're parsing here: Figure 1 of the paper [1]. Extended to support
# modules and attributes after a product. Words starting with Capital letters
# are terminals. Literal tokens are in "double quotes". Others are
# non-terminals. Id is either TokenId or ConstructorId.
#
# module ::= "module" Id "{" [definitions] "}"
# definitions ::= { TypeId "=" type }
# type ::= product | sum
# product ::= fields ["attributes" fields]
# fields ::= "(" { field, "," } field ")"
# field ::= TypeId ["?" | "*"] [Id]
# sum ::= constructor { "|" constructor } ["attributes" fields]
# constructor ::= ConstructorId [fields]
#
# [1] "The Zephyr Abstract Syntax Description Language" by Wang, et. al. See
# http://asdl.sourceforge.net/
#-------------------------------------------------------------------------------
from collections import namedtuple
import re
__all__ = [
'builtin_types', 'parse', 'AST', 'Module', 'Type', 'Constructor',
'Field', 'Sum', 'Product', 'VisitorBase', 'Check', 'check']
# The following classes define nodes into which the ASDL description is parsed.
# Note: this is a "meta-AST". ASDL files (such as Python.asdl) describe the AST
# structure used by a programming language. But ASDL files themselves need to be
# parsed. This module parses ASDL files and uses a simple AST to represent them.
# See the EBNF at the top of the file to understand the logical connection
# between the various node types.
builtin_types = {'identifier', 'string', 'int', 'constant', 'bool', 'conversion_flag'}
class AST:
def __repr__(self):
raise NotImplementedError
class Module(AST):
def __init__(self, name, dfns):
self.name = name
self.dfns = dfns
self.types = {type.name: type.value for type in dfns}
def __repr__(self):
return 'Module({0.name}, {0.dfns})'.format(self)
class Type(AST):
def __init__(self, name, value):
self.name = name
self.value = value
def __repr__(self):
return 'Type({0.name}, {0.value})'.format(self)
class Constructor(AST):
def __init__(self, name, fields=None):
self.name = name
self.fields = fields or []
def __repr__(self):
return 'Constructor({0.name}, {0.fields})'.format(self)
class Field(AST):
def __init__(self, type, name=None, seq=False, opt=False):
self.type = type
self.name = name
self.seq = seq
self.opt = opt
def __str__(self):
if self.seq:
extra = "*"
elif self.opt:
extra = "?"
else:
extra = ""
return "{}{} {}".format(self.type, extra, self.name)
def __repr__(self):
if self.seq:
extra = ", seq=True"
elif self.opt:
extra = ", opt=True"
else:
extra = ""
if self.name is None:
return 'Field({0.type}{1})'.format(self, extra)
else:
return 'Field({0.type}, {0.name}{1})'.format(self, extra)
class Sum(AST):
def __init__(self, types, attributes=None):
self.types = types
self.attributes = attributes or []
def __repr__(self):
if self.attributes:
return 'Sum({0.types}, {0.attributes})'.format(self)
else:
return 'Sum({0.types})'.format(self)
class Product(AST):
def __init__(self, fields, attributes=None):
self.fields = fields
self.attributes = attributes or []
def __repr__(self):
if self.attributes:
return 'Product({0.fields}, {0.attributes})'.format(self)
else:
return 'Product({0.fields})'.format(self)
# A generic visitor for the meta-AST that describes ASDL. This can be used by
# emitters. Note that this visitor does not provide a generic visit method, so a
# subclass needs to define visit methods from visitModule to as deep as the
# interesting node.
# We also define a Check visitor that makes sure the parsed ASDL is well-formed.
class VisitorBase(object):
"""Generic tree visitor for ASTs."""
def __init__(self):
self.cache = {}
def visit(self, obj, *args):
klass = obj.__class__
meth = self.cache.get(klass)
if meth is None:
methname = "visit" + klass.__name__
meth = getattr(self, methname, None)
self.cache[klass] = meth
if meth:
try:
meth(obj, *args)
except Exception as e:
print("Error visiting %r: %s" % (obj, e))
raise
class Check(VisitorBase):
"""A visitor that checks a parsed ASDL tree for correctness.
Errors are printed and accumulated.
"""
def __init__(self):
super(Check, self).__init__()
self.cons = {}
self.errors = 0
self.types = {}
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type):
self.visit(type.value, str(type.name))
def visitSum(self, sum, name):
for t in sum.types:
self.visit(t, name)
def visitConstructor(self, cons, name):
key = str(cons.name)
conflict = self.cons.get(key)
if conflict is None:
self.cons[key] = name
else:
print('Redefinition of constructor {}'.format(key))
print('Defined in {} and {}'.format(conflict, name))
self.errors += 1
for f in cons.fields:
self.visit(f, key)
def visitField(self, field, name):
key = str(field.type)
l = self.types.setdefault(key, [])
l.append(name)
def visitProduct(self, prod, name):
for f in prod.fields:
self.visit(f, name)
def check(mod):
"""Check the parsed ASDL tree for correctness.
Return True if success. For failure, the errors are printed out and False
is returned.
"""
v = Check()
v.visit(mod)
for t in v.types:
if t not in mod.types and not t in builtin_types:
v.errors += 1
uses = ", ".join(v.types[t])
print('Undefined type {}, used in {}'.format(t, uses))
return not v.errors
# The ASDL parser itself comes next. The only interesting external interface
# here is the top-level parse function.
def parse(filename):
"""Parse ASDL from the given file and return a Module node describing it."""
with open(filename) as f:
parser = ASDLParser()
return parser.parse(f.read())
# Types for describing tokens in an ASDL specification.
class TokenKind:
"""TokenKind is provides a scope for enumerated token kinds."""
(ConstructorId, TypeId, Equals, Comma, Question, Pipe, Asterisk,
LParen, RParen, LBrace, RBrace) = range(11)
operator_table = {
'=': Equals, ',': Comma, '?': Question, '|': Pipe, '(': LParen,
')': RParen, '*': Asterisk, '{': LBrace, '}': RBrace}
Token = namedtuple('Token', 'kind value lineno')
class ASDLSyntaxError(Exception):
def __init__(self, msg, lineno=None):
self.msg = msg
self.lineno = lineno or '<unknown>'
def __str__(self):
return 'Syntax error on line {0.lineno}: {0.msg}'.format(self)
def tokenize_asdl(buf):
"""Tokenize the given buffer. Yield Token objects."""
for lineno, line in enumerate(buf.splitlines(), 1):
for m in re.finditer(r'\s*(\w+|--.*|.)', line.strip()):
c = m.group(1)
if c[0].isalpha():
# Some kind of identifier
if c[0].isupper():
yield Token(TokenKind.ConstructorId, c, lineno)
else:
yield Token(TokenKind.TypeId, c, lineno)
elif c[:2] == '--':
# Comment
break
else:
# Operators
try:
op_kind = TokenKind.operator_table[c]
except KeyError:
raise ASDLSyntaxError('Invalid operator %s' % c, lineno)
yield Token(op_kind, c, lineno)
class ASDLParser:
"""Parser for ASDL files.
Create, then call the parse method on a buffer containing ASDL.
This is a simple recursive descent parser that uses tokenize_asdl for the
lexing.
"""
def __init__(self):
self._tokenizer = None
self.cur_token = None
def parse(self, buf):
"""Parse the ASDL in the buffer and return an AST with a Module root.
"""
self._tokenizer = tokenize_asdl(buf)
self._advance()
return self._parse_module()
def _parse_module(self):
if self._at_keyword('module'):
self._advance()
else:
raise ASDLSyntaxError(
'Expected "module" (found {})'.format(self.cur_token.value),
self.cur_token.lineno)
name = self._match(self._id_kinds)
self._match(TokenKind.LBrace)
defs = self._parse_definitions()
self._match(TokenKind.RBrace)
return Module(name, defs)
def _parse_definitions(self):
defs = []
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
self._match(TokenKind.Equals)
type = self._parse_type()
defs.append(Type(typename, type))
return defs
def _parse_type(self):
if self.cur_token.kind == TokenKind.LParen:
# If we see a (, it's a product
return self._parse_product()
else:
# Otherwise it's a sum. Look for ConstructorId
sumlist = [Constructor(self._match(TokenKind.ConstructorId),
self._parse_optional_fields())]
while self.cur_token.kind == TokenKind.Pipe:
# More constructors
self._advance()
sumlist.append(Constructor(
self._match(TokenKind.ConstructorId),
self._parse_optional_fields()))
return Sum(sumlist, self._parse_optional_attributes())
def _parse_product(self):
return Product(self._parse_fields(), self._parse_optional_attributes())
def _parse_fields(self):
fields = []
self._match(TokenKind.LParen)
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
is_seq, is_opt = self._parse_optional_field_quantifier()
id = (self._advance() if self.cur_token.kind in self._id_kinds
else None)
fields.append(Field(typename, id, seq=is_seq, opt=is_opt))
if self.cur_token.kind == TokenKind.RParen:
break
elif self.cur_token.kind == TokenKind.Comma:
self._advance()
self._match(TokenKind.RParen)
return fields
def _parse_optional_fields(self):
if self.cur_token.kind == TokenKind.LParen:
return self._parse_fields()
else:
return None
def _parse_optional_attributes(self):
if self._at_keyword('attributes'):
self._advance()
return self._parse_fields()
else:
return None
def _parse_optional_field_quantifier(self):
is_seq, is_opt = False, False
if self.cur_token.kind == TokenKind.Question:
is_opt = True
self._advance()
if self.cur_token.kind == TokenKind.Asterisk:
is_seq = True
self._advance()
return is_seq, is_opt
def _advance(self):
""" Return the value of the current token and read the next one into
self.cur_token.
"""
cur_val = None if self.cur_token is None else self.cur_token.value
try:
self.cur_token = next(self._tokenizer)
except StopIteration:
self.cur_token = None
return cur_val
_id_kinds = (TokenKind.ConstructorId, TokenKind.TypeId)
def _match(self, kind):
"""The 'match' primitive of RD parsers.
* Verifies that the current token is of the given kind (kind can
be a tuple, in which the kind must match one of its members).
* Returns the value of the current token
* Reads in the next token
"""
if (isinstance(kind, tuple) and self.cur_token.kind in kind or
self.cur_token.kind == kind
):
value = self.cur_token.value
self._advance()
return value
else:
raise ASDLSyntaxError(
'Unmatched {} (found {})'.format(kind, self.cur_token.kind),
self.cur_token.lineno)
def _at_keyword(self, keyword):
return (self.cur_token.kind == TokenKind.TypeId and
self.cur_token.value == keyword)

View File

@ -1,609 +0,0 @@
#! /usr/bin/env python
"""Generate Rust code from an ASDL description."""
import os
import sys
import textwrap
import json
from argparse import ArgumentParser
from pathlib import Path
import asdl
TABSIZE = 4
AUTOGEN_MESSAGE = "// File automatically generated by {}.\n\n"
builtin_type_mapping = {
'identifier': 'Ident',
'string': 'String',
'int': 'usize',
'constant': 'Constant',
'bool': 'bool',
'conversion_flag': 'ConversionFlag',
}
assert builtin_type_mapping.keys() == asdl.builtin_types
def get_rust_type(name):
"""Return a string for the C name of the type.
This function special cases the default types provided by asdl.
"""
if name in asdl.builtin_types:
return builtin_type_mapping[name]
else:
return "".join(part.capitalize() for part in name.split("_"))
def is_simple(sum):
"""Return True if a sum is a simple.
A sum is simple if its types have no fields, e.g.
unaryop = Invert | Not | UAdd | USub
"""
for t in sum.types:
if t.fields:
return False
return True
def asdl_of(name, obj):
if isinstance(obj, asdl.Product) or isinstance(obj, asdl.Constructor):
fields = ", ".join(map(str, obj.fields))
if fields:
fields = "({})".format(fields)
return "{}{}".format(name, fields)
else:
if is_simple(obj):
types = " | ".join(type.name for type in obj.types)
else:
sep = "\n{}| ".format(" " * (len(name) + 1))
types = sep.join(
asdl_of(type.name, type) for type in obj.types
)
return "{} = {}".format(name, types)
class EmitVisitor(asdl.VisitorBase):
"""Visit that emits lines"""
def __init__(self, file):
self.file = file
self.identifiers = set()
super(EmitVisitor, self).__init__()
def emit_identifier(self, name):
name = str(name)
if name in self.identifiers:
return
self.emit("_Py_IDENTIFIER(%s);" % name, 0)
self.identifiers.add(name)
def emit(self, line, depth):
if line:
line = (" " * TABSIZE * depth) + line
self.file.write(line + "\n")
class TypeInfo:
def __init__(self, name):
self.name = name
self.has_userdata = None
self.children = set()
self.boxed = False
def __repr__(self):
return f"<TypeInfo: {self.name}>"
def determine_userdata(self, typeinfo, stack):
if self.name in stack:
return None
stack.add(self.name)
for child, child_seq in self.children:
if child in asdl.builtin_types:
continue
childinfo = typeinfo[child]
child_has_userdata = childinfo.determine_userdata(typeinfo, stack)
if self.has_userdata is None and child_has_userdata is True:
self.has_userdata = True
stack.remove(self.name)
return self.has_userdata
class FindUserdataTypesVisitor(asdl.VisitorBase):
def __init__(self, typeinfo):
self.typeinfo = typeinfo
super().__init__()
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
stack = set()
for info in self.typeinfo.values():
info.determine_userdata(self.typeinfo, stack)
def visitType(self, type):
self.typeinfo[type.name] = TypeInfo(type.name)
self.visit(type.value, type.name)
def visitSum(self, sum, name):
info = self.typeinfo[name]
if is_simple(sum):
info.has_userdata = False
else:
if len(sum.types) > 1:
info.boxed = True
if sum.attributes:
# attributes means Located, which has the `custom: U` field
info.has_userdata = True
for variant in sum.types:
self.add_children(name, variant.fields)
def visitProduct(self, product, name):
info = self.typeinfo[name]
if product.attributes:
# attributes means Located, which has the `custom: U` field
info.has_userdata = True
if len(product.fields) > 2:
info.boxed = True
self.add_children(name, product.fields)
def add_children(self, name, fields):
self.typeinfo[name].children.update((field.type, field.seq) for field in fields)
def rust_field(field_name):
if field_name == 'type':
return 'type_'
else:
return field_name
class TypeInfoEmitVisitor(EmitVisitor):
def __init__(self, file, typeinfo):
self.typeinfo = typeinfo
super().__init__(file)
def has_userdata(self, typ):
return self.typeinfo[typ].has_userdata
def get_generics(self, typ, *generics):
if self.has_userdata(typ):
return [f"<{g}>" for g in generics]
else:
return ["" for g in generics]
class StructVisitor(TypeInfoEmitVisitor):
"""Visitor to generate typedefs for AST."""
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
if is_simple(sum):
self.simple_sum(sum, name, depth)
else:
self.sum_with_constructors(sum, name, depth)
def emit_attrs(self, depth):
self.emit("#[derive(Clone, Debug, PartialEq)]", depth)
def simple_sum(self, sum, name, depth):
rustname = get_rust_type(name)
self.emit_attrs(depth)
self.emit(f"pub enum {rustname} {{", depth)
for variant in sum.types:
self.emit(f"{variant.name},", depth + 1)
self.emit("}", depth)
self.emit("", depth)
def sum_with_constructors(self, sum, name, depth):
typeinfo = self.typeinfo[name]
generics, generics_applied = self.get_generics(name, "U = ()", "U")
enumname = rustname = get_rust_type(name)
# all the attributes right now are for location, so if it has attrs we
# can just wrap it in Located<>
if sum.attributes:
enumname = rustname + "Kind"
self.emit_attrs(depth)
self.emit(f"pub enum {enumname}{generics} {{", depth)
for t in sum.types:
self.visit(t, typeinfo, depth + 1)
self.emit("}", depth)
if sum.attributes:
self.emit(f"pub type {rustname}<U = ()> = Located<{enumname}{generics_applied}, U>;", depth)
self.emit("", depth)
def visitConstructor(self, cons, parent, depth):
if cons.fields:
self.emit(f"{cons.name} {{", depth)
for f in cons.fields:
self.visit(f, parent, "", depth + 1)
self.emit("},", depth)
else:
self.emit(f"{cons.name},", depth)
def visitField(self, field, parent, vis, depth):
typ = get_rust_type(field.type)
fieldtype = self.typeinfo.get(field.type)
if fieldtype and fieldtype.has_userdata:
typ = f"{typ}<U>"
# don't box if we're doing Vec<T>, but do box if we're doing Vec<Option<Box<T>>>
if fieldtype and fieldtype.boxed and (not field.seq or field.opt):
typ = f"Box<{typ}>"
if field.opt:
typ = f"Option<{typ}>"
if field.seq:
typ = f"Vec<{typ}>"
name = rust_field(field.name)
self.emit(f"{vis}{name}: {typ},", depth)
def visitProduct(self, product, name, depth):
typeinfo = self.typeinfo[name]
generics, generics_applied = self.get_generics(name, "U = ()", "U")
dataname = rustname = get_rust_type(name)
if product.attributes:
dataname = rustname + "Data"
self.emit_attrs(depth)
self.emit(f"pub struct {dataname}{generics} {{", depth)
for f in product.fields:
self.visit(f, typeinfo, "pub ", depth + 1)
self.emit("}", depth)
if product.attributes:
# attributes should just be location info
self.emit(f"pub type {rustname}<U = ()> = Located<{dataname}{generics_applied}, U>;", depth);
self.emit("", depth)
class FoldTraitDefVisitor(TypeInfoEmitVisitor):
def visitModule(self, mod, depth):
self.emit("pub trait Fold<U> {", depth)
self.emit("type TargetU;", depth + 1)
self.emit("type Error;", depth + 1)
self.emit("fn map_user(&mut self, user: U) -> Result<Self::TargetU, Self::Error>;", depth + 2)
for dfn in mod.dfns:
self.visit(dfn, depth + 2)
self.emit("}", depth)
def visitType(self, type, depth):
name = type.name
apply_u, apply_target_u = self.get_generics(name, "U", "Self::TargetU")
enumname = get_rust_type(name)
self.emit(f"fn fold_{name}(&mut self, node: {enumname}{apply_u}) -> Result<{enumname}{apply_target_u}, Self::Error> {{", depth)
self.emit(f"fold_{name}(self, node)", depth + 1)
self.emit("}", depth)
class FoldImplVisitor(TypeInfoEmitVisitor):
def visitModule(self, mod, depth):
self.emit("fn fold_located<U, F: Fold<U> + ?Sized, T, MT>(folder: &mut F, node: Located<T, U>, f: impl FnOnce(&mut F, T) -> Result<MT, F::Error>) -> Result<Located<MT, F::TargetU>, F::Error> {", depth)
self.emit("Ok(Located { custom: folder.map_user(node.custom)?, location: node.location, node: f(folder, node.node)? })", depth + 1)
self.emit("}", depth)
for dfn in mod.dfns:
self.visit(dfn, depth)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
apply_t, apply_u, apply_target_u = self.get_generics(name, "T", "U", "F::TargetU")
enumname = get_rust_type(name)
is_located = bool(sum.attributes)
self.emit(f"impl<T, U> Foldable<T, U> for {enumname}{apply_t} {{", depth)
self.emit(f"type Mapped = {enumname}{apply_u};", depth + 1)
self.emit("fn fold<F: Fold<T, TargetU = U> + ?Sized>(self, folder: &mut F) -> Result<Self::Mapped, F::Error> {", depth + 1)
self.emit(f"folder.fold_{name}(self)", depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
self.emit(f"pub fn fold_{name}<U, F: Fold<U> + ?Sized>(#[allow(unused)] folder: &mut F, node: {enumname}{apply_u}) -> Result<{enumname}{apply_target_u}, F::Error> {{", depth)
if is_located:
self.emit("fold_located(folder, node, |folder, node| {", depth)
enumname += "Kind"
self.emit("match node {", depth + 1)
for cons in sum.types:
fields_pattern = self.make_pattern(cons.fields)
self.emit(f"{enumname}::{cons.name} {{ {fields_pattern} }} => {{", depth + 2)
self.gen_construction(f"{enumname}::{cons.name}", cons.fields, depth + 3)
self.emit("}", depth + 2)
self.emit("}", depth + 1)
if is_located:
self.emit("})", depth)
self.emit("}", depth)
def visitProduct(self, product, name, depth):
apply_t, apply_u, apply_target_u = self.get_generics(name, "T", "U", "F::TargetU")
structname = get_rust_type(name)
is_located = bool(product.attributes)
self.emit(f"impl<T, U> Foldable<T, U> for {structname}{apply_t} {{", depth)
self.emit(f"type Mapped = {structname}{apply_u};", depth + 1)
self.emit("fn fold<F: Fold<T, TargetU = U> + ?Sized>(self, folder: &mut F) -> Result<Self::Mapped, F::Error> {", depth + 1)
self.emit(f"folder.fold_{name}(self)", depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
self.emit(f"pub fn fold_{name}<U, F: Fold<U> + ?Sized>(#[allow(unused)] folder: &mut F, node: {structname}{apply_u}) -> Result<{structname}{apply_target_u}, F::Error> {{", depth)
if is_located:
self.emit("fold_located(folder, node, |folder, node| {", depth)
structname += "Data"
fields_pattern = self.make_pattern(product.fields)
self.emit(f"let {structname} {{ {fields_pattern} }} = node;", depth + 1)
self.gen_construction(structname, product.fields, depth + 1)
if is_located:
self.emit("})", depth)
self.emit("}", depth)
def make_pattern(self, fields):
return ",".join(rust_field(f.name) for f in fields)
def gen_construction(self, cons_path, fields, depth):
self.emit(f"Ok({cons_path} {{", depth)
for field in fields:
name = rust_field(field.name)
self.emit(f"{name}: Foldable::fold({name}, folder)?,", depth + 1)
self.emit("})", depth)
class FoldModuleVisitor(TypeInfoEmitVisitor):
def visitModule(self, mod):
depth = 0
self.emit('#[cfg(feature = "fold")]', depth)
self.emit("pub mod fold {", depth)
self.emit("use super::*;", depth + 1)
self.emit("use crate::fold_helpers::Foldable;", depth + 1)
FoldTraitDefVisitor(self.file, self.typeinfo).visit(mod, depth + 1)
FoldImplVisitor(self.file, self.typeinfo).visit(mod, depth + 1)
self.emit("}", depth)
class ClassDefVisitor(EmitVisitor):
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
for cons in sum.types:
self.visit(cons, sum.attributes, depth)
def visitConstructor(self, cons, attrs, depth):
self.gen_classdef(cons.name, cons.fields, attrs, depth)
def visitProduct(self, product, name, depth):
self.gen_classdef(name, product.fields, product.attributes, depth)
def gen_classdef(self, name, fields, attrs, depth):
structname = "Node" + name
self.emit(f'#[pyclass(module = "_ast", name = {json.dumps(name)}, base = "AstNode")]', depth)
self.emit(f"struct {structname};", depth)
self.emit("#[pyimpl(flags(HAS_DICT, BASETYPE))]", depth)
self.emit(f"impl {structname} {{", depth)
self.emit(f"#[extend_class]", depth + 1)
self.emit("fn extend_class_with_fields(ctx: &PyContext, class: &PyTypeRef) {", depth + 1)
fields = ",".join(f"ctx.new_str({json.dumps(f.name)})" for f in fields)
self.emit(f'class.set_str_attr("_fields", ctx.new_list(vec![{fields}]));', depth + 2)
attrs = ",".join(f"ctx.new_str({json.dumps(attr.name)})" for attr in attrs)
self.emit(f'class.set_str_attr("_attributes", ctx.new_list(vec![{attrs}]));', depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
class ExtendModuleVisitor(EmitVisitor):
def visitModule(self, mod):
depth = 0
self.emit("pub fn extend_module_nodes(vm: &VirtualMachine, module: &PyObjectRef) {", depth)
self.emit("extend_module!(vm, module, {", depth + 1)
for dfn in mod.dfns:
self.visit(dfn, depth + 2)
self.emit("})", depth + 1)
self.emit("}", depth)
def visitType(self, type, depth):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
for cons in sum.types:
self.visit(cons, depth)
def visitConstructor(self, cons, depth):
self.gen_extension(cons.name, depth)
def visitProduct(self, product, name, depth):
self.gen_extension(name, depth)
def gen_extension(self, name, depth):
self.emit(f"{json.dumps(name)} => Node{name}::make_class(&vm.ctx),", depth)
class TraitImplVisitor(EmitVisitor):
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
enumname = get_rust_type(name)
if sum.attributes:
enumname += "Kind"
self.emit(f"impl NamedNode for ast::{enumname} {{", depth)
self.emit(f"const NAME: &'static str = {json.dumps(name)};", depth + 1)
self.emit("}", depth)
self.emit(f"impl Node for ast::{enumname} {{", depth)
self.emit("fn ast_to_object(self, _vm: &VirtualMachine) -> PyObjectRef {", depth + 1)
self.emit("match self {", depth + 2)
for variant in sum.types:
self.constructor_to_object(variant, enumname, depth + 3)
self.emit("}", depth + 2)
self.emit("}", depth + 1)
self.emit("fn ast_from_object(_vm: &VirtualMachine, _object: PyObjectRef) -> PyResult<Self> {", depth + 1)
self.gen_sum_fromobj(sum, name, enumname, depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
def constructor_to_object(self, cons, enumname, depth):
fields_pattern = self.make_pattern(cons.fields)
self.emit(f"ast::{enumname}::{cons.name} {{ {fields_pattern} }} => {{", depth)
self.make_node(cons.name, cons.fields, depth + 1)
self.emit("}", depth)
def visitProduct(self, product, name, depth):
structname = get_rust_type(name)
if product.attributes:
structname += "Data"
self.emit(f"impl NamedNode for ast::{structname} {{", depth)
self.emit(f"const NAME: &'static str = {json.dumps(name)};", depth + 1)
self.emit("}", depth)
self.emit(f"impl Node for ast::{structname} {{", depth)
self.emit("fn ast_to_object(self, _vm: &VirtualMachine) -> PyObjectRef {", depth + 1)
fields_pattern = self.make_pattern(product.fields)
self.emit(f"let ast::{structname} {{ {fields_pattern} }} = self;", depth + 2)
self.make_node(name, product.fields, depth + 2)
self.emit("}", depth + 1)
self.emit("fn ast_from_object(_vm: &VirtualMachine, _object: PyObjectRef) -> PyResult<Self> {", depth + 1)
self.gen_product_fromobj(product, name, structname, depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
def make_node(self, variant, fields, depth):
lines = []
self.emit(f"let _node = AstNode.into_ref_with_type(_vm, Node{variant}::static_type().clone()).unwrap();", depth)
if fields:
self.emit("let _dict = _node.as_object().dict().unwrap();", depth)
for f in fields:
self.emit(f"_dict.set_item({json.dumps(f.name)}, {rust_field(f.name)}.ast_to_object(_vm), _vm).unwrap();", depth)
self.emit("_node.into_object()", depth)
def make_pattern(self, fields):
return ",".join(rust_field(f.name) for f in fields)
def gen_sum_fromobj(self, sum, sumname, enumname, depth):
if sum.attributes:
self.extract_location(sumname, depth)
self.emit("let _cls = _object.class();", depth)
self.emit("Ok(", depth)
for cons in sum.types:
self.emit(f"if _cls.is(Node{cons.name}::static_type()) {{", depth)
self.gen_construction(f"{enumname}::{cons.name}", cons, sumname, depth + 1)
self.emit("} else", depth)
self.emit("{", depth)
msg = f'format!("expected some sort of {sumname}, but got {{}}",_vm.to_repr(&_object)?)'
self.emit(f"return Err(_vm.new_type_error({msg}));", depth + 1)
self.emit("})", depth)
def gen_product_fromobj(self, product, prodname, structname, depth):
if product.attributes:
self.extract_location(prodname, depth)
self.emit("Ok(", depth)
self.gen_construction(structname, product, prodname, depth + 1)
self.emit(")", depth)
def gen_construction(self, cons_path, cons, name, depth):
self.emit(f"ast::{cons_path} {{", depth)
for field in cons.fields:
self.emit(f"{rust_field(field.name)}: {self.decode_field(field, name)},", depth + 1)
self.emit("}", depth)
def extract_location(self, typename, depth):
row = self.decode_field(asdl.Field('int', 'lineno'), typename)
column = self.decode_field(asdl.Field('int', 'col_offset'), typename)
self.emit(f"let _location = ast::Location::new({row}, {column});", depth)
def wrap_located_node(self, depth):
self.emit(f"let node = ast::Located::new(_location, node);", depth)
def decode_field(self, field, typename):
name = json.dumps(field.name)
if field.opt and not field.seq:
return f"get_node_field_opt(_vm, &_object, {name})?.map(|obj| Node::ast_from_object(_vm, obj)).transpose()?"
else:
return f"Node::ast_from_object(_vm, get_node_field(_vm, &_object, {name}, {json.dumps(typename)})?)?"
class ChainOfVisitors:
def __init__(self, *visitors):
self.visitors = visitors
def visit(self, object):
for v in self.visitors:
v.visit(object)
v.emit("", 0)
def write_ast_def(mod, typeinfo, f):
f.write('pub use crate::location::Location;\n')
f.write('pub use crate::constant::*;\n')
f.write('\n')
f.write('type Ident = String;\n')
f.write('\n')
StructVisitor(f, typeinfo).emit_attrs(0)
f.write('pub struct Located<T, U = ()> {\n')
f.write(' pub location: Location,\n')
f.write(' pub custom: U,\n')
f.write(' pub node: T,\n')
f.write('}\n')
f.write('\n')
f.write('impl<T> Located<T> {\n')
f.write(' pub fn new(location: Location, node: T) -> Self {\n')
f.write(' Self { location, custom: (), node }\n')
f.write(' }\n')
f.write('}\n')
f.write('\n')
c = ChainOfVisitors(StructVisitor(f, typeinfo),
FoldModuleVisitor(f, typeinfo))
c.visit(mod)
def write_ast_mod(mod, f):
f.write('use super::*;\n')
f.write('\n')
c = ChainOfVisitors(ClassDefVisitor(f),
TraitImplVisitor(f),
ExtendModuleVisitor(f))
c.visit(mod)
def main(input_filename, ast_mod_filename, ast_def_filename, dump_module=False):
auto_gen_msg = AUTOGEN_MESSAGE.format("/".join(Path(__file__).parts[-2:]))
mod = asdl.parse(input_filename)
if dump_module:
print('Parsed Module:')
print(mod)
if not asdl.check(mod):
sys.exit(1)
typeinfo = {}
FindUserdataTypesVisitor(typeinfo).visit(mod)
with ast_def_filename.open("w") as def_file, \
ast_mod_filename.open("w") as mod_file:
def_file.write(auto_gen_msg)
write_ast_def(mod, typeinfo, def_file)
mod_file.write(auto_gen_msg)
write_ast_mod(mod, mod_file)
print(f"{ast_def_filename}, {ast_mod_filename} regenerated.")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("input_file", type=Path)
parser.add_argument("-M", "--mod-file", type=Path, required=True)
parser.add_argument("-D", "--def-file", type=Path, required=True)
parser.add_argument("-d", "--dump-module", action="store_true")
args = parser.parse_args()
main(args.input_file, args.mod_file, args.def_file, args.dump_module)

File diff suppressed because it is too large Load Diff

View File

@ -1,183 +0,0 @@
#[derive(Clone, Debug, PartialEq)]
pub enum Constant {
None,
Bool(bool),
Str(String),
Bytes(Vec<u8>),
Int(i128),
Tuple(Vec<Constant>),
Float(f64),
Complex { real: f64, imag: f64 },
Ellipsis,
}
impl From<String> for Constant {
fn from(s: String) -> Constant {
Self::Str(s)
}
}
impl From<Vec<u8>> for Constant {
fn from(b: Vec<u8>) -> Constant {
Self::Bytes(b)
}
}
impl From<bool> for Constant {
fn from(b: bool) -> Constant {
Self::Bool(b)
}
}
impl From<i32> for Constant {
fn from(i: i32) -> Constant {
Self::Int(i128::from(i))
}
}
impl From<i64> for Constant {
fn from(i: i64) -> Constant {
Self::Int(i128::from(i))
}
}
/// Transforms a value prior to formatting it.
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(u8)]
pub enum ConversionFlag {
/// Converts by calling `str(<value>)`.
Str = b's',
/// Converts by calling `ascii(<value>)`.
Ascii = b'a',
/// Converts by calling `repr(<value>)`.
Repr = b'r',
}
impl ConversionFlag {
#[must_use]
pub fn try_from_byte(b: u8) -> Option<Self> {
match b {
b's' => Some(Self::Str),
b'a' => Some(Self::Ascii),
b'r' => Some(Self::Repr),
_ => None,
}
}
}
#[cfg(feature = "constant-optimization")]
#[derive(Default)]
pub struct ConstantOptimizer {
_priv: (),
}
#[cfg(feature = "constant-optimization")]
impl ConstantOptimizer {
#[inline]
#[must_use]
pub fn new() -> Self {
Self { _priv: () }
}
}
#[cfg(feature = "constant-optimization")]
impl<U> crate::fold::Fold<U> for ConstantOptimizer {
type TargetU = U;
type Error = std::convert::Infallible;
#[inline]
fn map_user(&mut self, user: U) -> Result<Self::TargetU, Self::Error> {
Ok(user)
}
fn fold_expr(&mut self, node: crate::Expr<U>) -> Result<crate::Expr<U>, Self::Error> {
match node.node {
crate::ExprKind::Tuple { elts, ctx } => {
let elts =
elts.into_iter().map(|x| self.fold_expr(x)).collect::<Result<Vec<_>, _>>()?;
let expr =
if elts.iter().all(|e| matches!(e.node, crate::ExprKind::Constant { .. })) {
let tuple = elts
.into_iter()
.map(|e| match e.node {
crate::ExprKind::Constant { value, .. } => value,
_ => unreachable!(),
})
.collect();
crate::ExprKind::Constant { value: Constant::Tuple(tuple), kind: None }
} else {
crate::ExprKind::Tuple { elts, ctx }
};
Ok(crate::Expr { node: expr, custom: node.custom, location: node.location })
}
_ => crate::fold::fold_expr(self, node),
}
}
}
#[cfg(test)]
mod tests {
#[cfg(feature = "constant-optimization")]
#[test]
fn test_constant_opt() {
use super::*;
use crate::fold::Fold;
use crate::*;
let location = Location::new(0, 0, FileName::default());
let custom = ();
let ast = Located {
location,
custom,
node: ExprKind::Tuple {
ctx: ExprContext::Load,
elts: vec![
Located {
location,
custom,
node: ExprKind::Constant { value: 1.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Constant { value: 2.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Tuple {
ctx: ExprContext::Load,
elts: vec![
Located {
location,
custom,
node: ExprKind::Constant { value: 3.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Constant { value: 4.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Constant { value: 5.into(), kind: None },
},
],
},
},
],
},
};
let new_ast = ConstantOptimizer::new().fold_expr(ast).unwrap_or_else(|e| match e {});
assert_eq!(
new_ast,
Located {
location,
custom,
node: ExprKind::Constant {
value: Constant::Tuple(vec![
1.into(),
2.into(),
Constant::Tuple(vec![3.into(), 4.into(), 5.into(),])
]),
kind: None
},
}
);
}
}

View File

@ -1,67 +0,0 @@
use crate::constant;
use crate::fold::Fold;
use crate::StrRef;
pub(crate) trait Foldable<T, U> {
type Mapped;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error>;
}
impl<T, U, X> Foldable<T, U> for Vec<X>
where
X: Foldable<T, U>,
{
type Mapped = Vec<X::Mapped>;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
self.into_iter().map(|x| x.fold(folder)).collect()
}
}
impl<T, U, X> Foldable<T, U> for Option<X>
where
X: Foldable<T, U>,
{
type Mapped = Option<X::Mapped>;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
self.map(|x| x.fold(folder)).transpose()
}
}
impl<T, U, X> Foldable<T, U> for Box<X>
where
X: Foldable<T, U>,
{
type Mapped = Box<X::Mapped>;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
(*self).fold(folder).map(Box::new)
}
}
macro_rules! simple_fold {
($($t:ty),+$(,)?) => {
$(impl<T, U> $crate::fold_helpers::Foldable<T, U> for $t {
type Mapped = Self;
#[inline]
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
_folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
Ok(self)
}
})+
};
}
simple_fold!(usize, String, bool, StrRef, constant::Constant, constant::ConversionFlag);

View File

@ -1,51 +0,0 @@
use crate::{Constant, ExprKind};
impl<U> ExprKind<U> {
/// Returns a short name for the node suitable for use in error messages.
#[must_use]
pub fn name(&self) -> &'static str {
match self {
ExprKind::BoolOp { .. } | ExprKind::BinOp { .. } | ExprKind::UnaryOp { .. } => {
"operator"
}
ExprKind::Subscript { .. } => "subscript",
ExprKind::Await { .. } => "await expression",
ExprKind::Yield { .. } | ExprKind::YieldFrom { .. } => "yield expression",
ExprKind::Compare { .. } => "comparison",
ExprKind::Attribute { .. } => "attribute",
ExprKind::Call { .. } => "function call",
ExprKind::Constant { value, .. } => match value {
Constant::Str(_)
| Constant::Int(_)
| Constant::Float(_)
| Constant::Complex { .. }
| Constant::Bytes(_) => "literal",
Constant::Tuple(_) => "tuple",
Constant::Bool(_) | Constant::None => "keyword",
Constant::Ellipsis => "ellipsis",
},
ExprKind::List { .. } => "list",
ExprKind::Tuple { .. } => "tuple",
ExprKind::Dict { .. } => "dict display",
ExprKind::Set { .. } => "set display",
ExprKind::ListComp { .. } => "list comprehension",
ExprKind::DictComp { .. } => "dict comprehension",
ExprKind::SetComp { .. } => "set comprehension",
ExprKind::GeneratorExp { .. } => "generator expression",
ExprKind::Starred { .. } => "starred",
ExprKind::Slice { .. } => "slice",
ExprKind::JoinedStr { values } => {
if values.iter().any(|e| matches!(e.node, ExprKind::JoinedStr { .. })) {
"f-string expression"
} else {
"literal"
}
}
ExprKind::FormattedValue { .. } => "f-string expression",
ExprKind::Name { .. } => "name",
ExprKind::Lambda { .. } => "lambda",
ExprKind::IfExp { .. } => "conditional expression",
ExprKind::NamedExpr { .. } => "named expression",
}
}
}

View File

@ -1,21 +0,0 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![warn(clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::too_many_lines,
clippy::wildcard_imports
)]
mod ast_gen;
mod constant;
#[cfg(feature = "fold")]
mod fold_helpers;
mod impls;
mod location;
pub use ast_gen::*;
pub use location::{FileName, Location};
pub type Suite<U = ()> = Vec<Stmt<U>>;

View File

@ -1,116 +0,0 @@
//! Datatypes to support source location information.
use crate::ast_gen::StrRef;
use std::cmp::Ordering;
use std::fmt;
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct FileName(pub StrRef);
impl Default for FileName {
fn default() -> Self {
FileName("unknown".into())
}
}
impl From<String> for FileName {
fn from(s: String) -> Self {
FileName(s.into())
}
}
/// A location somewhere in the sourcecode.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub struct Location {
pub row: usize,
pub column: usize,
pub file: FileName,
}
impl fmt::Display for Location {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}:{}:{}", self.file.0, self.row, self.column)
}
}
impl Ord for Location {
fn cmp(&self, other: &Self) -> Ordering {
let file_cmp = self.file.0.to_string().cmp(&other.file.0.to_string());
if file_cmp != Ordering::Equal {
return file_cmp;
}
let row_cmp = self.row.cmp(&other.row);
if row_cmp != Ordering::Equal {
return row_cmp;
}
self.column.cmp(&other.column)
}
}
impl PartialOrd for Location {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Location {
pub fn visualize<'a>(
&self,
line: &'a str,
desc: impl fmt::Display + 'a,
) -> impl fmt::Display + 'a {
struct Visualize<'a, D: fmt::Display> {
loc: Location,
line: &'a str,
desc: D,
}
impl<D: fmt::Display> fmt::Display for Visualize<'_, D> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{}\n{}\n{arrow:>pad$}",
self.desc,
self.line,
pad = self.loc.column,
arrow = "",
)
}
}
Visualize { loc: *self, line, desc }
}
}
impl Location {
#[must_use]
pub fn new(row: usize, column: usize, file: FileName) -> Self {
Location { row, column, file }
}
#[must_use]
pub fn row(&self) -> usize {
self.row
}
#[must_use]
pub fn column(&self) -> usize {
self.column
}
pub fn reset(&mut self) {
self.row = 1;
self.column = 1;
}
pub fn go_right(&mut self) {
self.column += 1;
}
pub fn go_left(&mut self) {
self.column -= 1;
}
pub fn newline(&mut self) {
self.row += 1;
self.column = 1;
}
}

View File

@ -2,33 +2,15 @@
name = "nac3core" name = "nac3core"
version = "0.1.0" version = "0.1.0"
authors = ["M-Labs"] authors = ["M-Labs"]
edition = "2021" edition = "2018"
[features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = []
[dependencies] [dependencies]
itertools = "0.13" num-bigint = "0.3"
crossbeam = "0.8" num-traits = "0.2"
indexmap = "2.6" thiserror = "1.0"
parking_lot = "0.12" inkwell = { git = "https://github.com/TheDan64/inkwell", branch = "master", features = ["llvm10-0"] }
rayon = "1.10" rustpython-parser = { git = "https://github.com/RustPython/RustPython", branch = "master" }
nac3core_derive = { path = "nac3core_derive", optional = true }
nac3parser = { path = "../nac3parser" }
strum = "0.26"
strum_macros = "0.26"
[dependencies.inkwell]
version = "0.5"
default-features = false
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies] [dev-dependencies]
test-case = "1.2.0" indoc = "1.0"
indoc = "2.0"
insta = "=1.11.0"
[build-dependencies]
regex = "1.10"

View File

@ -1,109 +0,0 @@
use std::{
env,
fs::File,
io::Write,
path::Path,
process::{Command, Stdio},
};
use regex::Regex;
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let mut flags: Vec<&str> = vec![
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt")
.args(flags)
.output()
.inspect(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
})
.unwrap();
// https://github.com/rust-lang/regex/issues/244
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len());
// Filter out irrelevant IR
//
// Regex:
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]);
filtered_output.push('\n');
}
let filtered_output = Regex::new("(#\\d+)|(, *![0-9A-Za-z.]+)|(![0-9A-Za-z.]+)|(!\".*?\")")
.unwrap()
.replace_all(&filtered_output, "");
// For debugging
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")
.arg(out_dir.join("irrt.bc"))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success());
}

View File

@ -1,15 +0,0 @@
#include "irrt/exception.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
#include "irrt/string.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"

View File

@ -1,9 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
void* base;
SizeT len;
};

View File

@ -1,25 +0,0 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,85 +0,0 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
using ExceptionId = int32_t;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
} // namespace
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)

View File

@ -1,25 +0,0 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,96 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template<typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -1,95 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -1,13 +0,0 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -1,132 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::array {
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
/**
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
*
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
*
* # Notes on `ndarray`
* The caller is responsible for allocating space for `ndarray`.
* Here is what this function expects from `ndarray` when called:
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
* - `ndarray->itemsize` has to be initialized.
* - `ndarray->ndims` has to be initialized.
* - `ndarray->shape` has to be initialized.
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
/**
* @brief See `write_list_to_array_helper`.
*/
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace ndarray::array
} // namespace
extern "C" {
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -1,340 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
if (ndarray->ndims != 0) {
return ndarray->shape[0];
}
// numpy prohibits `__len__` on unsized objects
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
__builtin_unreachable();
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
void* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
void* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace ndarray::basic
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -1,165 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
namespace {
template<typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace {
namespace ndarray::broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace ndarray::broadcast
} // namespace
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -1,51 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
*
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
* `data`. There are also minor differences in the struct layout.
*/
template<typename SizeT>
struct NDArray {
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
void* data;
};
} // namespace

View File

@ -1,219 +0,0 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
namespace {
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `int32_t`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `Slice<int32_t>`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*
* That is:
* ```
* my_ndarray[::-1, 3, ..., np.newaxis]
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/
struct NDIndex {
/**
* @brief Enum tag to specify the type of index.
*
* Please see the comment of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see the comment of each enum constant.
*/
uint8_t* data;
};
} // namespace
namespace {
namespace ndarray::indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
*
* This function also does proper assertions on `indices` to check for out of bounds access and more.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data`.
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template<typename SizeT>
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1) {
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) {
const NDIndex* index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis];
src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data =
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
} else {
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace ndarray::indexing
} // namespace
extern "C" {
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices,
NDIndex* indices,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices,
NDIndex* indices,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -1,146 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*
* Initially this points to first element of the ndarray.
*/
void* element;
/**
* @brief Cache for the product of shape.
*
* Could be 0 if `shape` has 0s in it.
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
} else {
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -1,98 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray::matmul {
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace ndarray::matmul
} // namespace
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -1,97 +0,0 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::reshape {
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template<typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
SizeT dim = new_shape[axis_i];
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
} else {
neg1_exists = true;
neg1_axis_i = axis_i;
}
} else {
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
} else {
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists) {
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions
can_reshape = false;
} else if (new_size == 0 && size != 0) {
// `x` has no solutions
can_reshape = false;
} else if (size % new_size != 0) {
// `x` has no integer solutions
can_reshape = false;
} else {
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
} else {
can_reshape = (new_size == size);
}
if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
}
} // namespace ndarray::reshape
} // namespace
extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -1,143 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace {
namespace ndarray::transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace ndarray::transpose
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -1,47 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
}
} // namespace range
/**
* @brief A Python range.
*/
template<typename T>
struct Range {
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template<typename SizeT>
T len() {
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,156 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/range.hpp"
namespace {
namespace slice {
/**
* @brief Resolve a possibly negative index in a list of a known length.
*
* Returns -1 if the resolved index is out of the list's bounds.
*/
template<typename T>
T resolve_index_in_length(T length, T index) {
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) {
return resolved;
} else {
return -1;
}
}
/**
* @brief Resolve a slice as a range.
*
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/
template<typename T>
void indices(bool start_defined,
T start,
bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative) {
lower = -1;
upper = length - 1;
} else {
lower = 0;
upper = length;
}
if (start_defined) {
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} else {
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined) {
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} else {
*range_stop = step_is_negative ? lower : upper;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template<typename T>
struct Slice {
bool start_defined;
T start;
bool stop_defined;
T stop;
bool step_defined;
T step;
Slice() { this->reset(); }
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start) {
this->start_defined = true;
this->start = start;
}
void set_stop(T stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step) {
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template<typename SizeT>
Range<T> indices(T length) {
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template<typename SizeT>
Range<T> indices_checked(T length) {
// TODO: Switch to `SizeT length`
if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices<SizeT>(length);
}
};
} // namespace
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
}

View File

@ -1,23 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
if (len1 != len2) {
return 0;
}
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
}
} // namespace
extern "C" {
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
}
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
}
}

View File

@ -1,21 +0,0 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -1,320 +0,0 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -1,9 +0,0 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -1,20 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,10 +0,0 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

File diff suppressed because it is too large Load Diff

View File

@ -1,351 +0,0 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::SymbolValue,
toplevel::DefinitionId,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{
into_var_map, FunSignature, FuncArg, Type, TypeEnum, TypeVar, TypeVarId, Unifier,
},
},
};
pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>,
}
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct ConcreteType(usize);
#[derive(Clone, Debug)]
pub struct ConcreteFuncArg {
pub name: StrRef,
pub ty: ConcreteType,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
#[derive(Clone, Debug)]
pub enum Primitive {
Int32,
Int64,
UInt32,
UInt64,
Float,
Bool,
None,
Range,
Str,
Exception,
}
#[derive(Debug)]
pub enum ConcreteTypeEnum {
TPrimitive(Primitive),
TTuple {
ty: Vec<ConcreteType>,
is_vararg_ctx: bool,
},
TObj {
obj_id: DefinitionId,
fields: HashMap<StrRef, (ConcreteType, bool)>,
params: IndexMap<TypeVarId, ConcreteType>,
},
TModule {
module_id: DefinitionId,
methods: HashMap<StrRef, (ConcreteType, bool)>,
},
TVirtual {
ty: ConcreteType,
},
TFunc {
args: Vec<ConcreteFuncArg>,
ret: ConcreteType,
vars: HashMap<TypeVarId, ConcreteType>,
},
TLiteral {
values: Vec<SymbolValue>,
},
}
impl ConcreteTypeStore {
#[must_use]
pub fn new() -> ConcreteTypeStore {
ConcreteTypeStore {
store: vec![
ConcreteTypeEnum::TPrimitive(Primitive::Int32),
ConcreteTypeEnum::TPrimitive(Primitive::Int64),
ConcreteTypeEnum::TPrimitive(Primitive::Float),
ConcreteTypeEnum::TPrimitive(Primitive::Bool),
ConcreteTypeEnum::TPrimitive(Primitive::None),
ConcreteTypeEnum::TPrimitive(Primitive::Range),
ConcreteTypeEnum::TPrimitive(Primitive::Str),
ConcreteTypeEnum::TPrimitive(Primitive::Exception),
ConcreteTypeEnum::TPrimitive(Primitive::UInt32),
ConcreteTypeEnum::TPrimitive(Primitive::UInt64),
],
}
}
#[must_use]
pub fn get(&self, cty: ConcreteType) -> &ConcreteTypeEnum {
&self.store[cty.0]
}
pub fn from_signature(
&mut self,
unifier: &mut Unifier,
primitives: &PrimitiveStore,
signature: &FunSignature,
cache: &mut HashMap<Type, Option<ConcreteType>>,
) -> ConcreteTypeEnum {
ConcreteTypeEnum::TFunc {
args: signature
.args
.iter()
.map(|arg| ConcreteFuncArg {
name: arg.name,
ty: if arg.is_vararg {
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
vars: signature
.vars
.iter()
.map(|(id, ty)| (*id, self.from_unifier_type(unifier, primitives, *ty, cache)))
.collect(),
}
}
pub fn from_unifier_type(
&mut self,
unifier: &mut Unifier,
primitives: &PrimitiveStore,
ty: Type,
cache: &mut HashMap<Type, Option<ConcreteType>>,
) -> ConcreteType {
let ty = unifier.get_representative(ty);
if unifier.unioned(ty, primitives.int32) {
ConcreteType(0)
} else if unifier.unioned(ty, primitives.int64) {
ConcreteType(1)
} else if unifier.unioned(ty, primitives.float) {
ConcreteType(2)
} else if unifier.unioned(ty, primitives.bool) {
ConcreteType(3)
} else if unifier.unioned(ty, primitives.none) {
ConcreteType(4)
} else if unifier.unioned(ty, primitives.range) {
ConcreteType(5)
} else if unifier.unioned(ty, primitives.str) {
ConcreteType(6)
} else if unifier.unioned(ty, primitives.exception) {
ConcreteType(7)
} else if unifier.unioned(ty, primitives.uint32) {
ConcreteType(8)
} else if unifier.unioned(ty, primitives.uint64) {
ConcreteType(9)
} else if let Some(cty) = cache.get(&ty) {
if let Some(cty) = cty {
*cty
} else {
let index = self.store.len();
// placeholder
self.store.push(ConcreteTypeEnum::TPrimitive(Primitive::Int32));
let result = ConcreteType(index);
cache.insert(ty, Some(result));
result
}
} else {
cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
ty: ty
.iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id,
fields: fields
.iter()
.filter_map(|(name, ty)| {
// here we should not have type vars, but some partial instantiated
// class methods can still have uninstantiated type vars, so
// filter out all the methods, as this will not affect codegen
if let TypeEnum::TFunc(..) = &*unifier.get_ty(ty.0) {
None
} else {
Some((
*name,
(
self.from_unifier_type(unifier, primitives, ty.0, cache),
ty.1,
),
))
}
})
.collect(),
params: params
.iter()
.map(|(id, ty)| {
(*id, self.from_unifier_type(unifier, primitives, *ty, cache))
})
.collect(),
},
TypeEnum::TModule { module_id, attributes } => ConcreteTypeEnum::TModule {
module_id: *module_id,
methods: attributes
.iter()
.filter_map(|(name, ty)| match &*unifier.get_ty(ty.0) {
TypeEnum::TFunc(..) | TypeEnum::TObj { .. } => None,
_ => Some((
*name,
(self.from_unifier_type(unifier, primitives, ty.0, cache), ty.1),
)),
})
.collect(),
},
TypeEnum::TVirtual { ty } => ConcreteTypeEnum::TVirtual {
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
},
TypeEnum::TFunc(signature) => {
self.from_signature(unifier, primitives, signature, cache)
}
TypeEnum::TLiteral { values, .. } => {
ConcreteTypeEnum::TLiteral { values: values.clone() }
}
_ => unreachable!("{:?}", ty_enum.get_type_name()),
};
let index = if let Some(ConcreteType(index)) = cache.get(&ty).unwrap() {
self.store[*index] = result;
*index
} else {
self.store.push(result);
self.store.len() - 1
};
cache.insert(ty, Some(ConcreteType(index)));
ConcreteType(index)
}
}
pub fn to_unifier_type(
&self,
unifier: &mut Unifier,
primitives: &PrimitiveStore,
cty: ConcreteType,
cache: &mut HashMap<ConcreteType, Option<Type>>,
) -> Type {
if let Some(ty) = cache.get_mut(&cty) {
return if let Some(ty) = ty {
*ty
} else {
*ty = Some(unifier.get_dummy_var().ty);
ty.unwrap()
};
}
cache.insert(cty, None);
let result = match &self.store[cty.0] {
ConcreteTypeEnum::TPrimitive(primitive) => {
let ty = match primitive {
Primitive::Int32 => primitives.int32,
Primitive::Int64 => primitives.int64,
Primitive::UInt32 => primitives.uint32,
Primitive::UInt64 => primitives.uint64,
Primitive::Float => primitives.float,
Primitive::Bool => primitives.bool,
Primitive::None => primitives.none,
Primitive::Range => primitives.range,
Primitive::Str => primitives.str,
Primitive::Exception => primitives.exception,
};
*cache.get_mut(&cty).unwrap() = Some(ty);
return ty;
}
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
ty: ty
.iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
ConcreteTypeEnum::TObj { obj_id, fields, params } => TypeEnum::TObj {
obj_id: *obj_id,
fields: fields
.iter()
.map(|(name, cty)| {
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
})
.collect::<HashMap<_, _>>(),
params: into_var_map(params.iter().map(|(&id, cty)| {
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
TypeVar { id, ty }
})),
},
ConcreteTypeEnum::TModule { module_id, methods } => TypeEnum::TModule {
module_id: *module_id,
attributes: methods
.iter()
.map(|(name, cty)| {
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
})
.collect::<HashMap<_, _>>(),
},
ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature {
args: args
.iter()
.map(|arg| FuncArg {
name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: false,
})
.collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache),
vars: into_var_map(vars.iter().map(|(&id, cty)| {
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
TypeVar { id, ty }
})),
}),
ConcreteTypeEnum::TLiteral { values, .. } => {
TypeEnum::TLiteral { values: values.clone(), loc: None }
}
};
let result = unifier.add_ty(result);
if let Some(ty) = cache.get(&cty).unwrap() {
unifier.unify(*ty, result).unwrap();
}
cache.insert(cty, Some(result));
result
}
pub fn add_cty(&mut self, cty: ConcreteTypeEnum) -> ConcreteType {
self.store.push(cty);
ConcreteType(self.store.len() - 1)
}
}
impl Default for ConcreteTypeStore {
fn default() -> Self {
Self::new()
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,193 +0,0 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use itertools::Either;
use super::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
///
/// Arguments:
/// * `unary/binary`: Whether the extern function requires one (unary) or two (binary) operands
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("unary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg $(,$attributes)*);
};
("binary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("binary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2 $(,$attributes)*);
};
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
pub fn $fn_name<'ctx>(
ctx: &CodeGenContext<'ctx, '_>
$(,$args: FloatValue<'ctx>)*,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = $extern_fn;
let llvm_f64 = ctx.ctx.f64_type();
$(debug_assert_eq!($args.get_type(), llvm_f64);)*
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in [$($attributes),*] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
};
}
generate_extern_fn!("unary", call_tan, "tan");
generate_extern_fn!("unary", call_asin, "asin");
generate_extern_fn!("unary", call_acos, "acos");
generate_extern_fn!("unary", call_atan, "atan");
generate_extern_fn!("unary", call_sinh, "sinh");
generate_extern_fn!("unary", call_cosh, "cosh");
generate_extern_fn!("unary", call_tanh, "tanh");
generate_extern_fn!("unary", call_asinh, "asinh");
generate_extern_fn!("unary", call_acosh, "acosh");
generate_extern_fn!("unary", call_atanh, "atanh");
generate_extern_fn!("unary", call_expm1, "expm1");
generate_extern_fn!(
"unary",
call_cbrt,
"cbrt",
"mustprogress",
"nofree",
"nosync",
"nounwind",
"readonly",
"willreturn"
);
generate_extern_fn!("unary", call_erf, "erf", "nounwind");
generate_extern_fn!("unary", call_erfc, "erfc", "nounwind");
generate_extern_fn!("unary", call_j1, "j1", "nounwind");
generate_extern_fn!("binary", call_atan2, "atan2");
generate_extern_fn!("binary", call_hypot, "hypot", "nounwind");
generate_extern_fn!("binary", call_nextafter, "nextafter", "nounwind");
/// Invokes the [`ldexp`](https://en.cppreference.com/w/c/numeric/math/ldexp) function.
pub fn call_ldexp<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
exp: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "ldexp";
let llvm_f64 = ctx.ctx.f64_type();
let llvm_i32 = ctx.ctx.i32_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
debug_assert_eq!(exp.get_type(), llvm_i32);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_i32.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into(), exp.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -1,307 +0,0 @@
use inkwell::{
context::Context,
targets::TargetMachine,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
///
/// Prefer using [`CodeGenContext::get_size_type`] if [`CodeGenContext`] is available, as it is
/// equivalent to this function in a more concise syntax.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value.
/// - obj: Optional object for method call.
/// - fun: Function signature and definition ID.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
fn gen_call<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<Option<BasicValueEnum<'ctx>>, String>
where
Self: Sized,
{
gen_call(self, ctx, obj, fun, params)
}
/// Generate object constructor and returns the constructed object.
/// - signature: Function signature of the constructor.
/// - def: Class definition for the constructor class.
/// - params: Function parameters.
fn gen_constructor<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
signature: &FunSignature,
def: &TopLevelDef,
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<BasicValueEnum<'ctx>, String>
where
Self: Sized,
{
gen_constructor(self, ctx, signature, def, params)
}
/// Generate a function instance.
/// - obj: Optional object for method call.
/// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, &mut TopLevelDef, String),
id: usize,
) -> Result<String, String> {
gen_func_instance(ctx, &obj, fun, id)
}
/// Generate the code for an expression.
fn gen_expr<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
expr: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String>
where
Self: Sized,
{
gen_expr(self, ctx, expr)
}
/// Allocate memory for a variable and return a pointer pointing to it.
/// The default implementation places the allocations at the start of the function.
fn gen_var_alloc<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
name: Option<&str>,
) -> Result<PointerValue<'ctx>, String> {
gen_var(ctx, ty, name)
}
/// Allocate memory for a variable and return a pointer pointing to it.
/// The default implementation places the allocations at the start of the function.
fn gen_array_var_alloc<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<ArraySliceValue<'ctx>, String> {
gen_array_var(ctx, ty, size, name)
}
/// Return a pointer pointing to the target of the expression.
fn gen_store_target<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
pattern: &Expr<Option<Type>>,
name: Option<&str>,
) -> Result<Option<PointerValue<'ctx>>, String>
where
Self: Sized,
{
gen_store_target(self, ctx, pattern, name)
}
/// Generate code for an assignment expression.
fn gen_assign<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
}
/// Generate code for a while expression.
/// Return true if the while loop must early return
fn gen_while(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_while(self, ctx, stmt)
}
/// Generate code for a for expression.
/// Return true if the for loop must early return
fn gen_for(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_for(self, ctx, stmt)
}
/// Generate code for an if expression.
/// Return true if the statement must early return
fn gen_if(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_if(self, ctx, stmt)
}
fn gen_with(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_with(self, ctx, stmt)
}
/// Generate code for a statement
///
/// Return true if the statement must early return
fn gen_stmt(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_stmt(self, ctx, stmt)
}
/// Generates code for a block statement.
fn gen_block<'a, I: Iterator<Item = &'a Stmt<Option<Type>>>>(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmts: I,
) -> Result<(), String>
where
Self: Sized,
{
gen_block(self, ctx, stmts)
}
/// See [`bool_to_i1`].
fn bool_to_i1<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> {
bool_to_i1(&ctx.builder, bool_value)
}
/// See [`bool_to_i8`].
fn bool_to_i8<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> {
bool_to_i8(&ctx.builder, ctx.ctx, bool_value)
}
}
pub struct DefaultCodeGenerator {
name: String,
size_t: u32,
}
impl DefaultCodeGenerator {
#[must_use]
pub fn new(name: String, size_t: IntType<'_>) -> DefaultCodeGenerator {
assert!(matches!(size_t.get_bit_width(), 32 | 64));
DefaultCodeGenerator { name, size_t: size_t.get_bit_width() }
}
#[must_use]
pub fn with_target_machine(
name: String,
ctx: &Context,
target_machine: &TargetMachine,
) -> DefaultCodeGenerator {
let llvm_usize = ctx.ptr_sized_int_type(&target_machine.get_target_data(), None);
Self::new(name, llvm_usize)
}
}
impl CodeGenerator for DefaultCodeGenerator {
fn get_name(&self) -> &str {
&self.name
}
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> {
// it should be unsigned, but we don't really need unsigned and this could save us from
// having to do a bit cast...
if self.size_t == 32 {
ctx.i32_type()
} else {
ctx.i64_type()
}
}
}

View File

@ -1,174 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let llvm_usize = ctx.get_size_type();
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(dest_idx.0.get_type(), llvm_i32);
assert_eq!(dest_idx.1.get_type(), llvm_i32);
assert_eq!(dest_idx.2.get_type(), llvm_i32);
assert_eq!(src_idx.0.get_type(), llvm_i32);
assert_eq!(src_idx.1.get_type(), llvm_i32);
assert_eq!(src_idx.2.get_type(), llvm_i32);
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
let slice_assign_fun = {
let ty_vec = vec![
llvm_i32.into(), // dest start idx
llvm_i32.into(), // dest end idx
llvm_i32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
llvm_i32.into(), // dest arr len
llvm_i32.into(), // src start idx
llvm_i32.into(), // src end idx
llvm_i32.into(), // src step
elem_ptr_type.into(), // src arr ptr
llvm_i32.into(), // src arr len
llvm_i32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len =
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len =
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len =
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
dest_arr.store_size(ctx, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -1,168 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,248 +0,0 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
values::{BasicValue, BasicValueEnum, IntValue},
IntPredicate,
};
use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use range::*;
pub use slice::*;
pub use string::*;
mod list;
mod math;
pub mod ndarray;
mod range;
mod slice;
mod string;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
);
let irrt_mod = Module::parse_bitcode_from_buffer(&bitcode_buf, ctx).unwrap();
let inline_attr = Attribute::get_named_enum_kind_id("alwaysinline");
for symbol in &[
"__nac3_int_exp_int32_t",
"__nac3_int_exp_int64_t",
"__nac3_range_slice_len",
"__nac3_slice_index_bound",
] {
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
///
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
#[must_use]
pub fn get_usize_dependent_function_name(ctx: &CodeGenContext<'_, '_>, name: &str) -> String {
let mut name = name.to_owned();
match ctx.get_size_type().get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python.
///
/// equivalent code:
/// ```pseudo_code
/// match (start, end, step):
/// case (s, e, None | Some(step)) if step > 0:
/// return (
/// match s:
/// case None:
/// 0
/// case Some(s):
/// handle_in_bound(s)
/// ,match e:
/// case None:
/// length - 1
/// case Some(e):
/// handle_in_bound(e) - 1
/// ,step == None ? 1 : step
/// )
/// case (s, e, Some(step)) if step < 0:
/// return (
/// match s:
/// case None:
/// length - 1
/// case Some(s):
/// s = handle_in_bound(s)
/// if s == length:
/// s - 1
/// else:
/// s
/// ,match e:
/// case None:
/// 0
/// case Some(e):
/// handle_in_bound(e) + 1
/// ,step
/// )
/// ```
pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
start: &Option<Box<Expr<Option<Type>>>>,
end: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
Ok(Some(match (start, end, step) {
(s, e, None) => (
if let Some(s) = s.as_ref() {
match handle_slice_index_bound(s, ctx, generator, length)? {
Some(v) => v,
None => return Ok(None),
}
} else {
llvm_i32.const_zero()
},
{
let e = if let Some(s) = e.as_ref() {
match handle_slice_index_bound(s, ctx, generator, length)? {
Some(v) => v,
None => return Ok(None),
}
} else {
length
};
ctx.builder.build_int_sub(e, one, "final_end").unwrap()
},
one,
),
(s, e, Some(step)) => {
let step = if let Some(v) = generator.gen_expr(ctx, step)? {
v.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?.into_int_value()
} else {
return Ok(None);
};
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
)
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"slice step cannot be zero",
[None, None, None],
ctx.current_loc,
);
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1").unwrap();
let neg = ctx
.builder
.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg")
.unwrap();
(
match s {
Some(s) => {
let Some(s) = handle_slice_index_bound(s, ctx, generator, length)? else {
return Ok(None);
};
ctx.builder
.build_select(
ctx.builder
.build_and(
ctx.builder
.build_int_compare(
IntPredicate::EQ,
s,
length,
"s_eq_len",
)
.unwrap(),
neg,
"should_minus_one",
)
.unwrap(),
ctx.builder.build_int_sub(s, one, "s_min").unwrap(),
s,
"final_start",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
None => ctx
.builder
.build_select(neg, len_id, zero, "stt")
.map(BasicValueEnum::into_int_value)
.unwrap(),
},
match e {
Some(e) => {
let Some(e) = handle_slice_index_bound(e, ctx, generator, length)? else {
return Ok(None);
};
ctx.builder
.build_select(
neg,
ctx.builder.build_int_add(e, one, "end_add_one").unwrap(),
ctx.builder.build_int_sub(e, one, "end_sub_one").unwrap(),
"final_end",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
None => ctx
.builder
.build_select(neg, zero, len_id, "end")
.map(BasicValueEnum::into_int_value)
.unwrap(),
},
step,
)
}
}))
}

View File

@ -1,72 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
///
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
/// there is any issue with the resultant `shape`.
///
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
/// initialized to all `-1`s.
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndims: IntValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
assert_eq!(ndims.get_type(), llvm_usize);
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_set_and_validate_list_shape");
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
///
/// Copies the contents stored in `list` into `ndarray`.
///
/// The `ndarray` must fulfill the following preconditions:
///
/// - `ndarray.itemsize`: Must be initialized.
/// - `ndarray.ndims`: Must be initialized.
/// - `ndarray.shape`: Must be initialized.
/// - `ndarray.data`: Must be allocated and contiguous.
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_write_list_to_array");
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -1,295 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
///
/// Assets that `shape` does not contain negative dimensions.
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_shape_no_negative");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), shape.size(ctx, generator).into()),
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
///
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
/// an `ndarray`.
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_output_shape_same");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_size`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
/// `ndarray`, corresponding to the value of `ndarray.size`.
pub fn call_nac3_ndarray_size<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = ctx.get_size_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_size");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("size"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_nbytes`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
pub fn call_nac3_ndarray_nbytes<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = ctx.get_size_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_nbytes");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("nbytes"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_len`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
pub fn call_nac3_ndarray_len<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = ctx.get_size_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_len");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
///
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
pub fn call_nac3_ndarray_is_c_contiguous<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_is_c_contiguous");
create_and_call_function(
ctx,
&name,
Some(llvm_i1.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("is_c_contiguous"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
///
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
pub fn call_nac3_ndarray_get_nth_pelement<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
index: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = ctx.get_size_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(index.get_type(), llvm_usize);
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_nth_pelement");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
///
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
///
/// Returns a [`PointerValue`] to the element indexed by `indices`.
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = ctx.get_size_type();
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_pelement_by_indices");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[
(llvm_ndarray.into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
///
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) {
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_set_strides_by_shape");
create_and_call_function(
ctx,
&name,
None,
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_copy_data`.
///
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
/// `dst_ndarray`.
pub fn call_nac3_ndarray_copy_data<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_copy_data");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -1,81 +0,0 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
types::{ndarray::ShapeEntryType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_broadcast_to`.
///
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
///
/// `dst_ndarray` must meet the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_broadcast_to<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_to");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
///
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
/// writing the result to `dst_shape`.
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
num_shape_entries: IntValue<'ctx>,
shape_entries: ArraySliceValue<'ctx>,
dst_ndims: IntValue<'ctx>,
dst_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = ctx.get_size_type();
assert_eq!(num_shape_entries.get_type(), llvm_usize);
assert!(ShapeEntryType::is_type(
generator,
ctx.ctx,
shape_entries.base_ptr(ctx, generator).get_type()
)
.is_ok());
assert_eq!(dst_ndims.get_type(), llvm_usize);
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
num_shape_entries.into(),
shape_entries.base_ptr(ctx, generator).into(),
dst_ndims.into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -1,34 +0,0 @@
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_index`.
///
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
/// operation `dst_ndarray = src_ndarray[indices]`.
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
indices: ArraySliceValue<'ctx>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_index");
infer_and_call_function(
ctx,
&name,
None,
&[
indices.size(ctx, generator).into(),
indices.base_ptr(ctx, generator).into(),
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
],
None,
None,
);
}

View File

@ -1,81 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{
ndarray::{NDArrayValue, NDIterValue},
ProxyValue, TypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_nditer_initialize`.
///
/// Initializes the `iter` object.
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_initialize");
create_and_call_function(
ctx,
&name,
None,
&[
(iter.get_type().as_base_type().into(), iter.as_base_value().into()),
(ndarray.get_type().as_base_type().into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_nditer_initialize_has_element`.
///
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
/// object.
pub fn call_nac3_nditer_has_element<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) -> IntValue<'ctx> {
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_has_element");
infer_and_call_function(
ctx,
&name,
Some(ctx.ctx.bool_type().into()),
&[iter.as_base_value().into()],
None,
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_nditer_next`.
///
/// Moves `iter` to point to the next element.
pub fn call_nac3_nditer_next<'ctx>(ctx: &CodeGenContext<'ctx, '_>, iter: NDIterValue<'ctx>) {
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_next");
infer_and_call_function(ctx, &name, None, &[iter.as_base_value().into()], None, None);
}

View File

@ -1,65 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
///
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
/// `a @ b`.
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
final_ndims: IntValue<'ctx>,
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
assert_eq!(
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_matmul_calculate_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
a_shape.size(ctx, generator).into(),
a_shape.base_ptr(ctx, generator).into(),
b_shape.size(ctx, generator).into(),
b_shape.base_ptr(ctx, generator).into(),
final_ndims.into(),
new_a_shape.base_ptr(ctx, generator).into(),
new_b_shape.base_ptr(ctx, generator).into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -1,17 +0,0 @@
pub use array::*;
pub use basic::*;
pub use broadcast::*;
pub use indexing::*;
pub use iter::*;
pub use matmul::*;
pub use reshape::*;
pub use transpose::*;
mod array;
mod basic;
mod broadcast;
mod indexing;
mod iter;
mod matmul;
mod reshape;
mod transpose;

View File

@ -1,39 +0,0 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ArrayLikeValue, ArraySliceValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
///
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
/// assertion if multiple dimensions are unknown (`-1`).
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
new_ndims: IntValue<'ctx>,
new_shape: ArraySliceValue<'ctx>,
) {
let llvm_usize = ctx.get_size_type();
assert_eq!(size.get_type(), llvm_usize);
assert_eq!(new_ndims.get_type(), llvm_usize);
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
None,
None,
);
}

View File

@ -1,48 +0,0 @@
use inkwell::{values::IntValue, AddressSpace};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_transpose`.
///
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
///
/// `dst_ndarray` must fulfill the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
) {
let llvm_usize = ctx.get_size_type();
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_transpose");
infer_and_call_function(
ctx,
&name,
None,
&[
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
axes.base_ptr(ctx, generator)
})
.into(),
],
None,
None,
);
}

View File

@ -1,56 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Invokes the `__nac3_range_slice_len` in IRRT.
///
/// - `start`: The `i32` start value for the slice.
/// - `end`: The `i32` end value for the slice.
/// - `step`: The `i32` step value for the slice.
///
/// Returns an `i32` value of the length of the slice.
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(start.get_type(), llvm_i32);
assert_eq!(end.get_type(), llvm_i32);
assert_eq!(step.get_type(), llvm_i32);
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,39 +0,0 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}

View File

@ -1,45 +0,0 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
use itertools::Either;
use super::get_usize_dependent_function_name;
use crate::codegen::CodeGenContext;
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
pub fn call_string_eq<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
str1_ptr: PointerValue<'ctx>,
str1_len: IntValue<'ctx>,
str2_ptr: PointerValue<'ctx>,
str2_len: IntValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let func_name = get_usize_dependent_function_name(ctx, "nac3_str_eq");
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
ctx.module.add_function(
&func_name,
llvm_i1.fn_type(
&[
str1_ptr.get_type().into(),
str1_len.get_type().into(),
str2_ptr.get_type().into(),
str2_len.get_type().into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
func,
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
"str_eq_call",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,381 +0,0 @@
use inkwell::{
intrinsics::Intrinsic,
types::AnyTypeEnum::IntType,
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Either;
use super::CodeGenContext;
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic.
pub fn call_stacksave<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> PointerValue<'ctx> {
const FN_NAME: &str = "llvm.stacksave";
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_pointer_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the
/// [`llvm.stackrestore`](https://llvm.org/docs/LangRef.html#llvm-stackrestore-intrinsic) intrinsic.
///
/// - `ptr`: The pointer storing the address to restore the stack to.
pub fn call_stackrestore<'ctx>(ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.stackrestore";
/*
SEE https://github.com/TheDan64/inkwell/issues/496
We want `llvm.stackrestore`, but the following would generate `llvm.stackrestore.p0i8`.
```ignore
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
```
Temp workaround by manually declaring the intrinsic with the correct function name instead.
*/
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[ptr.into()], "").unwrap();
}
/// Invokes the [`llvm.memcpy`](https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic) intrinsic.
///
/// * `dest` - The pointer to the destination. Must be a pointer to an integer type.
/// * `src` - The pointer to the source. Must be a pointer to an integer type.
/// * `len` - The number of bytes to copy.
/// * `is_volatile` - Whether the `memcpy` operation should be `volatile`.
pub fn call_memcpy<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
const FN_NAME: &str = "llvm.memcpy";
debug_assert!(dest.get_type().get_element_type().is_int_type());
debug_assert!(src.get_type().get_element_type().is_int_type());
debug_assert_eq!(
dest.get_type().get_element_type().into_int_type().get_bit_width(),
src.get_type().get_element_type().into_int_type().get_bit_width(),
);
debug_assert!(matches!(len.get_type().get_bit_width(), 32 | 64));
debug_assert_eq!(is_volatile.get_type().get_bit_width(), 1);
let llvm_dest_t = dest.get_type();
let llvm_src_t = src.get_type();
let llvm_len_t = len.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(
&ctx.module,
&[llvm_dest_t.into(), llvm_src_t.into(), llvm_len_t.into()],
)
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[dest.into(), src.into(), len.into(), is_volatile.into()], "")
.unwrap();
}
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
pub fn call_memcpy_generic<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
/// copy).
pub fn call_memcpy_generic_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
///
/// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
($ctx:ident, $name:ident, $llvm_name:literal, $map_fn:expr, $llvm_ty:ident $(,$val:ident)*) => {{
const FN_NAME: &str = concat!("llvm.", $llvm_name);
let intrinsic_fn = Intrinsic::find(FN_NAME).and_then(|intrinsic| intrinsic.get_declaration(&$ctx.module, &[$llvm_ty.into()])).unwrap();
$ctx.builder.build_call(intrinsic_fn, &[$($val.into()),*], $name.unwrap_or_default()).map(CallSiteValue::try_as_basic_value).map(|v| v.map_left($map_fn)).map(Either::unwrap_left).unwrap()
}};
}
/// Macro to generate the llvm intrinsic function using [`generate_llvm_intrinsic_fn_body`].
///
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {
("float", $fn_name:ident, $llvm_name:literal, $val:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
let llvm_ty = $val.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val)
}
};
("float", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: FloatValue<'ctx>,
$val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
debug_assert_eq!($val1.get_type(), $val2.get_type());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val1, $val2)
}
};
("int", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: IntValue<'ctx>,
$val2: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!($val1.get_type().get_bit_width(), $val2.get_type().get_bit_width());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_int_value, llvm_ty, $val1, $val2)
}
};
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
let src_type = src.get_type();
generate_llvm_intrinsic_fn_body!(
ctx,
name,
"abs",
BasicValueEnum::into_int_value,
src_type,
src,
is_int_min_poison
)
}
generate_llvm_intrinsic_fn!("int", call_int_smax, "smax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_smin, "smin", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umax, "umax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umin, "umin", a, b);
generate_llvm_intrinsic_fn!("int", call_expect, "expect", val, expected_val);
generate_llvm_intrinsic_fn!("float", call_float_sqrt, "sqrt", val);
generate_llvm_intrinsic_fn!("float", call_float_sin, "sin", val);
generate_llvm_intrinsic_fn!("float", call_float_cos, "cos", val);
generate_llvm_intrinsic_fn!("float", call_float_pow, "pow", val, power);
generate_llvm_intrinsic_fn!("float", call_float_exp, "exp", val);
generate_llvm_intrinsic_fn!("float", call_float_exp2, "exp2", val);
generate_llvm_intrinsic_fn!("float", call_float_log, "log", val);
generate_llvm_intrinsic_fn!("float", call_float_log10, "log10", val);
generate_llvm_intrinsic_fn!("float", call_float_log2, "log2", val);
generate_llvm_intrinsic_fn!("float", call_float_fabs, "fabs", src);
generate_llvm_intrinsic_fn!("float", call_float_minnum, "minnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_maxnum, "maxnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_copysign, "copysign", mag, sgn);
generate_llvm_intrinsic_fn!("float", call_float_floor, "floor", val);
generate_llvm_intrinsic_fn!("float", call_float_ceil, "ceil", val);
generate_llvm_intrinsic_fn!("float", call_float_round, "round", val);
generate_llvm_intrinsic_fn!("float", call_float_rint, "rint", val);
/// Invokes the [`llvm.powi`](https://llvm.org/docs/LangRef.html#llvm-powi-intrinsic) intrinsic.
pub fn call_float_powi<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
power: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.powi";
let llvm_val_t = val.get_type();
let llvm_power_t = power.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(&ctx.module, &[llvm_val_t.into(), llvm_power_t.into()])
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), power.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
pub fn call_int_ctpop<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.ctpop";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

File diff suppressed because it is too large Load Diff

View File

@ -1,413 +0,0 @@
use inkwell::{
values::{BasicValue, BasicValueEnum, PointerValue},
IntPredicate,
};
use nac3parser::ast::StrRef;
use super::{
macros::codegen_unreachable,
stmt::gen_for_callback,
types::ndarray::{NDArrayType, NDIterType},
values::{ndarray::shape::parse_numpy_int_sequence, ProxyValue},
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{
helper::{arraylike_flatten_element_type, extract_ndims},
numpy::unpack_ndarray_var_tys,
DefinitionId,
},
typecheck::typedef::{FunSignature, Type},
};
/// Generates LLVM IR for `ndarray.empty`.
pub fn gen_ndarray_empty<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(context, llvm_dtype, ndims)
.construct_numpy_empty(generator, context, &shape, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.zeros`.
pub fn gen_ndarray_zeros<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(context, llvm_dtype, ndims)
.construct_numpy_zeros(generator, context, dtype, &shape, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.ones`.
pub fn gen_ndarray_ones<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(context, llvm_dtype, ndims)
.construct_numpy_ones(generator, context, dtype, &shape, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.full`.
pub fn gen_ndarray_full<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let fill_value_ty = fun.0.args[1].ty;
let fill_value_arg =
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(context, llvm_dtype, ndims).construct_numpy_full(
generator,
context,
&shape,
fill_value_arg,
None,
);
Ok(ndarray.as_base_value())
}
pub fn gen_ndarray_array<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert!(matches!(args.len(), 1..=3));
let obj_ty = fun.0.args[0].ty;
let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?;
let copy_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
{
let copy_ty = fun.0.args[1].ty;
arg.1.clone().to_basic_value_enum(context, generator, copy_ty)?
} else {
context.gen_symbol_val(
generator,
fun.0.args[1].default_value.as_ref().unwrap(),
fun.0.args[1].ty,
)
};
// The ndmin argument is ignored. We can simply force the ndarray's number of dimensions to be
// the `ndims` of the function return type.
let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndims = extract_ndims(&context.unifier, ndims);
let copy = generator.bool_to_i1(context, copy_arg.into_int_value());
let ndarray = NDArrayType::from_unifier_type(generator, context, fun.0.ret)
.construct_numpy_array(generator, context, (obj_ty, obj_arg), copy, None)
.atleast_nd(generator, context, ndims);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.eye`.
pub fn gen_ndarray_eye<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert!(matches!(args.len(), 1..=3));
let nrows_ty = fun.0.args[0].ty;
let nrows_arg = args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)?;
let ncols_ty = fun.0.args[1].ty;
let ncols_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
{
arg.1.clone().to_basic_value_enum(context, generator, ncols_ty)
} else {
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
}?;
let offset_ty = fun.0.args[2].ty;
let offset_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
{
arg.1.clone().to_basic_value_enum(context, generator, offset_ty)
} else {
Ok(context.gen_symbol_val(
generator,
fun.0.args[2].default_value.as_ref().unwrap(),
offset_ty,
))
}?;
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_usize = context.get_size_type();
let llvm_dtype = context.get_llvm_type(generator, dtype);
let nrows = context
.builder
.build_int_s_extend_or_bit_cast(nrows_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ncols = context
.builder
.build_int_s_extend_or_bit_cast(ncols_arg.into_int_value(), llvm_usize, "")
.unwrap();
let offset = context
.builder
.build_int_s_extend_or_bit_cast(offset_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ndarray = NDArrayType::new(context, llvm_dtype, 2)
.construct_numpy_eye(generator, context, dtype, nrows, ncols, offset, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.identity`.
pub fn gen_ndarray_identity<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let n_ty = fun.0.args[0].ty;
let n_arg = args[0].1.clone().to_basic_value_enum(context, generator, n_ty)?;
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_usize = context.get_size_type();
let llvm_dtype = context.get_llvm_type(generator, dtype);
let n = context
.builder
.build_int_s_extend_or_bit_cast(n_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ndarray = NDArrayType::new(context, llvm_dtype, 2)
.construct_numpy_identity(generator, context, dtype, n, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.copy`.
pub fn gen_ndarray_copy<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
_fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_some());
assert!(args.is_empty());
let this_ty = obj.as_ref().unwrap().0;
let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
let this = NDArrayType::from_unifier_type(generator, context, this_ty)
.map_value(this_arg.into_pointer_value(), None);
let ndarray = this.make_copy(generator, context);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.fill`.
pub fn gen_ndarray_fill<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_some());
assert_eq!(args.len(), 1);
let this_ty = obj.as_ref().unwrap().0;
let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
let this = NDArrayType::from_unifier_type(generator, context, this_ty)
.map_value(this_arg.into_pointer_value(), None);
this.fill(generator, context, value_arg);
Ok(())
}
/// Generates LLVM IR for `ndarray.dot`.
/// Calculate inner product of two vectors or literals
/// For matrix multiplication use `np_matmul`
///
/// The input `NDArray` are flattened and treated as 1D
/// The operation is equivalent to `np.dot(arr1.ravel(), arr2.ravel())`
pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(x1_ty, x1): (Type, BasicValueEnum<'ctx>),
(x2_ty, x2): (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_dot";
match (x1, x2) {
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
let a = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(n1, None);
let b = NDArrayType::from_unifier_type(generator, ctx, x2_ty).map_value(n2, None);
// TODO: General `np.dot()` https://numpy.org/doc/stable/reference/generated/numpy.dot.html.
assert_eq!(a.get_type().ndims(), 1);
assert_eq!(b.get_type().ndims(), 1);
let common_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
// Check shapes.
let a_size = a.size(ctx);
let b_size = b.size(ctx);
let same_shape =
ctx.builder.build_int_compare(IntPredicate::EQ, a_size, b_size, "").unwrap();
ctx.make_assert(
generator,
same_shape,
"0:ValueError",
"shapes ({0},) and ({1},) not aligned: {0} (dim 0) != {1} (dim 1)",
[Some(a_size), Some(b_size), None],
ctx.current_loc,
);
let dtype_llvm = ctx.get_llvm_type(generator, common_dtype);
let result = ctx.builder.build_alloca(dtype_llvm, "np_dot_result").unwrap();
ctx.builder.build_store(result, dtype_llvm.const_zero()).unwrap();
// Do dot product.
gen_for_callback(
generator,
ctx,
Some("np_dot"),
|generator, ctx| {
let a_iter = NDIterType::new(ctx).construct(generator, ctx, a);
let b_iter = NDIterType::new(ctx).construct(generator, ctx, b);
Ok((a_iter, b_iter))
},
|_, ctx, (a_iter, _b_iter)| {
// Only a_iter drives the condition, b_iter should have the same status.
Ok(a_iter.has_element(ctx))
},
|_, ctx, _hooks, (a_iter, b_iter)| {
let a_scalar = a_iter.get_scalar(ctx);
let b_scalar = b_iter.get_scalar(ctx);
let old_result = ctx.builder.build_load(result, "").unwrap();
let new_result: BasicValueEnum<'ctx> = match old_result {
BasicValueEnum::IntValue(old_result) => {
let a_scalar = a_scalar.into_int_value();
let b_scalar = b_scalar.into_int_value();
let x = ctx.builder.build_int_mul(a_scalar, b_scalar, "").unwrap();
ctx.builder.build_int_add(old_result, x, "").unwrap().into()
}
BasicValueEnum::FloatValue(old_result) => {
let a_scalar = a_scalar.into_float_value();
let b_scalar = b_scalar.into_float_value();
let x = ctx.builder.build_float_mul(a_scalar, b_scalar, "").unwrap();
ctx.builder.build_float_add(old_result, x, "").unwrap().into()
}
_ => {
panic!("Unrecognized dtype: {}", ctx.unifier.stringify(common_dtype));
}
};
ctx.builder.build_store(result, new_result).unwrap();
Ok(())
},
|_, ctx, (a_iter, b_iter)| {
a_iter.next(ctx);
b_iter.next(ctx);
Ok(())
},
)
.unwrap();
Ok(ctx.builder.build_load(result, "").unwrap())
}
(BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => {
Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
_ => codegen_unreachable!(
ctx,
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
),
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,471 +0,0 @@
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::{
ast::{fold::Fold, FileName, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use super::{
concrete_type::ConcreteTypeStore,
types::{ndarray::NDArrayType, ListType, ProxyType, RangeType},
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
}
impl Resolver {
pub fn add_id_def(&self, id: StrRef, def: DefinitionId) {
self.id_to_def.write().insert(id, def);
}
}
impl SymbolResolver for Resolver {
fn get_default_param_value(
&self,
_: &nac3parser::ast::Expr,
) -> Option<crate::symbol_resolver::SymbolValue> {
unimplemented!()
}
fn get_symbol_type(
&self,
_: &mut Unifier,
_: &[Arc<RwLock<TopLevelDef>>],
_: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String> {
self.id_to_type.get(&str).copied().ok_or_else(|| format!("cannot find symbol `{str}`"))
}
fn get_symbol_value<'ctx>(
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> {
self.id_to_def
.read()
.get(&id)
.copied()
.ok_or_else(|| HashSet::from([format!("cannot find symbol `{id}`")]))
}
fn get_string_id(&self, _: &str) -> i32 {
unimplemented!()
}
fn get_exception_id(&self, _tyid: usize) -> usize {
unimplemented!()
}
}
#[test]
fn test_primitives() {
let source = indoc! { "
c = a + b
d = a if c == 1 else 0
return d
"};
let statements = parse_program(source, FileName::default()).unwrap();
let context = inkwell::context::Context::create();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let resolver =
Arc::new(Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) })
as Arc<dyn SymbolResolver + Send + Sync>;
let threads = vec![DefaultCodeGenerator::new("test".into(), context.i64_type()).into()];
let signature = FunSignature {
args: vec![
FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
],
ret: primitives.int32,
vars: VarMap::new(),
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(&mut unifier, &primitives, &signature, &mut cache);
let signature = store.add_cty(signature);
let mut function_data = FunctionData {
resolver: resolver.clone(),
bound_variables: Vec::new(),
return_type: Some(primitives.int32),
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
unifier: &mut unifier,
variable_mapping: HashMap::default(),
primitives: &primitives,
virtual_checks: &mut virtual_checks,
calls: &mut calls,
defined_identifiers: identifiers.clone(),
in_handler: false,
};
inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32);
inferencer.variable_mapping.insert("b".into(), inferencer.primitives.int32);
let statements = statements
.into_iter()
.map(|v| inferencer.fold_stmt(v))
.collect::<Result<Vec<_>, _>>()
.unwrap();
inferencer.check_block(&statements, &mut identifiers).unwrap();
let top_level = Arc::new(TopLevelContext {
definitions: Arc::new(RwLock::new(std::mem::take(&mut *top_level.definitions.write()))),
unifiers: Arc::new(RwLock::new(vec![(unifier.get_shared_unifier(), primitives)])),
personality_symbol: None,
});
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "testing".into(),
body: Arc::new(statements),
unifier_index: 0,
calls: Arc::new(calls),
resolver,
store,
signature,
id: 0,
};
let f = Arc::new(WithCall::new(Box::new(|module| {
// the following IR is equivalent to
// ```
// ; ModuleID = 'test.ll'
// source_filename = "test"
//
// ; Function Attrs: norecurse nounwind readnone
// define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 {
// init:
// %add = add i32 %1, %0
// %cmp = icmp eq i32 %add, 1
// %ifexpr = select i1 %cmp, i32 %0, i32 0
// ret i32 %ifexpr
// }
//
// attributes #0 = { norecurse nounwind readnone }
// ```
// after O2 optimization
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
init:
%add = add i32 %1, %0, !dbg !9
%cmp = icmp eq i32 %add, 1, !dbg !10
%. = select i1 %cmp, i32 %0, i32 0, !dbg !11
ret i32 %., !dbg !12
}
attributes #0 = { mustprogress nofree norecurse nosync nounwind readnone willreturn }
!llvm.module.flags = !{!0, !1}
!llvm.dbg.cu = !{!2}
!0 = !{i32 2, !\"Debug Info Version\", i32 3}
!1 = !{i32 2, !\"Dwarf Version\", i32 4}
!2 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!3 = !DIFile(filename: \"unknown\", directory: \"\")
!4 = distinct !DISubprogram(name: \"testing\", linkageName: \"testing\", scope: null, file: !3, line: 1, type: !5, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !2, retainedNodes: !8)
!5 = !DISubroutineType(flags: DIFlagPublic, types: !6)
!6 = !{!7}
!7 = !DIBasicType(name: \"_\", flags: DIFlagPublic)
!8 = !{}
!9 = !DILocation(line: 1, column: 9, scope: !4)
!10 = !DILocation(line: 2, column: 15, scope: !4)
!11 = !DILocation(line: 0, scope: !4)
!12 = !DILocation(line: 3, column: 8, scope: !4)
"}
.trim();
assert_eq!(expected, module.print_to_string().to_str().unwrap().trim());
})));
Target::initialize_all(&InitializationConfig::default());
let llvm_options = CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
}
#[test]
fn test_simple_call() {
let source_1 = indoc! { "
a = foo(a)
return a * 2
"};
let statements_1 = parse_program(source_1, FileName::default()).unwrap();
let source_2 = indoc! { "
return a + 1
"};
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
let context = inkwell::context::Context::create();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let signature = FunSignature {
args: vec![FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
ret: primitives.int32,
vars: VarMap::new(),
};
let fun_ty = unifier.add_ty(TypeEnum::TFunc(signature.clone()));
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(&mut unifier, &primitives, &signature, &mut cache);
let signature = store.add_cty(signature);
let foo_id = top_level.definitions.read().len();
top_level.definitions.write().push(Arc::new(RwLock::new(TopLevelDef::Function {
name: "foo".to_string(),
simple_name: "foo".into(),
signature: fun_ty,
var_id: vec![],
instance_to_stmt: HashMap::new(),
instance_to_symbol: HashMap::new(),
resolver: None,
codegen_callback: None,
loc: None,
})));
let resolver = Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) };
resolver.add_id_def("foo".into(), DefinitionId(foo_id));
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
if let TopLevelDef::Function { resolver: r, .. } =
&mut *top_level.definitions.read()[foo_id].write()
{
*r = Some(resolver.clone());
} else {
unreachable!()
}
let threads = vec![DefaultCodeGenerator::new("test".into(), context.i64_type()).into()];
let mut function_data = FunctionData {
resolver: resolver.clone(),
bound_variables: Vec::new(),
return_type: Some(primitives.int32),
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
unifier: &mut unifier,
variable_mapping: HashMap::default(),
primitives: &primitives,
virtual_checks: &mut virtual_checks,
calls: &mut calls,
defined_identifiers: identifiers.clone(),
in_handler: false,
};
inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32);
inferencer.variable_mapping.insert("foo".into(), fun_ty);
let statements_1 = statements_1
.into_iter()
.map(|v| inferencer.fold_stmt(v))
.collect::<Result<Vec<_>, _>>()
.unwrap();
let calls1 = inferencer.calls.clone();
inferencer.calls.clear();
let statements_2 = statements_2
.into_iter()
.map(|v| inferencer.fold_stmt(v))
.collect::<Result<Vec<_>, _>>()
.unwrap();
if let TopLevelDef::Function { instance_to_stmt, .. } =
&mut *top_level.definitions.read()[foo_id].write()
{
instance_to_stmt.insert(
String::new(),
FunInstance {
body: Arc::new(statements_2),
calls: Arc::new(inferencer.calls.clone()),
subst: IndexMap::default(),
unifier_id: 0,
},
);
} else {
unreachable!()
}
inferencer.check_block(&statements_1, &mut identifiers).unwrap();
let top_level = Arc::new(TopLevelContext {
definitions: Arc::new(RwLock::new(std::mem::take(&mut *top_level.definitions.write()))),
unifiers: Arc::new(RwLock::new(vec![(unifier.get_shared_unifier(), primitives)])),
personality_symbol: None,
});
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "testing".to_string(),
body: Arc::new(statements_1),
calls: Arc::new(calls1),
unifier_index: 0,
resolver,
signature,
store,
id: 0,
};
let f = Arc::new(WithCall::new(Box::new(|module| {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
init:
%add.i = shl i32 %0, 1, !dbg !10
%mul = add i32 %add.i, 2, !dbg !10
ret i32 %mul, !dbg !10
}
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @foo.0(i32 %0) local_unnamed_addr #0 !dbg !11 {
init:
%add = add i32 %0, 1, !dbg !12
ret i32 %add, !dbg !12
}
attributes #0 = { mustprogress nofree norecurse nosync nounwind readnone willreturn }
!llvm.module.flags = !{!0, !1}
!llvm.dbg.cu = !{!2, !4}
!0 = !{i32 2, !\"Debug Info Version\", i32 3}
!1 = !{i32 2, !\"Dwarf Version\", i32 4}
!2 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!3 = !DIFile(filename: \"unknown\", directory: \"\")
!4 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!5 = distinct !DISubprogram(name: \"testing\", linkageName: \"testing\", scope: null, file: !3, line: 1, type: !6, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !2, retainedNodes: !9)
!6 = !DISubroutineType(flags: DIFlagPublic, types: !7)
!7 = !{!8}
!8 = !DIBasicType(name: \"_\", flags: DIFlagPublic)
!9 = !{}
!10 = !DILocation(line: 2, column: 12, scope: !5)
!11 = distinct !DISubprogram(name: \"foo.0\", linkageName: \"foo.0\", scope: null, file: !3, line: 1, type: !6, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !4, retainedNodes: !9)
!12 = !DILocation(line: 1, column: 12, scope: !11)
"}
.trim();
assert_eq!(expected, module.print_to_string().to_str().unwrap().trim());
})));
Target::initialize_all(&InitializationConfig::default());
let llvm_options = CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
}
#[test]
fn test_classes_list_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), ctx.i64_type());
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new_with_generator(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
}
#[test]
fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
}
#[test]
fn test_classes_ndarray_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), ctx.i64_type());
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new_with_generator(&generator, &ctx, llvm_i32.into(), 2);
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -1,372 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType;
use crate::{
codegen::{
types::structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
values::{ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
/// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> {
ty: PointerType<'ctx>,
item: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ListStructFields<'ctx> {
/// Array pointer to content.
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub items: StructField<'ctx, PointerValue<'ctx>>,
/// Number of items in the array.
#[value_type(usize)]
pub len: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> ListStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ListStructFields {
items: StructField::create(
&mut counter,
"items",
item.ptr_type(AddressSpace::default()),
),
len: StructField::create(&mut counter, "len", llvm_usize),
}
}
}
impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
};
let fields = ListStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
llvm_ty,
"list",
&[(fields.items.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `list.items`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
ListStructFields::new_typed(item, llvm_usize)
}
/// See [`ListType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
element_type: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
let element_type = element_type.map_or(llvm_usize.into(), |ty| ty.as_basic_type_enum());
let field_tys =
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
fn new_impl(
ctx: &'ctx Context,
element_type: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
) -> Self {
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize);
Self { ty: llvm_list, item: element_type, llvm_usize }
}
/// Creates an instance of [`ListType`].
#[must_use]
pub fn new(ctx: &CodeGenContext<'ctx, '_>, element_type: &impl BasicType<'ctx>) -> Self {
Self::new_impl(ctx.ctx, Some(element_type.as_basic_type_enum()), ctx.get_size_type())
}
/// Creates an instance of [`ListType`].
#[must_use]
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
) -> Self {
Self::new_impl(ctx, Some(element_type.as_basic_type_enum()), generator.get_size_type(ctx))
}
/// Creates an instance of [`ListType`] with an unknown element type.
#[must_use]
pub fn new_untyped(ctx: &CodeGenContext<'ctx, '_>) -> Self {
Self::new_impl(ctx.ctx, None, ctx.get_size_type())
}
/// Creates an instance of [`ListType`] with an unknown element type.
#[must_use]
pub fn new_untyped_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
) -> Self {
Self::new_impl(ctx, None, generator.get_size_type(ctx))
}
/// Creates an [`ListType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
// Check unifier type and extract `item_type`
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty
}
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
};
let llvm_usize = ctx.get_size_type();
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
None
} else {
Some(ctx.get_llvm_type(generator, elem_type))
};
Self::new_impl(ctx.ctx, llvm_elem_type, llvm_usize)
}
/// Creates an [`ListType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
let ctx = ptr_ty.get_context();
// We are just searching for the index off a field - Slot an arbitrary element type in.
let item_field_idx =
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
let item = unsafe {
ptr_ty
.get_element_type()
.into_struct_type()
.get_field_type_at_index_unchecked(item_field_idx)
.into_pointer_type()
.get_element_type()
};
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
panic!(
"Expected BasicTypeEnum for list element type, got {}",
ptr_ty.get_element_type().print_to_string()
)
});
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
}
/// Returns the type of the `size` field of this `list` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Returns the element type of this `list` type.
#[must_use]
pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
self.item
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
///
/// The returned list will contain:
///
/// - `data`: Allocated with `len` number of elements.
/// - `len`: Initialized to the value of `len` passed to this function.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
// Generate a runtime assertion if allocating a non-empty list with unknown element type
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
let len_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
len_eqz,
"0:AssertionError",
"Cannot allocate a non-empty list with unknown element type",
[None, None, None],
ctx.current_loc,
);
}
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, len);
let item = self.item.unwrap_or(self.llvm_usize.into());
plist.create_data(ctx, item, None);
plist
}
/// Convenience function for creating a list with zero elements.
///
/// This function is preferred over [`ListType::construct`] if the length is known to always be
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
/// list is being allocated.
///
/// The returned list will contain:
///
/// - `data`: Initialized to `(T*) 0`.
/// - `len`: Initialized to `0`.
#[must_use]
pub fn construct_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, self.llvm_usize.const_zero());
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
plist
}
/// Converts an existing value into a [`ListValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ListValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
fn from(value: ListType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,125 +0,0 @@
//! This module contains abstraction over all intrinsic composite types of NAC3.
//!
//! # `raw_alloca` vs `alloca` vs `construct`
//!
//! There are three ways of creating a new object instance using the abstractions provided by this
//! module.
//!
//! - `raw_alloca`: Allocates the object on the stack, returning an instance of
//! [`impl BasicValue`][inkwell::values::BasicValue]. This is similar to a `malloc` expression in
//! C++ but the object is allocated on the stack.
//! - `alloca`: Similar to `raw_alloca`, but also wraps the allocated object with
//! [`<Self as ProxyType<'ctx>>::Value`][ProxyValue], and returns the wrapped object. The returned
//! object will not initialize any value or fields. This is similar to a type-safe `malloc`
//! expression in C++ but the object is allocated on the stack.
//! - `construct`: Similar to `alloca`, but performs some initialization on the value or fields of
//! the returned object. This is similar to a `new` expression in C++ but the object is allocated
//! on the stack.
use inkwell::{
context::Context,
types::BasicType,
values::{IntValue, PointerValue},
};
use super::{
values::{ArraySliceValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
pub use list::*;
pub use range::*;
pub use tuple::*;
mod list;
pub mod ndarray;
mod range;
pub mod structure;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a corresponding type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
/// The LLVM type of which values of this type possess. This is usually a
/// [LLVM pointer type][PointerType] for any non-primitive types.
type Base: BasicType<'ctx>;
/// The type of values represented by this type.
type Value: ProxyValue<'ctx, Type = Self>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String>;
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String>;
/// Returns the type that should be used in `alloca` IR statements.
fn alloca_type(&self) -> impl BasicType<'ctx>;
/// Creates a new value of this type by invoking `alloca` at the current builder location,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_alloca(self.alloca_type().as_basic_type_enum(), name.unwrap_or_default())
.unwrap()
}
/// Creates a new value of this type by invoking `alloca` at the beginning of the function,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
generator.gen_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), name).unwrap()
}
/// Creates a new array value of this type by invoking `alloca` at the current builder location,
/// returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
ctx.builder
.build_array_alloca(
self.alloca_type().as_basic_type_enum(),
size,
name.unwrap_or_default(),
)
.unwrap(),
size,
name,
)
}
/// Creates a new array value of this type by invoking `alloca` at the beginning of the
/// function, returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), size, name)
.unwrap()
}
/// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base;
}

View File

@ -1,240 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::{
codegen::{
irrt,
stmt::gen_if_else_expr_callback,
types::{ndarray::NDArrayType, ListType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
list_ty: Type,
) -> (BasicTypeEnum<'ctx>, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
(ctx.get_llvm_type(generator, dtype), ndims)
}
impl<'ctx> NDArrayType<'ctx> {
/// Implementation of `np_array(<list>, copy=True)`
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
assert!(self.ndims >= ndims_int);
assert_eq!(dtype, self.dtype);
let list_value = list.as_i8_list(ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = self.llvm_usize.const_int(ndims_int, false);
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
let shape = TypedArrayLikeAdapter::from(
shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, &shape,
);
let ndarray =
Self::new(ctx, dtype, ndims_int).construct_uninitialized(generator, ctx, name);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
// Copy all contents from the list.
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(ctx, list_value, ndarray);
ndarray
}
/// Implementation of `np_array(<list>, copy=None)`
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
if ndims == 1 {
// `list` is not nested
assert_eq!(ndims, 1);
assert!(self.ndims >= ndims);
assert_eq!(dtype, self.dtype);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let ndarray = Self::new(ctx, dtype, 1).construct_uninitialized(generator, ctx, name);
// Set data
let data = ctx
.builder
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
.unwrap();
ndarray.store_data(ctx, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.shape();
let list_len = list.load_size(ctx, None);
unsafe {
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
}
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(ctx);
ndarray
} else {
// `list` is nested, copy
self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
)
}
}
/// Implementation of `np_array(<list>, copy=copy)`
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
NDArrayType::new(ctx, dtype, ndims).map_value(ndarray, None)
}
/// Implementation of `np_array(<ndarray>, copy=copy)`.
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(ndarray.get_type().dtype, self.dtype);
assert!(self.ndims >= ndarray.get_type().ndims);
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.as_base_value()))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ndarray.get_type().map_value(ndarray_val, name)
}
/// Create a new ndarray like
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
///
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
/// with the exact number of dimensions is needed.
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(object_ty, object): (Type, BasicValueEnum<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
match &*ctx.unifier.get_ty_immutable(object_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
}
}
}

View File

@ -1,188 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{ndarray::ShapeEntryValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ShapeEntryType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ShapeEntryStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ShapeEntryType<'ctx> {
/// Checks whether `llvm_ty` represents a [`ShapeEntryType`], returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!(
"Expected struct type for `ShapeEntry` type, got {llvm_ndarray_ty}"
));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ShapeEntryStructFields<'ctx> {
ShapeEntryStructFields::new(ctx, llvm_usize)
}
/// See [`ShapeEntryStructFields::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> ShapeEntryStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `ShapeEntry`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
let llvm_ty = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ty, llvm_usize }
}
/// Creates an instance of [`ShapeEntryType`].
#[must_use]
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
Self::new_impl(ctx.ctx, ctx.get_size_type())
}
/// Creates an instance of [`ShapeEntryType`].
#[must_use]
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
) -> Self {
Self::new_impl(ctx, generator.get_size_type(ctx))
}
/// Creates a [`ShapeEntryType`] from a [`PointerType`] representing an `ShapeEntry`.
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ShapeEntryValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ShapeEntryType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ShapeEntryValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ShapeEntryType<'ctx>> for PointerType<'ctx> {
fn from(value: ShapeEntryType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,258 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::{
codegen::{
types::{
structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
ProxyType,
},
values::{ndarray::ContiguousNDArrayValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
toplevel::numpy::unpack_ndarray_var_tys,
typecheck::typedef::Type,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ContiguousNDArrayType<'ctx> {
ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ContiguousNDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ContiguousNDArrayStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ContiguousNDArrayStructFields {
ndims: StructField::create(&mut counter, "ndims", llvm_usize),
shape: StructField::create(
&mut counter,
"shape",
llvm_usize.ptr_type(AddressSpace::default()),
),
data: StructField::create(&mut counter, "data", item.ptr_type(AddressSpace::default())),
}
}
}
impl<'ctx> ContiguousNDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = ContiguousNDArrayStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
llvm_ty,
"ContiguousNDArray",
&[(fields.data.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `ContiguousNDArray.data`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ContiguousNDArrayStructFields<'ctx> {
ContiguousNDArrayStructFields::new_typed(item, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self) -> ContiguousNDArrayStructFields<'ctx> {
Self::fields(self.item, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
let field_tys =
Self::fields(item, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
fn new_impl(ctx: &'ctx Context, item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let llvm_cndarray = Self::llvm_type(ctx, item, llvm_usize);
Self { ty: llvm_cndarray, item, llvm_usize }
}
/// Creates an instance of [`ContiguousNDArrayType`].
#[must_use]
pub fn new(ctx: &CodeGenContext<'ctx, '_>, item: &impl BasicType<'ctx>) -> Self {
Self::new_impl(ctx.ctx, item.as_basic_type_enum(), ctx.get_size_type())
}
/// Creates an instance of [`ContiguousNDArrayType`].
#[must_use]
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
) -> Self {
Self::new_impl(ctx, item, generator.get_size_type(ctx))
}
/// Creates an [`ContiguousNDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
Self::new_impl(ctx.ctx, llvm_dtype, ctx.get_size_type())
}
/// Creates an [`ContiguousNDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, item, llvm_usize }
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ContiguousNDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.item,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for ContiguousNDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ContiguousNDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ContiguousNDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: ContiguousNDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,236 +0,0 @@
use inkwell::{
values::{BasicValueEnum, IntValue},
IntPredicate,
};
use super::NDArrayType;
use crate::{
codegen::{
irrt, types::ProxyType, values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayType<'ctx> {
/// Create an ndarray like
/// [`np.empty`](https://numpy.org/doc/stable/reference/generated/numpy.empty.html).
pub fn construct_numpy_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, name);
// Validate `shape`
irrt::ndarray::call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
ndarray
}
/// Create an ndarray like
/// [`np.full`](https://numpy.org/doc/stable/reference/generated/numpy.full.html).
pub fn construct_numpy_full<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
fill_value: BasicValueEnum<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_numpy_empty(generator, ctx, shape, name);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like
/// [`np.zero`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html).
pub fn construct_numpy_zeros<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_zero_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.ones`](https://numpy.org/doc/stable/reference/generated/numpy.ones.html).
pub fn construct_numpy_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_one_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.eye`](https://numpy.org/doc/stable/reference/generated/numpy.eye.html).
#[allow(clippy::too_many_arguments)]
pub fn construct_numpy_eye<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: IntValue<'ctx>,
ncols: IntValue<'ctx>,
offset: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
assert_eq!(nrows.get_type(), self.llvm_usize);
assert_eq!(ncols.get_type(), self.llvm_usize);
assert_eq!(offset.get_type(), self.llvm_usize);
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = self.construct_dyn_shape(generator, ctx, &[nrows, ncols], name);
// Create data and make the matrix like look np.eye()
unsafe {
ndarray.create_data(generator, ctx);
}
ndarray
.foreach(generator, ctx, |generator, ctx, _, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
let indices = nditer.get_indices();
let row_i = unsafe {
indices.get_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), None)
};
let col_i = unsafe {
indices.get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(1, false),
None,
)
};
let be_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
ctx.builder.build_int_add(row_i, offset, "").unwrap(),
col_i,
"",
)
.unwrap();
let value = ctx.builder.build_select(be_one, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like
/// [`np.identity`](https://numpy.org/doc/stable/reference/generated/numpy.identity.html).
pub fn construct_numpy_identity<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let offset = self.llvm_usize.const_zero();
self.construct_numpy_eye(generator, ctx, dtype, size, size, offset, name)
}
}

View File

@ -1,216 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{
ndarray::{NDIndexValue, RustNDIndex},
ArrayLikeIndexer, ArraySliceValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDIndexType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDIndexStructFields<'ctx> {
#[value_type(i8_type())]
pub type_: StructField<'ctx, IntValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDIndexType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndindex` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = NDIndexStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(fields, llvm_ty, "NDIndex", &[])
}
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDIndexStructFields<'ctx> {
NDIndexStructFields::new(ctx, llvm_usize)
}
#[must_use]
pub fn get_fields(&self) -> NDIndexStructFields<'ctx> {
Self::fields(self.ty.get_context(), self.llvm_usize)
}
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
let llvm_ndindex = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ndindex, llvm_usize }
}
#[must_use]
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
Self::new_impl(ctx.ctx, ctx.get_size_type())
}
#[must_use]
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
) -> Self {
Self::new_impl(ctx, generator.get_size_type(ctx))
}
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Serialize a list of [`RustNDIndex`] as a newly allocated LLVM array of [`NDIndexValue`].
#[must_use]
pub fn construct_ndindices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> ArraySliceValue<'ctx> {
// Allocate the LLVM ndindices.
let num_ndindices = self.llvm_usize.const_int(in_ndindices.len() as u64, false);
let ndindices = self.array_alloca_var(generator, ctx, num_ndindices, None);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = unsafe {
ndindices.ptr_offset_unchecked(
ctx,
generator,
&ctx.ctx.i64_type().const_int(u64::try_from(i).unwrap(), false),
None,
)
};
in_ndindex.write_to_ndindex(
generator,
ctx,
NDIndexValue::from_pointer_value(pndindex, self.llvm_usize, None),
);
}
ndindices
}
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for NDIndexType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDIndexValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDIndexType<'ctx>> for PointerType<'ctx> {
fn from(value: NDIndexType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,183 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use itertools::Itertools;
use crate::codegen::{
stmt::gen_for_callback,
types::{
ndarray::{NDArrayType, NDIterType},
ProxyType,
},
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ArrayLikeValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayType<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
/// elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
/// result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing
/// ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[NDArrayValue<'ctx>],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray = NDArrayType::new(ctx, dtype, broadcast_result.ndims)
.construct_uninitialized(generator, ctx, None);
result_ndarray.copy_shape_from_array(
generator,
ctx,
broadcast_result.shape.base_ptr(ctx, generator),
);
unsafe {
result_ndarray.create_data(generator, ctx);
}
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterType::new(ctx).construct(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| NDIterType::new(ctx).construct(generator, ctx, *ndarray))
.collect_vec();
Ok((nditer, other_nditers))
},
|_, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_element()`.
// `in_nditers`' `has_element()`s should return the same value.
Ok(out_nditer.has_element(ctx))
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars =
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|_, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(ctx);
in_nditers.iter().for_each(|nditer| nditer.next(ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
/// scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
/// or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following
/// behaviors:
///
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
/// converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
/// ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: BasicTypeEnum<'ctx>,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> =
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().copied().collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(value))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayType::new_broadcast(
ctx,
ret_dtype,
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
)
.broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
}

View File

@ -1,486 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{BasicValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
};
use crate::{
codegen::{
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeMutator},
{CodeGenContext, CodeGenerator},
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
};
pub use broadcast::*;
pub use contiguous::*;
pub use indexing::*;
pub use nditer::*;
mod array;
mod broadcast;
mod contiguous;
pub mod factory;
mod indexing;
mod map;
mod nditer;
/// Proxy type for a `ndarray` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> {
/// The size of each `NDArray` element in bytes.
#[value_type(usize)]
pub itemsize: StructField<'ctx, IntValue<'ctx>>,
/// Number of dimensions in the array.
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
/// Pointer to an array containing the shape of the `NDArray`.
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array indicating the number of bytes between each element at a dimension
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub strides: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array containing the array data
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
fn new_impl(
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>,
) -> Self {
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, ndims, llvm_usize }
}
/// Creates an instance of [`NDArrayType`].
#[must_use]
pub fn new(ctx: &CodeGenContext<'ctx, '_>, dtype: BasicTypeEnum<'ctx>, ndims: u64) -> Self {
Self::new_impl(ctx.ctx, dtype, ndims, ctx.get_size_type())
}
/// Creates an instance of [`NDArrayType`].
#[must_use]
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
) -> Self {
Self::new_impl(ctx, dtype, ndims, generator.get_size_type(ctx))
}
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
/// `ndarray` operands.
#[must_use]
pub fn new_broadcast(
ctx: &CodeGenContext<'ctx, '_>,
dtype: BasicTypeEnum<'ctx>,
inputs: &[NDArrayType<'ctx>],
) -> Self {
assert!(!inputs.is_empty());
Self::new_impl(
ctx.ctx,
dtype,
inputs.iter().map(NDArrayType::ndims).max().unwrap(),
ctx.get_size_type(),
)
}
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
/// `ndarray` operands.
#[must_use]
pub fn new_broadcast_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
inputs: &[NDArrayType<'ctx>],
) -> Self {
assert!(!inputs.is_empty());
Self::new_impl(
ctx,
dtype,
inputs.iter().map(NDArrayType::ndims).max().unwrap(),
generator.get_size_type(ctx),
)
}
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
#[must_use]
pub fn new_unsized(ctx: &CodeGenContext<'ctx, '_>, dtype: BasicTypeEnum<'ctx>) -> Self {
Self::new_impl(ctx.ctx, dtype, 0, ctx.get_size_type())
}
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
#[must_use]
pub fn new_unsized_with_generator<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
Self::new_impl(ctx, dtype, 0, generator.get_size_type(ctx))
}
/// Creates an [`NDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&ctx.unifier, ndims);
Self::new_impl(ctx.ctx, llvm_dtype, ndims, ctx.get_size_type())
}
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
NDArrayType { ty: ptr_ty, dtype, ndims, llvm_usize }
}
/// Returns the type of the `size` field of this `ndarray` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Returns the element type of this `ndarray` type.
#[must_use]
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
self.dtype
}
/// Returns the number of dimensions of this `ndarray` type.
#[must_use]
pub fn ndims(&self) -> u64 {
self.ndims
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an [`NDArrayValue`] on the stack and initializes all fields as follows:
///
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `self.dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
fn construct_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.alloca_var(generator, ctx, name);
let itemsize = ctx
.builder
.build_int_truncate_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
.unwrap();
ndarray.store_itemsize(ctx, itemsize);
ndarray.store_ndims(ctx, ndims);
ndarray.create_shape(ctx, self.llvm_usize, ndims);
ndarray.create_strides(ctx, self.llvm_usize, ndims);
ndarray
}
/// Allocate an [`NDArrayValue`] on the stack using `dtype` and `ndims` of this [`NDArrayType`]
/// instance.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `dtype`.
/// - `ndims`: set to the value of `self.ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
pub fn construct_uninitialized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndims = self.llvm_usize.const_int(self.ndims, false);
self.construct_impl(generator, ctx, ndims, name)
}
/// Convenience function. Allocate an [`NDArrayValue`] with a statically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_const_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[u64],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = ctx.get_size_type();
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
let dim = llvm_usize.const_int(*dim, false);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
dim,
);
}
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayValue`] with a dynamically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_dyn_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[IntValue<'ctx>],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = ctx.get_size_type();
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
assert_eq!(
dim.get_type(),
llvm_usize,
"Expected {} but got {}",
llvm_usize.print_to_string(),
dim.get_type().print_to_string()
);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
*dim,
);
}
}
ndarray
}
/// Create an unsized ndarray to contain `value`.
#[must_use]
pub fn construct_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: &impl BasicValue<'ctx>,
name: Option<&'ctx str>,
) -> NDArrayValue<'ctx> {
let value = value.as_basic_value_enum();
assert_eq!(value.get_type(), self.dtype);
assert_eq!(self.ndims, 0);
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
ctx.builder.build_store(data, value).unwrap();
let data = ctx
.builder
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap();
let ndarray =
Self::new_unsized(ctx, value.get_type()).construct_uninitialized(generator, ctx, name);
ctx.builder.build_store(ndarray.ptr_to_data(ctx), data).unwrap();
ndarray
}
/// Converts an existing value into a [`NDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: NDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

Some files were not shown because too many files have changed in this diff Show More