Compare commits

..

21 Commits

Author SHA1 Message Date
lyken 9fa0dfe202
WIP: core/ndstrides: hold 2024-08-15 16:16:59 +08:00
lyken 1c48d54afa
WIP: core/ndstrides: fix nditer 2024-08-15 15:13:02 +08:00
lyken a69a441bdd
WIP: core/ndstrides: checkpoint 13 2024-08-15 14:38:05 +08:00
lyken 4b765cfb27
WIP: core/ndstrides: remove ScalarObject 2024-08-15 13:34:48 +08:00
lyken f8b934096d
WIP: core/ndstrides: checkpoint 2024-08-15 11:41:33 +08:00
lyken 0df2f26c98
WIP: core/ndstrides: builtin_fns deleted 2024-08-15 11:01:56 +08:00
lyken 5dce27e87d
WIP: core/ndstrides: more iter and less builtin 2024-08-15 00:33:23 +08:00
lyken 15dfb2eaa0
WIP: core/ndstrides: on iter 2024-08-14 17:30:37 +08:00
lyken fd78f7a0e8
WIP: core/ndstrides: done 2024-08-14 15:56:59 +08:00
lyken 2fbe981701
WIP: core/ndstrides: AnyObject + TupleObject 2024-08-14 12:48:10 +08:00
lyken febe78b6a4
WIP: core/ndstrides: rename .value to .instance in *Object 2024-08-14 11:34:42 +08:00
lyken 18dcbf5bbc
WIP: core/ndstrides: {make,from}_simple_ndarray 2024-08-14 11:33:56 +08:00
lyken bb1687f8a4
WIP: core/ndstrides: minor cleanup 2024-08-14 10:19:09 +08:00
lyken 1d7184708f
WIP: core/ndstrides: checkpoint 9 2024-08-14 09:59:33 +08:00
lyken 82edcd9390
core/irrt: introduce irrt testing
`cargo test -F test` would compile `nac3core/irrt/irrt_test.cpp`
targetted to the host machine (it gets to use `std`) and run the
test executable.
2024-08-13 17:05:54 +08:00
lyken 0c3534c2f9
core/irrt: split irrt.cpp into headers
To scale IRRT implementations
2024-08-13 17:05:54 +08:00
lyken 5602812c8f
core/irrt: build.rs capture IR defined constants 2024-08-13 17:05:54 +08:00
lyken 51d26ad3bf
core/irrt: build.rs capture IR defined types 2024-08-13 17:05:54 +08:00
lyken 1d2c887146
core/irrt: reformat 2024-08-13 17:05:54 +08:00
lyken 7ba77ddbd6
core: add .clang-format 2024-08-13 17:05:54 +08:00
lyken a5a25f41bb
core/irrt: comment build.rs & move irrt to its own dir
To prepare for future IRRT implementations, and to also make cargo
only have to watch a single directory.
2024-08-13 17:05:54 +08:00
156 changed files with 13926 additions and 10992 deletions

View File

@ -1,32 +1,3 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
BasedOnStyle: Google
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never
ReflowComments: false

View File

@ -1,24 +1,24 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
default_stages: [pre-commit]
default_stages: [commit]
repos:
- repo: local
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: nix
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [develop, -c, cargo, fmt, --all]
args: [fmt]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: nix
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [develop, -c, cargo, clippy, --tests]
args: [clippy, --tests]

516
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,6 @@ members = [
"nac3ast",
"nac3parser",
"nac3core",
"nac3core/nac3core_derive",
"nac3standalone",
"nac3artiq",
"runkernel",

View File

@ -2,11 +2,11 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1731319897,
"narHash": "sha256-PbABj4tnbWFMfBp6OcUK5iGy1QY+/Z96ZcLpooIbuEI=",
"lastModified": 1721924956,
"narHash": "sha256-Sb1jlyRO+N8jBXEX9Pg9Z1Qb8Bw9QyOgLDNMEpmjZ2M=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "dc460ec76cbff0e66e269457d7b728432263166c",
"rev": "5ad6a14c6bf098e98800b091668718c336effc95",
"type": "github"
},
"original": {

View File

@ -14,6 +14,7 @@
''
mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
@ -40,6 +41,7 @@
cargoLock = {
lockFile = ./Cargo.lock;
};
cargoTestFlags = [ "--features" "test" ];
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
@ -107,18 +109,18 @@
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "sipyco";
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e";
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc=";
})
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "artiq";
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
rev = "923ca3377d42c815f979983134ec549dc39d3ca0";
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw=";
})
];
buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out
];
phases = [ "buildPhase" "installPhase" ];

View File

@ -12,10 +12,15 @@ crate-type = ["cdylib"]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12"
tempfile = "3.13"
tempfile = "3.10"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -112,15 +112,10 @@ def extern(function):
register_function(function)
return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def rpc(function):
"""Decorates a function declaration defined by the core device runtime."""
register_function(function)
return function
def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device."""
@ -206,7 +201,7 @@ class Core:
embedding = EmbeddingMap()
if allow_registration:
compiler.analyze(registered_functions, registered_classes, set())
compiler.analyze(registered_functions, registered_classes)
allow_registration = False
if hasattr(method, "__self__"):

View File

@ -1,26 +0,0 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

View File

@ -1,3 +1,35 @@
use nac3core::{
codegen::{
classes::{ListValue, NDArrayValue, RangeValue, UntypedArrayLikeAccessor},
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
use inkwell::{
context::Context,
module::Linkage,
types::IntType,
values::{BasicValueEnum, StructValue},
AddressSpace, IntPredicate,
};
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use itertools::Itertools;
use std::{
collections::{hash_map::DefaultHasher, HashMap},
hash::{Hash, Hasher},
@ -6,40 +38,6 @@ use std::{
sync::Arc,
};
use itertools::Itertools;
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
types::{NDArrayType, ProxyType},
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, ProxyValue,
RangeValue, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
},
inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
},
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
/// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode {
@ -424,10 +422,7 @@ fn gen_rpc_tag(
} else {
unreachable!()
};
assert!(
(0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims),
"Only NDArrays of sizes between 0 and 255 can be RPCed"
);
assert!((0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims));
buffer.push(b'a');
buffer.push((ndarray_ndims & 0xFF) as u8);
@ -439,395 +434,17 @@ fn gen_rpc_tag(
Ok(())
}
/// Formats an RPC argument to conform to the expected format required by `send_value`.
///
/// See `artiq/firmware/libproto_artiq/rpc_proto.rs` for the expected format.
fn format_rpc_arg<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
(arg, arg_ty, arg_idx): (BasicValueEnum<'ctx>, Type, usize),
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let arg_slot = match &*ctx.unifier.get_ty_immutable(arg_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
// NAC3: NDArray = { usize, usize*, T* }
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
let llvm_arg = llvm_arg_ty.map_value(arg.into_pointer_value(), None);
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let dims_buf_sz =
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let buffer_size =
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
call_memcpy_generic(
ctx,
buffer.base_ptr(ctx, generator),
llvm_arg.ptr_to_data(ctx),
llvm_pdata_sizeof,
llvm_i1.const_zero(),
);
let pbuffer_dims_begin =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
pbuffer_dims_begin,
llvm_arg.shape().base_ptr(ctx, generator),
dims_buf_sz,
llvm_i1.const_zero(),
);
buffer.base_ptr(ctx, generator)
}
_ => {
let arg_slot = generator
.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{arg_idx}")))
.unwrap();
ctx.builder.build_store(arg_slot, arg).unwrap();
ctx.builder
.build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
};
debug_assert_eq!(arg_slot.get_type(), llvm_pi8);
arg_slot
}
/// Formats an RPC return value to conform to the expected format required by NAC3.
fn format_rpc_ret<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let llvm_i8 = ctx.ctx.i8_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
});
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
return None;
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
// Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>| {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width()
);
let llvm_val_t = val.get_type();
let max_rem = ctx
.builder
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
.unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
};
// Setup types
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
// Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off.
let ndarray = llvm_ret_ty.new_value(generator, ctx, Some("rpc.result"));
// Setup ndims
let ndims =
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
} else {
unreachable!();
};
// Set `ndarray.ndims`
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
// Allocate `ndarray.shape` [size_t; ndims]
ndarray.create_shape(ctx, llvm_usize, ndarray.load_ndims(ctx));
/*
ndarray now:
- .ndims: initialized
- .shape: allocated but uninitialized .shape
- .data: uninitialized
*/
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let llvm_elem_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
.unwrap();
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_dims =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
let stackptr = call_stacksave(ctx, None);
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
let buffer = ctx
.builder
.build_array_alloca(
llvm_i8_8,
ctx.builder
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "")
.unwrap(),
"rpc.buffer",
)
.unwrap();
let buffer = ctx
.builder
.build_bit_cast(buffer, llvm_pi8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
//
// The returned value is the number of bytes for `ndarray.data`.
let ndarray_nbytes = ctx
.build_call_or_invoke(
rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims].
"rpc.size.next",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
// debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::UGT,
ndarray_nbytes,
ndarray_nbytes.get_type().const_zero(),
"",
)
.unwrap(),
"0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None],
ctx.current_loc,
);
}
// Copy shape from the buffer to `ndarray.shape`.
let pbuffer_dims =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
ndarray.shape().base_ptr(ctx, generator),
pbuffer_dims,
sizeof_dims,
llvm_i1.const_zero(),
);
// Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate)
let num_elements =
call_ndarray_calc_size(generator, ctx, &ndarray.shape(), (None, None));
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let sizeof_data =
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::UGE,
sizeof_data,
ndarray_nbytes,
"",
).unwrap(),
"0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(sizeof_data), Some(ndarray_nbytes), None],
ctx.current_loc,
);
}
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
// NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap();
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.map(BasicValueEnum::into_int_value)
.unwrap();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof);
let alloc_ptr = ctx
.builder
.build_array_alloca(
llvm_elem_ty,
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(),
"rpc.alloc",
)
.unwrap();
let alloc_ptr =
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ndarray.as_base_value().into()
}
_ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr =
ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ctx.builder.build_load(slot, "rpc.result").unwrap()
}
};
Some(result)
}
fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator,
is_async: bool,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let ptr_type = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let size_type = generator.get_size_type(ctx.ctx);
let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type();
let size_type = generator.get_size_type(ctx.ctx);
let ptr_type = int8.ptr_type(AddressSpace::default());
let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false);
let service_id = int32.const_int(fun.1 .0 as u64, false);
@ -900,25 +517,22 @@ fn rpc_codegen_callback_fn<'ctx>(
.0
.args
.iter()
.map(|arg| {
mapping
.remove(&arg.name)
.unwrap()
.to_basic_value_enum(ctx, generator, arg.ty)
.map(|llvm_val| (llvm_val, arg.ty))
})
.collect::<Result<Vec<(_, _)>, _>>()?;
.map(|arg| mapping.remove(&arg.name).unwrap().to_basic_value_enum(ctx, generator, arg.ty))
.collect::<Result<Vec<_>, _>>()?;
if let Some(obj) = obj {
if let ValueEnum::Static(obj_val) = obj.1 {
real_params.insert(0, (obj_val.get_const_obj(ctx, generator), obj.0));
if let ValueEnum::Static(obj) = obj.1 {
real_params.insert(0, obj.get_const_obj(ctx, generator));
} else {
// should be an error here...
panic!("only host object is allowed");
}
}
for (i, (arg, arg_ty)) in real_params.iter().enumerate() {
let arg_slot = format_rpc_arg(generator, ctx, (*arg, *arg_ty, i));
for (i, arg) in real_params.iter().enumerate() {
let arg_slot =
generator.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{i}"))).unwrap();
ctx.builder.build_store(arg_slot, *arg).unwrap();
let arg_slot = ctx.builder.build_bitcast(arg_slot, ptr_type, "rpc.arg").unwrap();
let arg_ptr = unsafe {
ctx.builder.build_gep(
args_ptr,
@ -931,29 +545,6 @@ fn rpc_codegen_callback_fn<'ctx>(
}
// call
if is_async {
let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send_async",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
rpc_send_async,
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
"rpc.send",
)
.unwrap();
} else {
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
@ -971,32 +562,74 @@ fn rpc_codegen_callback_fn<'ctx>(
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
}
// reclaim stack space used by arguments
call_stackrestore(ctx, stackptr);
if is_async {
// async RPCs do not return any values
Ok(None)
} else {
let result = format_rpc_ret(generator, ctx, fun.0.ret);
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
});
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
// An RPC returning an NDArray would not touch here.
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv");
return Ok(None);
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
if need_load {
call_stackrestore(ctx, stackptr);
}
Ok(result)
}
Ok(Some(result))
}
pub fn attributes_writeback<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
pub fn attributes_writeback(
ctx: &mut CodeGenContext<'_, '_>,
generator: &mut dyn CodeGenerator,
inner_resolver: &InnerResolver,
host_attributes: &PyObject,
return_obj: Option<(Type, ValueEnum<'ctx>)>,
) -> Result<(), String> {
Python::with_gil(|py| -> PyResult<Result<(), String>> {
let host_attributes: &PyList = host_attributes.downcast(py)?;
@ -1006,11 +639,6 @@ pub fn attributes_writeback<'ctx>(
let zero = int32.const_zero();
let mut values = Vec::new();
let mut scratch_buffer = Vec::new();
if let Some((ty, obj)) = return_obj {
values.push((ty, obj.to_basic_value_enum(ctx, generator, ty).unwrap()));
}
for val in (*globals).values() {
let val = val.as_ref(py);
let ty = inner_resolver.get_obj_type(
@ -1089,7 +717,7 @@ pub fn attributes_writeback<'ctx>(
let args: Vec<_> =
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
if let Err(e) =
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, true)
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator)
{
return Ok(Err(e));
}
@ -1099,9 +727,9 @@ pub fn attributes_writeback<'ctx>(
Ok(())
}
pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
pub fn rpc_codegen_callback() -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
})))
}
@ -1170,8 +798,7 @@ fn polymorphic_print<'ctx>(
ctx.module.add_function(fn_name, fn_t, None)
});
let fmt = ctx.gen_string(generator, fmt);
let fmt = unsafe { fmt.get_field_at_index_unchecked(0) }.into_pointer_value();
let fmt = ctx.gen_string(generator, &fmt).get_field(generator, ctx.ctx, |f| f.base).value;
ctx.builder
.build_call(
@ -1251,20 +878,24 @@ fn polymorphic_print<'ctx>(
fmt.push_str("%.*s");
let true_str = ctx.gen_string(generator, "True");
let true_data =
unsafe { true_str.get_field_at_index_unchecked(0) }.into_pointer_value();
let true_len = unsafe { true_str.get_field_at_index_unchecked(1) }.into_int_value();
let true_data = true_str.get_field(generator, ctx.ctx, |f| f.base);
let true_len = true_str.get_field(generator, ctx.ctx, |f| f.len);
let false_str = ctx.gen_string(generator, "False");
let false_data =
unsafe { false_str.get_field_at_index_unchecked(0) }.into_pointer_value();
let false_len =
unsafe { false_str.get_field_at_index_unchecked(1) }.into_int_value();
let false_data = false_str.get_field(generator, ctx.ctx, |f| f.base);
let false_len = false_str.get_field(generator, ctx.ctx, |f| f.len);
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
args.extend([
ctx.builder.build_select(bool_val, true_len, false_len, "").unwrap(),
ctx.builder.build_select(bool_val, true_data, false_data, "").unwrap(),
ctx.builder
.build_select(bool_val, true_len.value, false_len.value, "")
.unwrap(),
ctx.builder
.build_select(bool_val, true_data.value, false_data.value, "")
.unwrap(),
]);
}
@ -1315,8 +946,7 @@ fn polymorphic_print<'ctx>(
fmt.push('[');
flush(ctx, generator, &mut fmt, &mut args);
let val =
ListValue::from_pointer_value(value.into_pointer_value(), llvm_usize, None);
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = val.load_size(ctx, None);
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
@ -1368,18 +998,12 @@ fn polymorphic_print<'ctx>(
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args);
let val = NDArrayValue::from_pointer_value(
value.into_pointer_value(),
llvm_elem_ty,
llvm_usize,
None,
);
let len = call_ndarray_calc_size(generator, ctx, &val.shape(), (None, None));
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
@ -1432,7 +1056,7 @@ fn polymorphic_print<'ctx>(
fmt.push_str("range(");
flush(ctx, generator, &mut fmt, &mut args);
let val = RangeValue::from_pointer_value(value.into_pointer_value(), None);
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
let (start, stop, step) = destructure_range(ctx, val);

View File

@ -1,4 +1,10 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
unsafe_op_in_unsafe_fn,
@ -10,65 +16,65 @@
clippy::wildcard_imports
)]
use std::{
collections::{HashMap, HashSet},
fs,
io::Write,
process::Command,
rc::Rc,
sync::Arc,
};
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io::Write;
use std::process::Command;
use std::rc::Rc;
use std::sync::Arc;
use itertools::Itertools;
use parking_lot::{Mutex, RwLock};
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PyNone, PySet},
};
use tempfile::{self, TempDir};
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{FlagBehavior, Linkage, Module},
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
},
nac3parser::{
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
};
use itertools::Itertools;
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
},
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock};
use nac3core::{
codegen::irrt::load_irrt,
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver,
toplevel::{
builtins::get_exn_constructor,
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
typecheck::typedef::{FunSignature, FuncArg},
typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
};
use nac3ld::Linker;
use codegen::{
use crate::{
codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
};
use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
use tempfile::{self, TempDir};
mod codegen;
mod symbol_resolver;
mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)]
enum Isa {
Host,
@ -142,32 +148,14 @@ impl Nac3 {
module: &PyObject,
registered_class_ids: &HashSet<u64>,
) -> PyResult<()> {
let (module_name, source_file, source) =
Python::with_gil(|py| -> PyResult<(String, String, String)> {
let (module_name, source_file) = Python::with_gil(|py| -> PyResult<(String, String)> {
let module: &PyAny = module.extract(py)?;
let source_file = module.getattr("__file__");
let (source_file, source) = if let Ok(source_file) = source_file {
let source_file = source_file.extract()?;
(
source_file,
fs::read_to_string(source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!(
"failed to read input file: {e}"
))
})?,
)
} else {
// kernels submitted by content have no file
// but still can provide source by StringLoader
let get_src_fn = module
.getattr("__loader__")?
.extract::<PyObject>()?
.getattr(py, "get_source")?;
("<expcontent>", get_src_fn.call1(py, (PyNone::get(py),))?.extract(py)?)
};
Ok((module.getattr("__name__")?.extract()?, source_file.to_string(), source))
Ok((module.getattr("__name__")?.extract()?, module.getattr("__file__")?.extract()?))
})?;
let source = fs::read_to_string(&source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!("failed to read input file: {e}"))
})?;
let parser_result = parse_program(&source, source_file.into())
.map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?;
@ -207,8 +195,10 @@ impl Nac3 {
body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) {
id == "kernel" || id == "portable" || id == "rpc"
if let ExprKind::Name { id, .. } = decorator.node {
id.to_string() == "kernel"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
} else {
false
}
@ -221,8 +211,9 @@ impl Nac3 {
}
StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) {
id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
if let ExprKind::Name { id, .. } = decorator.node {
let id = id.to_string();
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
} else {
false
}
@ -458,6 +449,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -488,25 +480,9 @@ impl Nac3 {
match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list
.iter()
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
rpc_ids.push((None, def_id));
}
}
StmtKind::ClassDef { name, body, .. } => {
@ -514,26 +490,19 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
if name == &"__init__".into() {
return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location
)));
}
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
}
}
}
}
_ => (),
_ => ()
}
let id = *name_to_pyid.get(&name).unwrap();
@ -572,6 +541,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
@ -589,8 +559,9 @@ impl Nac3 {
.unwrap();
// Process IRRT
let context = Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let context = inkwell::context::Context::create();
let irrt = load_irrt(&context);
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
@ -629,12 +600,13 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context());
{
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read();
for (class_data, id, is_async) in &rpc_ids {
for (class_data, id) in &rpc_ids {
let mut def = defs[id.0].write();
match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen_callback(*is_async));
*codegen_callback = Some(rpc_codegen.clone());
}
TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap();
@ -645,7 +617,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write()
{
*codegen_callback = Some(rpc_codegen_callback(*is_async));
*codegen_callback = Some(rpc_codegen.clone());
store_fun
.call1(
py,
@ -660,11 +632,6 @@ impl Nac3 {
}
}
}
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
}
}
}
@ -685,12 +652,33 @@ impl Nac3 {
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "__modinit__".to_string(),
body: instance.body,
signature,
resolver: resolver.clone(),
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
id: 0,
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
symbol_name: "attributes_writeback".to_string(),
body: Arc::new(Vec::default()),
signature,
resolver,
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
calls: Arc::new(HashMap::default()),
id: 0,
};
@ -703,7 +691,7 @@ impl Nac3 {
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
})));
let size_t = context
let size_t = Context::create()
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 };
@ -714,27 +702,19 @@ impl Nac3 {
.collect();
let membuffer = membuffers.clone();
let mut has_return = false;
py.allow_threads(|| {
let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let mut generator = ArtiqCodeGenerator::new("main".to_string(), size_t, self.time_fns);
let context = Context::create();
let module = context.create_module("main");
let mut generator =
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
FlagBehavior::Warning,
context.i32_type().const_int(3, false),
);
module.add_basic_value_flag(
"Dwarf Version",
FlagBehavior::Warning,
context.i32_type().const_int(4, false),
);
let builder = context.create_builder();
let (_, module, _) = gen_func_impl(
&context,
@ -742,27 +722,9 @@ impl Nac3 {
&registry,
builder,
module,
task,
attributes_writeback_task,
|generator, ctx| {
assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement");
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
unreachable!("toplevel statement must be an expression")
};
let ExprKind::Call { .. } = expr.node else {
unreachable!("toplevel expression must be a function call")
};
let return_obj =
generator.gen_expr(ctx, expr)?.map(|value| (expr.custom.unwrap(), value));
has_return = return_obj.is_some();
registry.wait_tasks_complete(handles);
attributes_writeback(
ctx,
generator,
inner_resolver.as_ref(),
&host_attributes,
return_obj,
)
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes)
},
)
.unwrap();
@ -771,23 +733,35 @@ impl Nac3 {
membuffer.lock().push(buffer);
});
embedding_map.setattr("expects_return", has_return).unwrap();
// Link all modules into `main`.
let buffers = membuffers.lock();
let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(
buffers.last().unwrap(),
"main",
))
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
.unwrap();
for buffer in buffers.iter().rev().skip(1) {
for buffer in buffers.iter().skip(1) {
let other = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
}
let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function();
@ -874,41 +848,6 @@ impl Nac3 {
}
}
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![
"-shared".to_string(),
@ -1090,12 +1029,7 @@ impl Nac3 {
})
}
fn analyze(
&mut self,
functions: &PySet,
classes: &PySet,
content_modules: &PySet,
) -> PyResult<()> {
fn analyze(&mut self, functions: &PySet, classes: &PySet) -> PyResult<()> {
let (modules, class_ids) =
Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> {
let mut modules: HashMap<u64, PyObject> = HashMap::new();
@ -1105,22 +1039,14 @@ impl Nac3 {
let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?;
for function in functions {
let module: PyObject = getmodule_fn.call1((function,))?.extract()?;
if !module.is_none(py) {
let module = getmodule_fn.call1((function,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
}
for class in classes {
let module: PyObject = getmodule_fn.call1((class,))?.extract()?;
if !module.is_none(py) {
let module = getmodule_fn.call1((class,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
class_ids.insert(id_fn.call1((class,))?.extract()?);
}
for module in content_modules {
let module: PyObject = module.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
Ok((modules, class_ids))
})?;

View File

@ -1,30 +1,14 @@
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
types::{NDArrayType, ProxyType},
CodeGenContext, CodeGenerator,
},
inkwell::{
module::Linkage,
use inkwell::{
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
};
use itertools::Itertools;
use nac3core::{
codegen::{
classes::{NDArrayType, ProxyType},
CodeGenContext, CodeGenerator,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
@ -36,8 +20,21 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use super::PrimitivePythonId;
use crate::PrimitivePythonId;
pub enum PrimitiveValue {
I32(i32),
@ -82,6 +79,7 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
@ -135,8 +133,6 @@ impl StaticValue for PythonValue {
format!("{}_const", self.id).as_str(),
);
global.set_constant(true);
// Set linkage of global to private to avoid name collisions
global.set_linkage(Linkage::Private);
global.set_initializer(&ctx.ctx.const_struct(
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
false,
@ -167,7 +163,7 @@ impl StaticValue for PythonValue {
PrimitiveValue::Bool(val) => {
ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
}
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(),
PrimitiveValue::Str(val) => ctx.ctx.const_string(val.as_bytes(), true).into(),
});
}
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
@ -981,7 +977,7 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
Ok(Some(ctx.gen_string(generator, val).into()))
Ok(Some(ctx.ctx.const_string(val.as_bytes(), true).into()))
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
let val: f64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
@ -1096,7 +1092,7 @@ impl InnerResolver {
if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
ndarray_llvm_ty.as_underlying_type(),
Some(AddressSpace::default()),
&id_str,
)
@ -1190,11 +1186,7 @@ impl InnerResolver {
data_global.set_initializer(&data);
// create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty
.as_base_type()
.get_element_type()
.into_struct_type()
.const_named_struct(&[
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
llvm_usize.const_int(ndarray_ndims, false).into(),
shape_global
.as_pointer_value()
@ -1207,7 +1199,7 @@ impl InnerResolver {
]);
let ndarray = ctx.module.add_global(
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
ndarray_llvm_ty.as_underlying_type(),
Some(AddressSpace::default()),
&id_str,
);
@ -1474,7 +1466,6 @@ impl SymbolResolver for Resolver {
&self,
id: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
let sym_value = {
let id_to_val = self.0.id_to_pyval.read();

View File

@ -1,12 +1,9 @@
use itertools::Either;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
use itertools::Either;
use nac3core::codegen::CodeGenContext;
/// Functions for manipulating the timeline.
pub trait TimeFns {
@ -34,7 +31,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -83,7 +80,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -112,7 +109,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -210,7 +207,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -261,7 +258,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();

View File

@ -10,6 +10,7 @@ constant-optimization = ["fold"]
fold = []
[dependencies]
lazy_static = "1.5"
parking_lot = "0.12"
string-interner = "0.17"
fxhash = "0.2"

View File

@ -5,12 +5,14 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
use std::{cell::RefCell, collections::HashMap, fmt};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
static INTERNER: LazyLock<Mutex<Interner>> =
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
lazy_static! {
static ref INTERNER: Mutex<Interner> =
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -1,4 +1,10 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
@ -8,6 +14,9 @@
clippy::wildcard_imports
)]
#[macro_use]
extern crate lazy_static;
mod ast_gen;
mod constant;
#[cfg(feature = "fold")]

View File

@ -1,29 +1,26 @@
[features]
test = []
[package]
name = "nac3core"
version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = []
[dependencies]
itertools = "0.13"
crossbeam = "0.8"
indexmap = "2.6"
indexmap = "2.2"
parking_lot = "0.12"
rayon = "1.10"
nac3core_derive = { path = "nac3core_derive", optional = true }
rayon = "1.8"
nac3parser = { path = "../nac3parser" }
strum = "0.26"
strum_macros = "0.26"
strum = "0.26.2"
strum_macros = "0.26.4"
[dependencies.inkwell]
version = "0.5"
version = "0.4"
default-features = false
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies]
test-case = "1.2.0"

View File

@ -1,63 +1,67 @@
use regex::Regex;
use std::{
env,
fs::File,
io::Write,
path::Path,
path::{Path, PathBuf},
process::{Command, Stdio},
};
use regex::Regex;
const CMD_IRRT_CLANG: &str = "clang-irrt";
const CMD_IRRT_CLANG_TEST: &str = "clang-irrt-test";
const CMD_IRRT_LLVM_AS: &str = "llvm-as-irrt";
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
fn get_out_dir() -> PathBuf {
PathBuf::from(env::var("OUT_DIR").unwrap())
}
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
fn get_irrt_dir() -> &'static Path {
Path::new("irrt")
}
/// Compile `irrt.cpp` for use in `src/codegen`
fn compile_irrt_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let mut flags: Vec<&str> = vec![
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
let mut flags = vec![];
flags.push("--target=wasm32");
flags.extend(&["-x", "c++"]);
flags.extend(&["-fno-discard-value-names", "-fno-exceptions", "-fno-rtti"]);
flags.push("-emit-llvm");
flags.push("-S");
flags.extend(&["-Wall", "-Wextra"]);
flags.extend(&["-o", "-"]);
flags.extend(&["-I", irrt_dir.to_str().unwrap()]);
flags.push(irrt_cpp_path.to_str().unwrap());
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
flags.push("-DIRRT_DEBUG");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
};
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt")
let output = Command::new(CMD_IRRT_CLANG)
.args(flags)
.output()
.inspect(|o| {
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
@ -98,7 +102,9 @@ fn main() {
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
// Assemble the emitted and filtered IR to .bc
// That .bc will be integrated into nac3core's codegen
let mut llvm_as = Command::new(CMD_IRRT_LLVM_AS)
.stdin(Stdio::piped())
.arg("-o")
.arg(out_dir.join("irrt.bc"))
@ -107,3 +113,48 @@ fn main() {
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success());
}
/// Compile `irrt_test.cpp` for testing
fn compile_irrt_test_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
let exe_path = out_dir.join("irrt_test.out"); // Output path of the compiled test executable
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
let flags: &[&str] = &[
irrt_test_cpp_path.to_str().unwrap(),
"-x",
"c++",
"-I",
irrt_dir.to_str().unwrap(),
"-g",
"-fno-discard-value-names",
"-O0",
"-Wall",
"-Wextra",
"-Werror=return-type",
"-lm", // for `tgamma()`, `lgamma()`
"-o",
exe_path.to_str().unwrap(),
];
Command::new(CMD_IRRT_CLANG_TEST)
.args(flags)
.output()
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
}
fn main() {
compile_irrt_cpp();
// https://github.com/rust-lang/cargo/issues/2549
// `cargo test -F test` to also build `irrt_test.cpp
if cfg!(feature = "test") {
compile_irrt_test_cpp();
}
}

View File

@ -1,5 +1,10 @@
#include "irrt/exception.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"
#define IRRT_DEFINE_TYPEDEF_INTS
#include <irrt_everything.hpp>
/*
* All IRRT implementations.
*
* We don't have pre-compiled objects, so we are writing all implementations in
* headers and concatenate them with `#include` into one massive source file that
* contains all the IRRT stuff.
*/

349
nac3core/irrt/irrt/core.hpp Normal file
View File

@ -0,0 +1,349 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/util.hpp>
// NDArray indices are always `uint32_t`.
using NDIndexInt = uint32_t;
// The type of an index or a value describing the length of a
// range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace {
// adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
template <typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len,
SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template <typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims,
SizeT num_dims, NDIndexInt* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template <typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims,
const NDIndexInt* indices,
SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims, SizeT lhs_ndims,
const SizeT* rhs_dims, SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz =
i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz =
i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end,
const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else
// len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(
SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
uint8_t* dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_step, uint8_t* src_arr,
SliceIndex src_arr_len, const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support
* extending list
*/
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of
* the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len =
(src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len =
(dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size,
src_arr + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr) &&
!(max(dest_start, dest_end) < min(src_start, src_end) ||
max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
uint8_t* tmp =
reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous
* alloca */
__builtin_memcpy(dest_arr + dest_ind * size,
src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size + size + size + size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) { return __builtin_isinf(x); }
int32_t __nac3_isnan(double x) { return __builtin_isnan(x); }
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len,
uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
end_idx);
}
uint64_t __nac3_ndarray_calc_size64(const uint64_t* list_data,
uint64_t list_len, uint64_t begin_idx,
uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims,
uint32_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims,
uint64_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t __nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims,
const NDIndexInt* indices,
uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims,
const NDIndexInt* indices,
uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims, uint32_t lhs_ndims,
const uint32_t* rhs_dims, uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims, uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
out_idx);
}
} // extern "C"

View File

@ -1,9 +1,9 @@
#pragma once
#include "irrt/int_types.hpp"
#include <irrt/int_defs.hpp>
template<typename SizeT>
template <typename SizeT>
struct CSlice {
void* base;
uint8_t* base;
SizeT len;
};

View File

@ -1,25 +1,15 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
raise_exception(SizeT, EXN_ASSERTION_ERROR, \
"IRRT debug assert failed: " msg, param1, param2, param3);
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,37 +1,43 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
#include <irrt/cslice.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/util.hpp>
/**
* @brief The int type of ARTIQ exception IDs.
*
* It is always `int32_t`
*/
using ExceptionId = int32_t;
typedef int32_t ExceptionId;
/*
* Set of exceptions C++ IRRT can use.
* A set of exceptions IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
* All exception IDs are initialized by `setup_irrt_exceptions`.
*/
#ifdef IRRT_TESTING
// If we are doing IRRT tests (i.e., running `cargo test -F test`), define them with a fake set of IDs.
ExceptionId EXN_INDEX_ERROR = 0;
ExceptionId EXN_VALUE_ERROR = 1;
ExceptionId EXN_ASSERTION_ERROR = 2;
ExceptionId EXN_RUNTIME_ERROR = 3;
ExceptionId EXN_TYPE_ERROR = 4;
#else
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_RUNTIME_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
#endif
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
template <typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
@ -41,36 +47,51 @@ struct Exception {
CSlice<SizeT> msg;
int64_t params[3];
};
} // namespace
constexpr int64_t NO_PARAM = 0;
// Declare/Define `__nac3_raise`
#ifdef IRRT_TESTING
#include <cstdio>
void __nac3_raise(void* err) {
// TODO: Print the error content?
printf("__nac3_raise called. Exiting...\n");
exit(1);
}
#else
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
#endif
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
namespace {
const int64_t NO_PARAM = 0;
// Helper function to raise an exception with `__nac3_raise`
// Do not use this function directly. See `raise_exception`.
template <typename SizeT>
void _raise_exception_helper(ExceptionId id, const char* filename, int32_t line,
const char* function, const char* msg,
int64_t param0, int64_t param1, int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.filename = {.base = (uint8_t*)filename,
.len = (int32_t)cstr_utils::length(filename)},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
.function = {.base = (uint8_t*)function,
.len = (int32_t)cstr_utils::length(function)},
.msg = {.base = (uint8_t*)msg, .len = (int32_t)cstr_utils::length(msg)},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__nac3_raise((void*)&e);
__builtin_unreachable();
}
} // namespace
/**
* @brief Raise an exception with location details (location in the IRRT source files).
@ -78,8 +99,25 @@ void _raise_exception_helper(ExceptionId id,
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, \
param0, param1, param2)
/**
* @brief Throw a dummy error for testing.
*/
template <typename SizeT>
void throw_dummy_error() {
raise_exception(SizeT, EXN_RUNTIME_ERROR, "dummy error", NO_PARAM, NO_PARAM,
NO_PARAM);
}
} // namespace
extern "C" {
void __nac3_throw_dummy_error() { throw_dummy_error<int32_t>(); }
void __nac3_throw_dummy_error64() { throw_dummy_error<int64_t>(); }
}

View File

@ -0,0 +1,12 @@
#pragma once
// This is made toggleable since `irrt_test.cpp` itself would include
// headers that define these typedefs
#ifdef IRRT_DEFINE_TYPEDEF_INTS
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#endif

View File

@ -1,27 +0,0 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,81 +1,56 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include <irrt/int_defs.hpp>
#include <irrt/slice.hpp>
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template <typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
namespace list {
template <typename SizeT>
void slice_assign(List<SizeT>* dst, List<SizeT>* src, SizeT itemsize,
UserSlice* user_slice) {
Slice slice = user_slice->indices_checked<SizeT>(dst->len);
// NOTE: Python does not have this restriction.
if (slice.len() != src->len) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"List destination has {} item(s), but source has {} "
"item(s). The lengths must match.",
slice.len(), src->len, NO_PARAM);
}
// TODO: Look into how the original implementation was implemented and optimized.
SizeT dst_i = slice.start;
SizeT src_i = 0;
while (src_i < slice.len()) {
__builtin_memcpy(dst->items + dst_i, src->items + src_i, itemsize);
src_i += 1;
dst_i += slice.step;
}
}
} // namespace list
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
void __nac3_list_slice_assign(List<int32_t>* dst, List<int32_t>* src,
int32_t itemsize, UserSlice* user_slice) {
list::slice_assign(dst, src, itemsize, user_slice);
}
void __nac3_list_slice_assign64(List<int64_t>* dst, List<int64_t>* src,
int64_t itemsize, UserSlice* user_slice) {
list::slice_assign(dst, src, itemsize, user_slice);
}
}
} // extern "C"

View File

@ -1,93 +0,0 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -1,13 +0,0 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -1,144 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // namespace

View File

@ -0,0 +1,119 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/list.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
namespace ndarray {
namespace array {
// TODO: Document me
template <typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list,
SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims,
shape);
}
}
}
// TODO: Document me
template <typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
// TODO: Document me
template <typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list,
NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0],
ndarray->strides[1], NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[ItemType]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = ndarray->data + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i],
ndarray);
}
}
}
// TODO: Document me
template <typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
// done after set_and_validate(list, ndims, shape), list is well-formed
// ndarray->data is allocated and owned
// ndarray->itemsize is set
// ndarray->ndims is set
// ndarray->shape is set
// ndarray->strides is ???
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace array
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::array;
void __nac3_array_set_and_validate_list_shape(List<int32_t>* list,
int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_array_set_and_validate_list_shape64(List<int64_t>* list,
int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_array_write_list_to_array(List<int32_t>* list,
NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_array_write_list_to_array64(List<int64_t>* list,
NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -0,0 +1,345 @@
#pragma once
#include <irrt/exception.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
namespace ndarray {
namespace basic {
/**
* @brief Asserts that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template <typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
*
* This function throws error messages for output shape mismatches.
*/
template <typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT* ndarray_shape,
SizeT output_ndims, const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(
SizeT, EXN_VALUE_ERROR,
"Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(
SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Returns the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template <typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++) size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template <typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices,
SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template <typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template <typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The returned result
*/
template <typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0) {
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object",
NO_PARAM, NO_PARAM, NO_PARAM);
} else {
return ndarray->shape[0];
}
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template <typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// Other references:
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] !=
ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices`.
*/
template <typename SizeT>
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray,
const SizeT* indices) {
uint8_t* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Convenience function. Like `get_pelement_by_indices` but
* reinterprets the element pointer.
*/
template <typename SizeT, typename T>
T* get_ptr(const NDArray<SizeT>* ndarray, const SizeT* indices) {
return (T*)get_pelement_by_indices(ndarray, indices);
}
/**
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
*
* This function does no bound check.
*/
template <typename SizeT>
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
uint8_t* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape`
* and assuming that the ndarray is fully c-contagious.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template <typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template <typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement,
const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template <typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element,
src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims,
int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims,
int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims,
output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(
int64_t ndarray_ndims, const int64_t* ndarray_shape, int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims,
output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) { return len(ndarray); }
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) { return len(ndarray); }
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray,
int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray,
int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,171 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
namespace {
template <typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace {
namespace ndarray {
namespace broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template <typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape,
SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template <typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes,
SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template <typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray,
NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(
dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"operands could not be broadcast together", NO_PARAM,
NO_PARAM, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 &&
dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace broadcast
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims, int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims, int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -0,0 +1,44 @@
#pragma once
namespace {
/**
* @brief The NDArray object
*
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template <typename SizeT>
struct NDArray {
/**
* @brief The underlying data this `ndarray` is pointing to.
*
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
*/
uint8_t* data;
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values.
*/
SizeT* strides;
};
} // namespace

View File

@ -0,0 +1,221 @@
#pragma once
#include <irrt/exception.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
namespace {
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `SliceIndex`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `UserRange`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*/
struct NDIndex {
/**
* @brief Enum tag to specify the type of index.
*
* Please see comments of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see comments of each enum constant.
*/
uint8_t* data;
};
} // namespace
namespace {
namespace ndarray {
namespace indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This is function very similar to performing `dst_ndarray = src_ndarray[indexes]` in Python (where the variables
* can all be found in the parameter of this function).
*
* In other words, this function takes in an ndarray (`src_ndarray`), index it with `indexes`, and return the
* indexed array (by writing the result to `dst_ndarray`).
*
* This function also does proper assertions on `indexes`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indexes`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indexes Indexes to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template <typename SizeT>
void index(SizeT num_indexes, const NDIndex* indexes,
const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// First, validate `indexes`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indexes`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indexes; i++) {
if (indexes[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
} else if (indexes[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
} else if (indexes[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
} else if (indexes[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1) {
raise_exception(
SizeT, EXN_INDEX_ERROR,
"an index can only have a single ellipsis ('...')",
NO_PARAM, NO_PARAM, NO_PARAM);
}
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indexes, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (SliceIndex i = 0; i < num_indexes; i++) {
const NDIndex* index = &indexes[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SliceIndex input = *((SliceIndex*)index->data);
SliceIndex k = slice::resolve_index_in_length(
src_ndarray->shape[src_axis], input);
if (k == slice::OUT_OF_BOUNDS) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data += k * src_ndarray->strides[src_axis];
src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) {
UserSlice* input = (UserSlice*)index->data;
Slice slice =
input->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data +=
(SizeT)slice.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] =
((SizeT)slice.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)slice.len();
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
} else {
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace indexing
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indexes, NDIndex* indexes,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(num_indexes, indexes, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indexes, NDIndex* indexes,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
index(num_indexes, indexes, src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,118 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
/**
* @brief Helper struct to enumerate through all indices under a shape.
*
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
* - `[0, 0]`
* - `[0, 1]`
* - `[1, 0]`
* - `[1, 1]`
* - `[2, 0]`
* - `[2, 1]`
* - end.
*
* Interesting cases:
* - If ndims == 0, there is one enumeration.
* - If shape contains zeroes, there are no enumerations.
*/
template <typename SizeT>
struct NDIter {
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*/
uint8_t* element;
/**
* @brief The product of shape.
*/
SizeT size;
// TODO:: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
// Maybe LLVM is clever and knows how to optimize.
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element,
SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size and backstrides
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
for (SizeT axis = 0; axis < ndims; axis++) indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides,
ndarray->data, indices);
}
bool has_next() { return nth < size; }
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: Can be optimized with backstrides.
element -= strides[axis] * (shape[axis] - 1);
} else {
element += strides[axis];
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray,
int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter,
NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_next(NDIter<int32_t>* iter) { return iter->has_next(); }
bool __nac3_nditer_has_next64(NDIter<int64_t>* iter) { return iter->has_next(); }
void __nac3_nditer_next(NDIter<int32_t>* iter) { iter->next(); }
void __nac3_nditer_next64(NDIter<int64_t>* iter) { iter->next(); }
}

View File

@ -0,0 +1,194 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/iter.hpp>
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray {
namespace matmul {
/*
* In einsum notation, the output is the broadcasts performed by `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [99, 1, 97, 4, 2]`
* and `b_shape == [ 1, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (by broadcast) (4x2 @ 2x5 => 4x5)
*/
template <typename SizeT>
void calculate_shapes(SizeT a_ndims, SizeT* a_shape, SizeT b_ndims,
SizeT* b_shape, SizeT final_ndims, SizeT* new_a_shape,
SizeT* new_b_shape, SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {
{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
/**
* @brief Perform `np.matmul(a, b)` but the inputs are both rank >=2 matrices and `a.shape[:-2] == b.shape[:-2]`.
*
* The compatibility of `a` and `b` (for their `.shape[-2:]`) are asserted.
*
* Also see https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy-matmul.
*
* This function expects `dst_ndarray` to contain the following content when called:
* - `dst_ndarray->data` is allocated. Can be uninitialized.
* - `dst_ndarray->itemsize` is set to `sizeof(T)`.
* - `dst_ndarray->ndims` is set appropriately.
* - `dst_ndarray->shape` is set appropriately.
* - `dst_ndarray->strides` is ignored.
*
* Moreover, the shapes of `a_ndarray`, `b_ndarray`, and `dst_ndarray` **must be the same**. This implies
*/
template <typename SizeT, typename T>
void matmul_at_least_2d(NDArray<SizeT>* a_ndarray, NDArray<SizeT>* b_ndarray,
NDArray<SizeT>* dst_ndarray) {
// All inputs' ndims should be >= 2 and be the same.
debug_assert_eq(SizeT, a_ndarray->ndims, b_ndarray->ndims);
debug_assert_eq(SizeT, a_ndarray->ndims, dst_ndarray->ndims);
debug_assert(SizeT, a_ndarray->ndims >= 2);
debug_assert_eq(SizeT, a_ndarray->itemsize, sizeof(T));
debug_assert_eq(SizeT, b_ndarray->itemsize, sizeof(T));
debug_assert_eq(SizeT, dst_ndarray->itemsize, sizeof(T));
if (IRRT_DEBUG_ASSERT_BOOL) {
// Check that the shapes are the same.
for (SizeT i = 0; i < a_ndarray->ndims - 2; i++) {
if (dst_ndarray->shape[0] != a_ndarray->shape[0]) {
raise_debug_assert(
SizeT, "Bad shape. At axis {0}, a has {1}, dst has {2}", i,
a_ndarray->shape[i], dst_ndarray->shape[i]);
}
if (dst_ndarray->shape[0] != b_ndarray->shape[0]) {
raise_debug_assert(
SizeT, "Bad shape. At axis {0}, b has {1}, dst has {2}", i,
b_ndarray->shape[i], dst_ndarray->shape[i]);
}
}
}
// Number of dimensions dedicated to stacking
// e.g., [4, 6, 1, 2, 3]
// ^^^^^^^ count these
const SizeT u = a_ndarray->ndims - 2; // Alias
SizeT* a_mat_shape = a_ndarray->shape + u;
SizeT* b_mat_shape = b_ndarray->shape + u;
SizeT* dst_mat_shape = dst_ndarray->shape + u;
// Assert that dst_ndarray has the correct shape
debug_assert_eq(SizeT, dst_mat_shape[0], a_mat_shape[0]);
debug_assert_eq(SizeT, dst_mat_shape[1], b_mat_shape[1]);
// Check that a and b are compatible for matmul
if (a_mat_shape[1] != b_mat_shape[0]) {
// This is a custom error message. Different from NumPy.
raise_exception(
SizeT, EXN_VALUE_ERROR,
"Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_mat_shape[1], b_mat_shape[0], NO_PARAM);
}
// Iterate through shape[:-2]. i.e,
// Given a = [5, 4, 3, m, p] and b = [5, 4, 3, p, n]. We iterate through [5, 4, 3].
SizeT* indices =
(SizeT*)__builtin_alloca(sizeof(SizeT) * dst_ndarray->ndims);
SizeT* mat_indices = indices + u;
NDIter<SizeT> iter;
iter.initialize(u, dst_ndarray->shape, dst_ndarray->strides,
dst_ndarray->data, indices);
for (; iter.has_next(); iter.next()) {
for (SizeT i = 0; i < dst_mat_shape[0]; i++) {
for (SizeT j = 0; j < dst_mat_shape[1]; j++) {
// `indices` is being reused to index into different ndarrays.
mat_indices[0] = i;
mat_indices[1] = j;
T* d = ndarray::basic::get_ptr<SizeT, T>(dst_ndarray, indices);
*d = 0;
for (SizeT k = 0; k < a_ndarray->shape[1]; k++) {
mat_indices[0] = i;
mat_indices[1] = k;
T* a =
ndarray::basic::get_ptr<SizeT, T>(a_ndarray, indices);
mat_indices[0] = k;
mat_indices[1] = j;
T* b =
ndarray::basic::get_ptr<SizeT, T>(b_ndarray, indices);
*d += (*a) * (*b);
}
}
}
}
}
} // namespace matmul
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t* a_shape,
int32_t b_ndims, int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims,
new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t* a_shape,
int64_t b_ndims, int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims,
new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_float64_matmul_at_least_2d(NDArray<int32_t>* a_ndarray,
NDArray<int32_t>* b_ndarray,
NDArray<int32_t>* dst_ndarray) {
matmul_at_least_2d<int32_t, double>(a_ndarray, b_ndarray, dst_ndarray);
}
void __nac3_ndarray_float64_matmul_at_least_2d64(
NDArray<int64_t>* a_ndarray, NDArray<int64_t>* b_ndarray,
NDArray<int64_t>* dst_ndarray) {
matmul_at_least_2d<int64_t, double>(a_ndarray, b_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,106 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
namespace ndarray {
namespace reshape {
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template <typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims,
SizeT* new_shape) {
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
SizeT dim = new_shape[axis_i];
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR,
"can only specify one unknown dimension",
NO_PARAM, NO_PARAM, NO_PARAM);
} else {
neg1_exists = true;
neg1_axis_i = axis_i;
}
} else {
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(
SizeT, EXN_VALUE_ERROR,
"Found non -1 negative dimension {0} on axis {1}", dim,
axis_i, NO_PARAM);
}
} else {
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists) {
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions
can_reshape = false;
} else if (new_size == 0 && size != 0) {
// `x` has no solutions
can_reshape = false;
} else if (size % new_size != 0) {
// `x` has no integer solutions
can_reshape = false;
} else {
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
} else {
can_reshape = (new_size == size);
}
if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"cannot reshape array of size {0} into given shape",
size, NO_PARAM, NO_PARAM);
}
}
} // namespace reshape
} // namespace ndarray
} // namespace
extern "C" {
void __nac3_ndarray_resolve_and_check_new_shape(int32_t size, int32_t new_ndims,
int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_resolve_and_check_new_shape64(int64_t size,
int64_t new_ndims,
int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -0,0 +1,145 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace {
namespace ndarray {
namespace transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template <typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array",
NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++) axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == slice::OUT_OF_BOUNDS) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(
SizeT, EXN_VALUE_ERROR,
"axis {0} is out of bounds for array of dimension {1}", axis,
ndims, NO_PARAM);
}
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"repeated axis in transpose", NO_PARAM, NO_PARAM,
NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template <typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray,
SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr) assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace transpose
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray, int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray, int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -1,22 +1,35 @@
#pragma once
#include "irrt/int_types.hpp"
#include <irrt/int_defs.hpp>
#include <irrt/slice.hpp>
#include <irrt/util.hpp>
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
#include "exception.hpp"
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
// The type of an index or a value describing the length of a
// range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace {
/**
* @brief A Python-like slice with resolved indices.
*
* "Resolved indices" means that `start` and `stop` must be positive and are
* bound to a known length.
*/
struct Slice {
SliceIndex start;
SliceIndex stop;
SliceIndex step;
/**
* @brief Calculate and return the length / the number of the slice.
*
* If this were a Python range, this function would be `len(range(start, stop, step))`.
*/
SliceIndex len() {
SliceIndex diff = stop - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
@ -24,5 +37,131 @@ SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end,
} else {
return 0;
}
}
};
namespace slice {
/**
* @brief Resolve a slice index under a given length like Python indexing.
*
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
*
* If `length` is 0, 0 is returned for any value of `index`.
*
* If `index` is out of bounds, clamps the returned value between `0` and
* `length - 1` (inclusive).
*
*/
SliceIndex resolve_index_in_length_clamped(SliceIndex length,
SliceIndex index) {
if (index < 0) {
return max<SliceIndex>(length + index, 0);
} else {
return min<SliceIndex>(length, index);
}
}
const SliceIndex OUT_OF_BOUNDS = -1;
/**
* @brief Like `resolve_index_in_length_clamped`, but returns `OUT_OF_BOUNDS`
* if `index` is out of bounds.
*/
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
SliceIndex resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) {
return resolved;
} else {
return OUT_OF_BOUNDS;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
struct UserSlice {
bool start_defined;
SliceIndex start;
bool stop_defined;
SliceIndex stop;
bool step_defined;
SliceIndex step;
UserSlice() { this->reset(); }
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(SliceIndex start) {
this->start_defined = true;
this->start = start;
}
void set_stop(SliceIndex stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(SliceIndex step) {
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice.
*
* In Python, this would be `slice(start, stop, step).indices(length)`.
*
* @return A `Slice` with the resolved indices.
*/
Slice indices(SliceIndex length) {
Slice result;
result.step = step_defined ? step : 1;
bool step_is_negative = result.step < 0;
if (start_defined) {
result.start =
slice::resolve_index_in_length_clamped(length, start);
} else {
result.start = step_is_negative ? length - 1 : 0;
}
if (stop_defined) {
result.stop = slice::resolve_index_in_length_clamped(length, stop);
} else {
result.stop = step_is_negative ? -1 : length;
}
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template <typename SizeT>
Slice indices_checked(SliceIndex length) {
// TODO: Switch to `SizeT length`
if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"length should not be negative, got {0}", length,
NO_PARAM, NO_PARAM);
}
if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero",
NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices(length);
}
};
} // namespace

101
nac3core/irrt/irrt/util.hpp Normal file
View File

@ -0,0 +1,101 @@
#pragma once
namespace {
template <typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
template <typename T>
bool arrays_match(int len, T* as, T* bs) {
for (int i = 0; i < len; i++) {
if (as[i] != bs[i]) return false;
}
return true;
}
namespace cstr_utils {
/**
* @brief Return true if `str` is empty.
*/
bool is_empty(const char* str) { return str[0] == '\0'; }
/**
* @brief Implementation of `strcmp()`
*/
int8_t compare(const char* a, const char* b) {
uint32_t i = 0;
while (true) {
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else {
if (a[i] == '\0') {
return 0;
} else {
i++;
}
}
}
}
/**
* @brief Return true two strings have the same content.
*/
int8_t equal(const char* a, const char* b) { return compare(a, b) == 0; }
/**
* @brief Implementation of `strlen()`.
*/
uint32_t length(const char* str) {
uint32_t length = 0;
while (*str != '\0') {
length++;
str++;
}
return length;
}
/**
* @brief Copy a null-terminated string to a buffer with limited size and guaranteed null-termination.
*
* `dst_max_size` must be greater than 0, otherwise this function has undefined behavior.
*
* This function attempts to copy everything from `src` from `dst`, and *always* null-terminates `dst`.
*
* If the size of `dst` is too small, the final byte (`dst[dst_max_size - 1]`) of `dst` will be set to
* the null terminator.
*
* @param src String to copy from.
* @param dst Buffer to copy string to.
* @param dst_max_size
* Number of bytes of this buffer, including the space needed for the null terminator.
* Must be greater than 0.
* @return If `dst` is too small to contain everything in `src`.
*/
bool copy(const char* src, char* dst, uint32_t dst_max_size) {
for (uint32_t i = 0; i < dst_max_size; i++) {
bool is_last = i + 1 == dst_max_size;
if (is_last && src[i] != '\0') {
dst[i] = '\0';
return false;
}
if (src[i] == '\0') {
dst[i] = '\0';
return true;
}
dst[i] = src[i];
}
__builtin_unreachable();
}
} // namespace cstr_utils
} // namespace

View File

@ -0,0 +1,24 @@
#pragma once
#ifdef IRRT_DEBUG
#define IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#include <irrt/core.hpp>
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/list.hpp>
#include <irrt/ndarray/array.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/ndarray/indexing.hpp>
#include <irrt/ndarray/iter.hpp>
#include <irrt/ndarray/product.hpp>
#include <irrt/ndarray/reshape.hpp>
#include <irrt/ndarray/transpose.hpp>
#include <irrt/util.hpp>

View File

@ -0,0 +1,25 @@
// This file will be compiled like a real C++ program,
// and we do have the luxury to use the standard libraries.
// That is if the nix flakes do not have issues... especially on msys2...
#include <cstdint>
#include <cstdio>
#include <cstdlib>
// Special macro to inform `#include <irrt/*>` that we are testing.
#define IRRT_TESTING
// Note that failure unit tests are not supported.
#include <test/test_core.hpp>
#include <test/test_ndarray_basic.hpp>
#include <test/test_ndarray_broadcast.hpp>
#include <test/test_ndarray_indexing.hpp>
int main() {
test::core::run();
test::ndarray_basic::run();
test::ndarray_indexing::run();
test::ndarray_broadcast::run();
return 0;
}

View File

@ -0,0 +1,11 @@
#pragma once
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <irrt_everything.hpp>
#include <test/util.hpp>
/*
Include this header for every test_*.cpp
*/

View File

@ -0,0 +1,16 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace core {
void test_int_exp() {
BEGIN_TEST();
assert_values_match(125L, __nac3_int_exp_impl<int64_t>(5, 3));
assert_values_match(3125L, __nac3_int_exp_impl<int64_t>(5, 5));
}
void run() { test_int_exp(); }
} // namespace core
} // namespace test

View File

@ -0,0 +1,30 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace ndarray_basic {
void test_calc_size_from_shape_normal() {
// Test shapes with normal values
BEGIN_TEST();
int64_t shape[4] = {2, 3, 5, 7};
assert_values_match(
210L, ndarray::basic::util::calc_size_from_shape<int64_t>(4, shape));
}
void test_calc_size_from_shape_has_zero() {
// Test shapes with 0 in them
BEGIN_TEST();
int64_t shape[4] = {2, 0, 5, 7};
assert_values_match(
0L, ndarray::basic::util::calc_size_from_shape<int64_t>(4, shape));
}
void run() {
test_calc_size_from_shape_normal();
test_calc_size_from_shape_has_zero();
}
} // namespace ndarray_basic
} // namespace test

View File

@ -0,0 +1,127 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace ndarray_broadcast {
void test_can_broadcast_shape() {
BEGIN_TEST();
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){3}, 5, (int32_t[]){1, 1, 1, 1, 3}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){3}, 2, (int32_t[]){3, 1}));
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){3}, 1, (int32_t[]){3}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){1}, 1, (int32_t[]){3}));
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){1}, 1, (int32_t[]){1}));
assert_values_match(
true, ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 3, (int32_t[]){256, 1, 3}));
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){3}));
assert_values_match(false,
ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){2}));
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){1}));
// In cases when the shapes contain zero(es)
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){0}, 1, (int32_t[]){1}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){0}, 1, (int32_t[]){2}));
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
4, (int32_t[]){0, 4, 0, 0}, 1, (int32_t[]){1}));
assert_values_match(
true, ndarray::broadcast::util::can_broadcast_shape_to(
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 1, 1, 1}));
assert_values_match(
true, ndarray::broadcast::util::can_broadcast_shape_to(
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 4, 1, 1}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 3}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 0}));
}
void test_ndarray_broadcast() {
/*
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
# >>> [[19.9 29.9 39.9 49.9]]
#
# array = np.broadcast_to(array, (2, 3, 4))
# >>> [[[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]
# >>> [[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]]
#
# assery array.strides == (0, 0, 8)
*/
BEGIN_TEST();
double in_data[4] = {19.9, 29.9, 39.9, 49.9};
const int32_t in_ndims = 2;
int32_t in_shape[in_ndims] = {1, 4};
int32_t in_strides[in_ndims] = {};
NDArray<int32_t> ndarray = {.data = (uint8_t*)in_data,
.itemsize = sizeof(double),
.ndims = in_ndims,
.shape = in_shape,
.strides = in_strides};
ndarray::basic::set_strides_by_shape(&ndarray);
const int32_t dst_ndims = 3;
int32_t dst_shape[dst_ndims] = {2, 3, 4};
int32_t dst_strides[dst_ndims] = {};
NDArray<int32_t> dst_ndarray = {
.ndims = dst_ndims, .shape = dst_shape, .strides = dst_strides};
ndarray::broadcast::broadcast_to(&ndarray, &dst_ndarray);
assert_arrays_match(dst_ndims, ((int32_t[]){0, 0, 8}), dst_ndarray.strides);
assert_values_match(19.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 0}))));
assert_values_match(29.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 1}))));
assert_values_match(39.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 2}))));
assert_values_match(49.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 3}))));
assert_values_match(19.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 0}))));
assert_values_match(29.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 1}))));
assert_values_match(39.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 2}))));
assert_values_match(49.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 3}))));
assert_values_match(49.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){1, 2, 3}))));
}
void run() {
test_can_broadcast_shape();
test_ndarray_broadcast();
}
} // namespace ndarray_broadcast
} // namespace test

View File

@ -0,0 +1,165 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace ndarray_indexing {
void test_normal_1() {
/*
Reference Python code:
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[-2:, 1::2]
# array([[ 5., 7.],
# [ 9., 11.]])
assert dst_ndarray.shape == (2, 2)
assert dst_ndarray.strides == (32, 16)
assert dst_ndarray[0, 0] == 5.0
assert dst_ndarray[0, 1] == 7.0
assert dst_ndarray[1, 0] == 9.0
assert dst_ndarray[1, 1] == 11.0
```
*/
BEGIN_TEST();
// Prepare src_ndarray
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
int64_t src_itemsize = sizeof(double);
const int64_t src_ndims = 2;
int64_t src_shape[src_ndims] = {3, 4};
int64_t src_strides[src_ndims] = {};
NDArray<int64_t> src_ndarray = {.data = (uint8_t *)src_data,
.itemsize = src_itemsize,
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Prepare dst_ndarray
const int64_t dst_ndims = 2;
int64_t dst_shape[dst_ndims] = {999, 999}; // Empty values
int64_t dst_strides[dst_ndims] = {999, 999}; // Empty values
NDArray<int64_t> dst_ndarray = {.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides};
// Create the subscripts in `ndarray[-2::, 1::2]`
UserSlice subscript_1;
subscript_1.set_start(-2);
UserSlice subscript_2;
subscript_2.set_start(1);
subscript_2.set_step(2);
const int64_t num_indexes = 2;
NDIndex indexes[num_indexes] = {
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_1},
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
ndarray::indexing::index(num_indexes, indexes, &src_ndarray, &dst_ndarray);
int64_t expected_shape[dst_ndims] = {2, 2};
int64_t expected_strides[dst_ndims] = {32, 16};
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
// dst_ndarray[0, 0]
assert_values_match(5.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int64_t[dst_ndims]){0, 0})));
// dst_ndarray[0, 1]
assert_values_match(7.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int64_t[dst_ndims]){0, 1})));
// dst_ndarray[1, 0]
assert_values_match(9.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int64_t[dst_ndims]){1, 0})));
// dst_ndarray[1, 1]
assert_values_match(11.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int64_t[dst_ndims]){1, 1})));
}
void test_normal_2() {
/*
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[2, ::-2]
# array([11., 9.])
assert dst_ndarray.shape == (2,)
assert dst_ndarray.strides == (-16,)
assert dst_ndarray[0] == 11.0
assert dst_ndarray[1] == 9.0
```
*/
BEGIN_TEST();
// Prepare src_ndarray
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
int64_t src_itemsize = sizeof(double);
const int64_t src_ndims = 2;
int64_t src_shape[src_ndims] = {3, 4};
int64_t src_strides[src_ndims] = {};
NDArray<int64_t> src_ndarray = {.data = (uint8_t *)src_data,
.itemsize = src_itemsize,
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Prepare dst_ndarray
const int64_t dst_ndims = 1;
int64_t dst_shape[dst_ndims] = {999}; // Empty values
int64_t dst_strides[dst_ndims] = {999}; // Empty values
NDArray<int64_t> dst_ndarray = {.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides};
// Create the subscripts in `ndarray[2, ::-2]`
int64_t subscript_1 = 2;
UserSlice subscript_2;
subscript_2.set_step(-2);
const int64_t num_indexes = 2;
NDIndex indexes[num_indexes] = {
{.type = ND_INDEX_TYPE_SINGLE_ELEMENT, .data = (uint8_t *)&subscript_1},
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
ndarray::indexing::index(num_indexes, indexes, &src_ndarray, &dst_ndarray);
int64_t expected_shape[dst_ndims] = {2};
int64_t expected_strides[dst_ndims] = {-16};
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
assert_values_match(11.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int64_t[dst_ndims]){0})));
assert_values_match(9.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int64_t[dst_ndims]){1})));
}
void run() {
test_normal_1();
test_normal_2();
}
} // namespace ndarray_indexing
} // namespace test

131
nac3core/irrt/test/util.hpp Normal file
View File

@ -0,0 +1,131 @@
#pragma once
#include <cstdio>
#include <cstdlib>
template <class T>
void print_value(const T& value);
template <>
void print_value(const bool& value) {
printf("%s", value ? "true" : "false");
}
template <>
void print_value(const int8_t& value) {
printf("%d", value);
}
template <>
void print_value(const int32_t& value) {
printf("%d", value);
}
template <>
void print_value(const int64_t& value) {
printf("%d", value);
}
template <>
void print_value(const uint8_t& value) {
printf("%u", value);
}
template <>
void print_value(const uint32_t& value) {
printf("%u", value);
}
template <>
void print_value(const uint64_t& value) {
printf("%d", value);
}
template <>
void print_value(const float& value) {
printf("%f", value);
}
template <>
void print_value(const double& value) {
printf("%f", value);
}
void __begin_test(const char* function_name, const char* file, int line) {
printf("######### Running %s @ %s:%d\n", function_name, file, line);
}
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
void test_fail() {
printf("[!] Test failed. Exiting with status code 1.\n");
exit(1);
}
template <typename T>
void debug_print_array(int len, const T* as) {
printf("[");
for (int i = 0; i < len; i++) {
if (i != 0) printf(", ");
print_value(as[i]);
}
printf("]");
}
void print_assertion_passed(const char* file, int line) {
printf("[*] Assertion passed on %s:%d\n", file, line);
}
void print_assertion_failed(const char* file, int line) {
printf("[!] Assertion failed on %s:%d\n", file, line);
}
void __assert_true(const char* file, int line, bool cond) {
if (cond) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
test_fail();
}
}
#define assert_true(cond) __assert_true(__FILE__, __LINE__, cond)
template <typename T>
void __assert_arrays_match(const char* file, int line, int len,
const T* expected, const T* got) {
if (arrays_match(len, expected, got)) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
debug_print_array(len, expected);
printf("\n");
printf(" Got = ");
debug_print_array(len, got);
printf("\n");
test_fail();
}
}
#define assert_arrays_match(len, expected, got) \
__assert_arrays_match(__FILE__, __LINE__, len, expected, got)
template <typename T>
void __assert_values_match(const char* file, int line, T expected, T got) {
if (expected == got) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
print_value(expected);
printf("\n");
printf(" Got = ");
print_value(got);
printf("\n");
test_fail();
}
}
#define assert_values_match(expected, got) \
__assert_values_match(__FILE__, __LINE__, expected, got)

View File

@ -1,21 +0,0 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -1,320 +0,0 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -1,9 +0,0 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -1,20 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,10 +0,0 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,3 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::SymbolValue,
toplevel::DefinitionId,
@ -15,6 +9,10 @@ use crate::{
},
};
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>,
}

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +1,8 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use inkwell::attributes::{Attribute, AttributeLoc};
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
use itertools::Either;
use super::CodeGenContext;
use crate::codegen::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
@ -15,8 +13,8 @@ use super::CodeGenContext;
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly"
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`

View File

@ -1,18 +1,16 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
@ -59,7 +57,6 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>(

View File

@ -1,162 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -1,152 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

File diff suppressed because it is too large Load Diff

View File

@ -1,384 +0,0 @@
use inkwell::{
types::IntType,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use crate::codegen::{
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, NDArrayValue, TypedArrayLikeAccessor,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
rhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.shape().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.shape().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.shape().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -1,76 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -0,0 +1,26 @@
#[cfg(test)]
mod tests {
use std::{path::Path, process::Command};
#[test]
fn run_irrt_test() {
assert!(
cfg!(feature = "test"),
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
);
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
if !output.status.success() {
eprintln!("irrt_test failed with status {}:", output.status);
eprintln!("====== stdout ======");
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
eprintln!("====== stderr ======");
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
eprintln!("====================");
panic!("irrt_test failed");
}
}
}

View File

@ -1,14 +1,12 @@
use inkwell::{
context::Context,
intrinsics::Intrinsic,
types::{AnyTypeEnum::IntType, FloatType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use inkwell::context::Context;
use inkwell::intrinsics::Intrinsic;
use inkwell::types::AnyTypeEnum::IntType;
use inkwell::types::FloatType;
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
use inkwell::AddressSpace;
use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
@ -185,7 +183,7 @@ pub fn call_memcpy_generic<'ctx>(
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.build_bitcast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -193,7 +191,7 @@ pub fn call_memcpy_generic<'ctx>(
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.build_bitcast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -207,9 +205,8 @@ pub fn call_memcpy_generic<'ctx>(
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type)
/// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
@ -225,7 +222,7 @@ macro_rules! generate_llvm_intrinsic_fn_body {
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations

View File

@ -1,12 +1,12 @@
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering},
Arc,
use crate::{
codegen::classes::{ListType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
thread,
};
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -24,52 +24,36 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use parking_lot::{Condvar, Mutex};
use model::*;
use nac3parser::ast::{Location, Stmt, StrRef};
use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{ListType, NDArrayType, ProxyType, RangeType};
use std::thread;
use structure::{CSlice, Exception, NDArray};
pub mod builtin_fns;
pub mod classes;
pub mod concrete_type;
pub mod expr;
pub mod extern_fns;
mod generator;
pub mod irrt;
pub mod llvm_intrinsics;
pub mod model;
pub mod numpy;
pub mod numpy_new;
pub mod object;
pub mod stmt;
pub mod types;
pub mod values;
pub mod structure;
#[cfg(test)]
mod test;
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
#[derive(Default)]
pub struct StaticValueStore {
@ -189,11 +173,11 @@ pub struct CodeGenContext<'ctx, 'a> {
pub registry: &'a WorkerRegistry,
/// Cache for constant strings.
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>,
pub const_strings: HashMap<String, Struct<'ctx, CSlice>>,
/// [`BasicBlock`] containing all `alloca` statements for the current function.
pub init_bb: BasicBlock<'ctx>,
pub exception_val: Option<PointerValue<'ctx>>,
pub exception_val: Option<Ptr<'ctx, StructModel<Exception>>>,
/// The header and exit basic blocks of a loop in this context. See
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
@ -510,12 +494,8 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
let pndarray_model = PtrModel(StructModel(NDArray));
pndarray_model.get_type(generator, ctx).as_basic_type_enum()
}
_ => unreachable!(
@ -601,11 +581,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency.
if unifier.unioned(ty, primitives.bool) {
return if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into()
} else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
}
};
}
/// Whether `sret` is needed for a return value with type `ty`.
@ -721,43 +701,19 @@ pub fn gen_func_impl<
..primitives
};
let mut type_cache: HashMap<_, _> = [
let cslice_model = StructModel(CSlice);
let pexn_model = PtrModel(StructModel(Exception));
let mut type_cache: HashMap<_, BasicTypeEnum<'ctx>> = [
(primitives.int32, context.i32_type().into()),
(primitives.int64, context.i64_type().into()),
(primitives.uint32, context.i32_type().into()),
(primitives.uint64, context.i64_type().into()),
(primitives.float, context.f64_type().into()),
(primitives.bool, context.i8_type().into()),
(primitives.str, {
let name = "str";
match module.get_struct_type(name) {
None => {
let str_type = context.opaque_struct_type("str");
let fields = [
context.i8_type().ptr_type(AddressSpace::default()).into(),
generator.get_size_type(context).into(),
];
str_type.set_body(&fields, false);
str_type.into()
}
Some(t) => t.as_basic_type_enum(),
}
}),
(primitives.str, cslice_model.get_type(generator, context).into()),
(primitives.range, RangeType::new(context).as_base_type().into()),
(primitives.exception, {
let name = "Exception";
if let Some(t) = module.get_struct_type(name) {
t.ptr_type(AddressSpace::default()).as_basic_type_enum()
} else {
let exception = context.opaque_struct_type("Exception");
let int32 = context.i32_type().into();
let int64 = context.i64_type().into();
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
exception.set_body(&fields, false);
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
}
}),
(primitives.exception, pexn_model.get_type(generator, context).into()),
]
.iter()
.copied()
@ -853,9 +809,10 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret);
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(

View File

@ -0,0 +1,40 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
};
use crate::codegen::CodeGenerator;
use super::*;
#[derive(Debug, Clone, Copy)]
pub struct AnyModel<'ctx>(pub BasicTypeEnum<'ctx>);
pub type Anything<'ctx> = Instance<'ctx, AnyModel<'ctx>>;
impl<'ctx> Model<'ctx> for AnyModel<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> Self::Type {
self.0
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
_generator: &mut G,
_ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
if ty == self.0 {
Ok(())
} else {
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
}
}
}

View File

@ -0,0 +1,122 @@
use inkwell::{
context::Context,
types::{ArrayType, BasicType, BasicTypeEnum},
values::ArrayValue,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// A Model for an [`ArrayType`].
#[derive(Debug, Clone, Copy)]
pub struct ArrayModel<Element> {
pub len: u32,
pub element: Element,
}
pub type Array<'ctx, Element> = Instance<'ctx, ArrayModel<Element>>;
impl<'ctx, Element: Model<'ctx>> Model<'ctx> for ArrayModel<Element> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.element.get_type(generator, ctx).array_type(self.len)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let BasicTypeEnum::ArrayType(ty) = ty else {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len
)));
}
self.element
.check_type(generator, ctx, ty.get_element_type())
.map_err(|err| err.under_context("an ArrayType"))?;
Ok(())
}
}
impl<'ctx, Element: Model<'ctx>> Ptr<'ctx, ArrayModel<Element>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn at<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: u32,
name: &str,
) -> Ptr<'ctx, Element> {
assert!(i < self.model.0.len);
let zero = ctx.ctx.i32_type().const_zero();
let i = ctx.ctx.i32_type().const_int(u64::from(i), false);
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], name).unwrap() };
PtrModel(self.model.0.element).check_value(generator, ctx.ctx, ptr).unwrap()
}
}
/// Like [`ArrayModel`] but length is strongly-typed.
#[derive(Debug, Clone, Copy, Default)]
pub struct NArrayModel<const LEN: u32, Element>(pub Element);
pub type NArray<'ctx, const LEN: u32, Element> = Instance<'ctx, NArrayModel<LEN, Element>>;
impl<'ctx, const LEN: u32, Element: Model<'ctx>> NArrayModel<LEN, Element> {
/// Forget the `LEN` constant generic and get an [`ArrayModel`] with the same length.
pub fn forget_len(&self) -> ArrayModel<Element> {
ArrayModel { element: self.0, len: LEN }
}
}
impl<'ctx, const LEN: u32, Element: Model<'ctx>> Model<'ctx> for NArrayModel<LEN, Element> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
// Convenient implementation
self.forget_len().get_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
// Convenient implementation
self.forget_len().check_type(generator, ctx, ty)
}
}
impl<'ctx, const LEN: u32, Element: Model<'ctx>> Ptr<'ctx, NArrayModel<LEN, Element>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn at_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: u32,
name: &str,
) -> Ptr<'ctx, Element> {
assert!(i < LEN);
let zero = ctx.ctx.i32_type().const_zero();
let i = ctx.ctx.i32_type().const_int(u64::from(i), false);
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], name).unwrap() };
PtrModel(self.model.0 .0).check_value(generator, ctx.ctx, ptr).unwrap()
}
}

View File

@ -0,0 +1,123 @@
use std::fmt;
use inkwell::{context::Context, types::*, values::*};
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
impl ModelError {
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
self
}
}
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
type Type: BasicType<'ctx>;
/// Return the [`BasicType`] of this model.
#[must_use]
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
/// Check if a [`BasicType`] is the same type of this model.
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError>;
/// Create an instance from a value with [`Instance::model`] being this model.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
/// Wrap it into an [`Instance`] if it is.
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(generator, ctx, value.get_type())
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
Ok(self.believe_value(value))
}
// Allocate a value on the stack and return its pointer.
fn alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
name: &str,
) -> Ptr<'ctx, Self> {
let pmodel = PtrModel(*self);
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), name).unwrap();
pmodel.believe_value(p)
}
// Allocate an array on the stack and return its pointer.
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: &str,
) -> Ptr<'ctx, Self> {
let pmodel = PtrModel(*self);
let p =
ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, name).unwrap();
pmodel.believe_value(p)
}
fn var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Ptr<'ctx, Self>, String> {
let pmodel = PtrModel(*self);
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
Ok(pmodel.believe_value(p))
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<Ptr<'ctx, Self>, String> {
// TODO: Remove ArraySliceValue
let pmodel = PtrModel(*self);
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
Ok(pmodel.believe_value(PointerValue::from(p)))
}
}
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
pub value: M::Value,
}

View File

@ -0,0 +1,88 @@
use std::fmt;
use inkwell::{context::Context, types::FloatType, values::FloatValue};
use crate::codegen::CodeGenerator;
use super::*;
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Float64;
impl<'ctx> FloatKind<'ctx> for Float32 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f32_type()
}
}
impl<'ctx> FloatKind<'ctx> for Float64 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f64_type()
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> FloatType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct FloatModel<N>(pub N);
pub type Float<'ctx, N> = Instance<'ctx, FloatModel<N>>;
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for FloatModel<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_float_type(generator, ctx)
}
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = FloatType::try_from(ty) else {
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
};
let exp_ty = self.0.get_float_type(generator, ctx);
// TODO: Inkwell does not have get_bit_width for FloatType?
// TODO: Quick hack for now, but does this actually work?
if ty != exp_ty {
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
}
Ok(())
}
}

View File

@ -0,0 +1,125 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
};
use itertools::Itertools;
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
#[derive(Debug, Clone, Copy)]
struct Arg<'ctx> {
ty: BasicMetadataTypeEnum<'ctx>,
val: BasicMetadataValueEnum<'ctx>,
}
/// A structure to construct & call an LLVM function.
///
/// This is a helper to reduce IRRT Inkwell function call boilerplate
// TODO: Remove the lifetimes somehow? There is 4 of them.
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
name: &'c str,
/// Call arguments
args: Vec<Arg<'ctx>>,
/// LLVM function Attributes
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
#[must_use]
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
self.attrs = attrs;
self
}
/// Push a call argument to the function call.
#[allow(clippy::needless_pass_by_value)]
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
self
}
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
let ret = self.get_function(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
ret
}
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
#[must_use]
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
self.returning(name, M::default())
}
/// Call the function and expect the function to return a void-type.
pub fn returning_void(self) {
let ret_ty = self.ctx.ctx.void_type();
let _ = self.get_function(|tys| ret_ty.fn_type(tys, false), "");
}
fn get_function<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
where
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
{
// Get the LLVM function.
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
// Declare the function if it doesn't exist.
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
let func_type = make_fn_type(&tys);
let func = self.ctx.module.add_function(self.name, func_type, None);
for attr in &self.attrs {
func.add_attribute(
AttributeLoc::Function,
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
}
}

View File

@ -0,0 +1,275 @@
use std::fmt;
use inkwell::{context::Context, types::IntType, values::IntValue, IntPredicate};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
#[derive(Debug, Clone, Copy, Default)]
pub struct SizeT;
impl<'ctx> IntKind<'ctx> for Bool {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.bool_type()
}
}
impl<'ctx> IntKind<'ctx> for Byte {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i8_type()
}
}
impl<'ctx> IntKind<'ctx> for Int32 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i32_type()
}
}
impl<'ctx> IntKind<'ctx> for Int64 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i64_type()
}
}
impl<'ctx> IntKind<'ctx> for SizeT {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
generator.get_size_type(ctx)
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> IntType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct IntModel<N>(pub N);
pub type Int<'ctx, N> = Instance<'ctx, IntModel<N>>;
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for IntModel<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = IntType::try_from(ty) else {
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
};
let exp_ty = self.0.get_int_type(generator, ctx);
if ty.get_bit_width() != exp_ty.get_bit_width() {
return Err(ModelError(format!(
"Expecting IntType to have {} bit(s), but got {} bit(s)",
exp_ty.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
}
impl<'ctx, N: IntKind<'ctx>> IntModel<N> {
pub fn constant<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: u64,
) -> Int<'ctx, N> {
let value = self.get_type(generator, ctx).const_int(value, false);
self.believe_value(value)
}
pub fn const_0<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Int<'ctx, N> {
self.constant(generator, ctx, 0)
}
pub fn const_1<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Int<'ctx, N> {
self.constant(generator, ctx, 1)
}
pub fn const_all_1s<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Int<'ctx, N> {
let value = self.get_type(generator, ctx).const_all_ones();
self.believe_value(value)
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), name)
.unwrap();
self.believe_value(value)
}
pub fn truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
name: &str,
) -> Int<'ctx, N> {
let value =
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), name).unwrap();
self.believe_value(value)
}
}
impl IntModel<Bool> {
#[must_use]
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Int<'ctx, Bool> {
self.constant(generator, ctx, 0)
}
#[must_use]
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Int<'ctx, Bool> {
self.constant(generator, ctx, 1)
}
}
impl<'ctx, N: IntKind<'ctx>> Int<'ctx, N> {
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
name: &str,
) -> Int<'ctx, NewN> {
IntModel(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value, name)
}
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
name: &str,
) -> Int<'ctx, NewN> {
IntModel(to_int_kind).truncate(generator, ctx, self.value, name)
}
#[must_use]
pub fn add(
&self,
ctx: &CodeGenContext<'ctx, '_>,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx.builder.build_int_add(self.value, other.value, name).unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn sub(
&self,
ctx: &CodeGenContext<'ctx, '_>,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx.builder.build_int_sub(self.value, other.value, name).unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn mul(
&self,
ctx: &CodeGenContext<'ctx, '_>,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx.builder.build_int_mul(self.value, other.value, name).unwrap();
self.model.believe_value(value)
}
pub fn compare(
&self,
ctx: &CodeGenContext<'ctx, '_>,
op: IntPredicate,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, Bool> {
let bool_model = IntModel(Bool);
let value = ctx.builder.build_int_compare(op, self.value, other.value, name).unwrap();
bool_model.believe_value(value)
}
}

View File

@ -0,0 +1,17 @@
mod any;
mod array;
mod core;
mod float;
pub mod function;
mod int;
mod ptr;
mod structure;
pub mod util;
pub use any::*;
pub use array::*;
pub use core::*;
pub use float::*;
pub use int::*;
pub use ptr::*;
pub use structure::*;

View File

@ -0,0 +1,145 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
#[derive(Debug, Clone, Copy, Default)]
pub struct PtrModel<Element>(pub Element);
pub type Ptr<'ctx, Element> = Instance<'ctx, PtrModel<Element>>;
impl<'ctx, Element: Model<'ctx>> Model<'ctx> for PtrModel<Element> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = PointerType::try_from(ty) else {
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
};
let elem_ty = ty.get_element_type();
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
return Err(ModelError(format!(
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
)));
};
// TODO: inkwell `get_element_type()` will be deprecated.
// Remove the check for `get_element_type()` when the time comes.
self.0
.check_type(generator, ctx, elem_ty)
.map_err(|err| err.under_context("a PointerType"))?;
Ok(())
}
}
impl<'ctx, Element: Model<'ctx>> PtrModel<Element> {
/// Return a ***constant*** nullptr.
pub fn nullptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Ptr<'ctx, Element> {
let ptr = self.get_type(generator, ctx).const_null();
self.believe_value(ptr)
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
ptr: PointerValue<'ctx>,
name: &str,
) -> Ptr<'ctx, Element> {
let ptr =
ctx.builder.build_pointer_cast(ptr, self.get_type(generator, ctx.ctx), name).unwrap();
self.believe_value(ptr)
}
}
impl<'ctx, Element: Model<'ctx>> Ptr<'ctx, Element> {
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
#[must_use]
pub fn offset<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
offset: IntValue<'ctx>,
name: &str,
) -> Ptr<'ctx, Element> {
let new_ptr =
unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], name).unwrap() };
self.model.check_value(generator, ctx.ctx, new_ptr).unwrap()
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
#[must_use]
pub fn offset_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
offset: u64,
name: &str,
) -> Ptr<'ctx, Element> {
let offset = ctx.ctx.i32_type().const_int(offset, false);
self.offset(generator, ctx, offset, name)
}
/// Load the value with [`inkwell::builder::Builder::build_load`].
pub fn load<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
name: &str,
) -> Instance<'ctx, Element> {
let value = ctx.builder.build_load(self.value, name).unwrap();
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
}
/// Store a value with [`inkwell::builder::Builder::build_store`].
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Element>) {
ctx.builder.build_store(self.value, value.value).unwrap();
}
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
pub fn pointer_cast<NewElement: Model<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
new_model: NewElement,
name: &str,
) -> Ptr<'ctx, NewElement> {
PtrModel(new_model).pointer_cast(generator, ctx, self.value, name)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
let bool_model = IntModel(Bool);
let value = ctx.builder.build_is_null(self.value, name).unwrap();
bool_model.believe_value(value)
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
let bool_model = IntModel(Bool);
let value = ctx.builder.build_is_not_null(self.value, name).unwrap();
bool_model.believe_value(value)
}
}

View File

@ -0,0 +1,222 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, StructType},
values::StructValue,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
pub gep_index: u64,
pub name: &'static str,
pub model: M,
}
pub trait FieldTraversal<'ctx> {
type Out<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
/// Like [`FieldTraversal::visit`] but [`Model`] is automatically inferred from [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
self.add(name, M::default())
}
}
pub struct GepFieldTraversal {
gep_index_counter: u64,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Out<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Out { gep_index, name, model }
}
}
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a G,
ctx: &'ctx Context,
field_types: Vec<BasicTypeEnum<'ctx>>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Out<M> = ();
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a mut G,
ctx: &'ctx Context,
index: u32,
scrutinee: StructType<'ctx>,
errors: Vec<ModelError>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Out<M> = ();
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let i = self.index;
self.index += 1;
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
}
} // Otherwise, it will be caught
}
}
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
type Fields<F: FieldTraversal<'ctx>>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
fn get_struct_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.traverse_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct StructModel<S>(pub S);
pub type Struct<'ctx, S> = Instance<'ctx, StructModel<S>>;
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for StructModel<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = StructType::try_from(ty) else {
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
};
let mut traversal =
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
self.0.traverse_fields(&mut traversal);
let exp_num_fields = traversal.index;
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
if exp_num_fields != got_num_fields {
return Err(ModelError(format!(
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
)));
}
if !traversal.errors.is_empty() {
return Err(traversal.errors[0].clone()); // TODO: Return other errors as well
}
Ok(())
}
}
impl<'ctx, S: StructKind<'ctx>> Struct<'ctx, S> {
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
&self,
generator: &mut G,
ctx: &'ctx Context,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Ptr<'ctx, StructModel<S>> {
pub fn gep<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Ptr<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0 .0.fields());
let llvm_i32 = ctx.ctx.i32_type(); // i64 would segfault
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
let ptr_model = PtrModel(field.model);
ptr_model.believe_value(ptr)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
name: &str,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).load(generator, ctx, name)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
value: Instance<'ctx, M>,
) where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).store(ctx, value);
}
}
// TODO: Add an opaque struct type?

View File

@ -0,0 +1,62 @@
use inkwell::{types::BasicType, values::IntValue};
/// `llvm.memcpy` but under the [`Model`] abstraction
use crate::codegen::{
llvm_intrinsics::call_memcpy_generic,
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::*;
/// Convenience function.
///
/// Like [`call_memcpy_generic`] but with model abstractions and `is_volatile` set to `false`.
pub fn call_memcpy_model<'ctx, Item: Model<'ctx> + Default, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_array: Ptr<'ctx, Item>,
src_array: Ptr<'ctx, Item>,
num_items: IntValue<'ctx>,
) {
let itemsize = Item::default().get_type(generator, ctx.ctx).size_of().unwrap();
let totalsize = ctx.builder.build_int_mul(itemsize, num_items, "totalsize").unwrap(); // TODO: Int types may not match.
let is_volatile = ctx.ctx.bool_type().const_zero();
call_memcpy_generic(ctx, dst_array.value, src_array.value, totalsize, is_volatile);
}
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
/// The [`IntKind`] is automatically inferred.
pub fn gen_for_model_auto<'ctx, 'a, G, F, I>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
start: Int<'ctx, I>,
stop: Int<'ctx, I>,
step: Int<'ctx, I>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
Int<'ctx, I>,
) -> Result<(), String>,
I: IntKind<'ctx> + Default,
{
let int_model = IntModel(I::default());
gen_for_callback_incrementing(
generator,
ctx,
None,
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = int_model.believe_value(i);
body(g, ctx, hooks, i)
},
step.value,
)
}

View File

@ -1,32 +1,23 @@
use inkwell::{
types::{AnyTypeEnum, BasicType, BasicTypeEnum, PointerType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use nac3parser::ast::{Operator, StrRef};
use super::{
use crate::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayType, NDArrayValue,
ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
expr::gen_binop_expr_with_values,
irrt::{
calculate_len_for_slice_range, call_ndarray_calc_broadcast,
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices, call_ndarray_calc_size,
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices,
call_ndarray_calc_size,
},
llvm_intrinsics::{self, call_memcpy_generic},
macros::codegen_unreachable,
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
types::{ListType, NDArrayType, ProxyType},
values::{
ArrayLikeIndexer, ArrayLikeValue, ListValue, NDArrayValue, ProxyValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
use crate::{
},
symbol_resolver::ValueEnum,
toplevel::{
helper::{arraylike_flatten_element_type, PrimDef},
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId,
},
@ -35,6 +26,16 @@ use crate::{
typedef::{FunSignature, Type, TypeEnum},
},
};
use inkwell::{
types::BasicType,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use inkwell::{
types::{AnyTypeEnum, BasicTypeEnum, PointerType},
values::BasicValue,
};
use nac3parser::ast::{Operator, StrRef};
/// Creates an uninitialized `NDArray` instance.
fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
@ -42,7 +43,6 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
let llvm_usize = generator.get_size_type(ctx.ctx);
@ -55,7 +55,7 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
Ok(NDArrayValue::from_pointer_value(ndarray, llvm_elem_ty, llvm_usize, None))
Ok(NDArrayValue::from_ptr_val(ndarray, llvm_usize, None))
}
/// Creates an `NDArray` instance from a dynamic shape.
@ -128,7 +128,7 @@ where
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
// Copy the dimension sizes from shape to ndarray.dims
let shape_len = shape_len_fn(generator, ctx, shape)?;
@ -144,7 +144,7 @@ where
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let ndarray_pdim =
unsafe { ndarray.shape().ptr_offset_unchecked(ctx, generator, &i, None) };
unsafe { ndarray.dim_sizes().ptr_offset_unchecked(ctx, generator, &i, None) };
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
@ -195,12 +195,12 @@ pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
for (i, &shape_dim) in shape.iter().enumerate() {
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let ndarray_dim = unsafe {
ndarray.shape().ptr_offset_unchecked(
ndarray.dim_sizes().ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, true),
@ -229,7 +229,7 @@ fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.shape().as_slice_value(ctx, generator),
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
@ -257,9 +257,9 @@ fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
ctx.gen_string(generator, "").value.into()
} else {
codegen_unreachable!(ctx)
unreachable!()
}
}
@ -285,9 +285,9 @@ fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
ctx.gen_string(generator, "1").value.into()
} else {
codegen_unreachable!(ctx)
unreachable!()
}
}
@ -315,11 +315,11 @@ fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
match shape {
BasicValueEnum::PointerValue(shape_list_ptr)
if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() =>
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
{
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None);
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
create_ndarray_dyn_shape(
generator,
ctx,
@ -355,7 +355,7 @@ fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}
}
@ -380,7 +380,7 @@ where
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.shape().as_slice_value(ctx, generator),
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
@ -474,8 +474,8 @@ fn ndarray_broadcast_fill<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
res: NDArrayValue<'ctx>,
lhs: (Type, BasicValueEnum<'ctx>, bool),
rhs: (Type, BasicValueEnum<'ctx>, bool),
lhs: (BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool),
value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String>
where
@ -488,8 +488,8 @@ where
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_ty, lhs_val, lhs_scalar) = lhs;
let (rhs_ty, rhs_val, rhs_scalar) = rhs;
let (lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs;
assert!(
!(lhs_scalar && rhs_scalar),
@ -500,26 +500,12 @@ where
// Assert that all ndarray operands are broadcastable to the target size
if !lhs_scalar {
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
let lhs_val = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
llvm_usize,
None,
);
let lhs_val = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
ndarray_assert_is_broadcastable(generator, ctx, res, lhs_val);
}
if !rhs_scalar {
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
let rhs_val = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
llvm_usize,
None,
);
let rhs_val = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
ndarray_assert_is_broadcastable(generator, ctx, res, rhs_val);
}
@ -527,14 +513,7 @@ where
let lhs_elem = if lhs_scalar {
lhs_val
} else {
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
let lhs = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
llvm_usize,
None,
);
let lhs = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
let lhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, lhs, idx);
unsafe { lhs.data().get_unchecked(ctx, generator, &lhs_idx, None) }
@ -543,14 +522,7 @@ where
let rhs_elem = if rhs_scalar {
rhs_val
} else {
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
let rhs = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
llvm_usize,
None,
);
let rhs = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
let rhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, rhs, idx);
unsafe { rhs.data().get_unchecked(ctx, generator, &rhs_idx, None) }
@ -654,7 +626,7 @@ fn call_ndarray_full_impl<'ctx, G: CodeGenerator + ?Sized>(
} else if fill_value.is_int_value() || fill_value.is_float_value() {
fill_value
} else {
codegen_unreachable!(ctx)
unreachable!()
};
Ok(value)
@ -676,15 +648,11 @@ fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
let ndims = llvm_usize.const_int(1, false);
match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty)
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => {
ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty))
}
AnyTypeEnum::PointerType(ptr_ty)
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => {
todo!("Getting ndims for list[ndarray] not supported")
}
@ -696,20 +664,16 @@ fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(ty, value): (Type, BasicValueEnum<'ctx>),
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
match value {
BasicValueEnum::PointerValue(v)
if NDArrayValue::is_representable(v, llvm_usize).is_ok() =>
{
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, dtype);
NDArrayValue::from_pointer_value(v, llvm_elem_ty, llvm_usize, None).load_ndims(ctx)
BasicValueEnum::PointerValue(v) if NDArrayValue::is_instance(v, llvm_usize).is_ok() => {
NDArrayValue::from_ptr_val(v, llvm_usize, None).load_ndims(ctx)
}
BasicValueEnum::PointerValue(v) if ListValue::is_representable(v, llvm_usize).is_ok() => {
BasicValueEnum::PointerValue(v) if ListValue::is_instance(v, llvm_usize).is_ok() => {
llvm_ndlist_get_ndims(generator, ctx, v.get_type())
}
@ -721,6 +685,7 @@ fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
src_lst: ListValue<'ctx>,
dim: u64,
@ -731,15 +696,13 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
let list_elem_ty = src_lst.get_type().element_type();
match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty)
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => {
// The stride of elements in this dimension, i.e. the number of elements between arr[i]
// and arr[i + 1] in this dimension
let stride = call_ndarray_calc_size(
generator,
ctx,
&dst_arr.shape(),
&dst_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim + 1, false)), None),
);
@ -753,25 +716,11 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|_, _| Ok(llvm_usize.const_int(1, false)),
|generator, ctx, _, i| {
let offset = ctx.builder.build_int_mul(stride, i, "").unwrap();
let offset = ctx
.builder
.build_int_mul(
offset,
ctx.builder
.build_int_truncate_or_bit_cast(
dst_arr.get_type().element_type().size_of().unwrap(),
offset.get_type(),
"",
)
.unwrap(),
"",
)
.unwrap();
let dst_ptr =
unsafe { ctx.builder.build_gep(dst_slice_ptr, &[offset], "").unwrap() };
let nested_lst_elem = ListValue::from_pointer_value(
let nested_lst_elem = ListValue::from_ptr_val(
unsafe { src_lst.data().get_unchecked(ctx, generator, &i, None) }
.into_pointer_value(),
llvm_usize,
@ -781,6 +730,7 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_from_ndlist_impl(
generator,
ctx,
elem_ty,
(dst_arr, dst_ptr),
nested_lst_elem,
dim + 1,
@ -791,15 +741,13 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
)?;
}
AnyTypeEnum::PointerType(ptr_ty)
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => {
todo!("Not implemented for list[ndarray]")
}
_ => {
let lst_len = src_lst.load_size(ctx, None);
let sizeof_elem = dst_arr.get_type().element_type().size_of().unwrap();
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let sizeof_elem = ctx.builder.build_int_cast(sizeof_elem, llvm_usize, "").unwrap();
let cpy_len = ctx
@ -854,9 +802,8 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
let object = object.into_pointer_value();
// object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims
if NDArrayValue::is_representable(object, llvm_usize).is_ok() {
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let object = NDArrayValue::from_pointer_value(object, llvm_elem_ty, llvm_usize, None);
if NDArrayValue::is_instance(object, llvm_usize).is_ok() {
let object = NDArrayValue::from_ptr_val(object, llvm_usize, None);
let ndarray = gen_if_else_expr_callback(
generator,
@ -918,6 +865,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_sliced_copyto_impl(
generator,
ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)),
(object, object.data().base_ptr(ctx, generator)),
0,
@ -929,17 +877,16 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|_, _| Ok(Some(object.as_base_value())),
)?;
return Ok(NDArrayValue::from_pointer_value(
return Ok(NDArrayValue::from_ptr_val(
ndarray.map(BasicValueEnum::into_pointer_value).unwrap(),
llvm_elem_ty,
llvm_usize,
None,
));
}
// Remaining case: TList
assert!(ListValue::is_representable(object, llvm_usize).is_ok());
let object = ListValue::from_pointer_value(object, llvm_usize, None);
assert!(ListValue::is_instance(object, llvm_usize).is_ok());
let object = ListValue::from_ptr_val(object, llvm_usize, None);
// The number of dimensions to prepend 1's to
let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type());
@ -994,7 +941,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
.build_store(
lst,
ctx.builder
.build_bit_cast(object.as_base_value(), llvm_plist_i8, "")
.build_bitcast(object.as_base_value(), llvm_plist_i8, "")
.unwrap(),
)
.unwrap();
@ -1016,11 +963,10 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
.builder
.build_load(lst, "")
.map(BasicValueEnum::into_pointer_value)
.map(|v| ctx.builder.build_bit_cast(v, plist_plist_i8, "").unwrap())
.map(|v| ctx.builder.build_bitcast(v, plist_plist_i8, "").unwrap())
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let this_dim =
ListValue::from_pointer_value(this_dim, llvm_usize, None);
let this_dim = ListValue::from_ptr_val(this_dim, llvm_usize, None);
// TODO: Assert this_dim.sz != 0
@ -1036,9 +982,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
ctx.builder
.build_store(
lst,
ctx.builder
.build_bit_cast(next_dim, llvm_plist_i8, "")
.unwrap(),
ctx.builder.build_bitcast(next_dim, llvm_plist_i8, "").unwrap(),
)
.unwrap();
@ -1046,7 +990,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
},
)?;
let lst = ListValue::from_pointer_value(
let lst = ListValue::from_ptr_val(
ctx.builder
.build_load(lst, "")
.map(BasicValueEnum::into_pointer_value)
@ -1066,6 +1010,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_from_ndlist_impl(
generator,
ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)),
object,
0,
@ -1138,6 +1083,7 @@ fn call_ndarray_eye_impl<'ctx, G: CodeGenerator + ?Sized>(
fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
(src_arr, src_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
dim: u64,
@ -1146,16 +1092,14 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(dst_arr.get_type().element_type(), src_arr.get_type().element_type());
let sizeof_elem = dst_arr.get_type().element_type().size_of().unwrap();
// If there are no (remaining) slice expressions, memcpy the entire dimension
if slices.is_empty() {
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let stride = call_ndarray_calc_size(
generator,
ctx,
&src_arr.shape(),
&src_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim, false)), None),
);
let stride =
@ -1173,13 +1117,13 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
let src_stride = call_ndarray_calc_size(
generator,
ctx,
&src_arr.shape(),
&src_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim + 1, false)), None),
);
let dst_stride = call_ndarray_calc_size(
generator,
ctx,
&dst_arr.shape(),
&dst_arr.dim_sizes(),
(Some(llvm_usize.const_int(dim + 1, false)), None),
);
@ -1202,29 +1146,9 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
|generator, ctx, _, src_i| {
// Calculate the offset of the active slice
let src_data_offset = ctx.builder.build_int_mul(src_stride, src_i, "").unwrap();
let src_data_offset = ctx
.builder
.build_int_mul(
src_data_offset,
ctx.builder
.build_int_cast(sizeof_elem, src_data_offset.get_type(), "")
.unwrap(),
"",
)
.unwrap();
let dst_i =
ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let dst_data_offset = ctx.builder.build_int_mul(dst_stride, dst_i, "").unwrap();
let dst_data_offset = ctx
.builder
.build_int_mul(
dst_data_offset,
ctx.builder
.build_int_cast(sizeof_elem, dst_data_offset.get_type(), "")
.unwrap(),
"",
)
.unwrap();
let (src_ptr, dst_ptr) = unsafe {
(
@ -1236,6 +1160,7 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_sliced_copyto_impl(
generator,
ctx,
elem_ty,
(dst_arr, dst_ptr),
(src_arr, src_ptr),
dim + 1,
@ -1278,7 +1203,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
&this,
|_, ctx, shape| Ok(shape.load_ndims(ctx)),
|generator, ctx, shape, idx| unsafe {
Ok(shape.shape().get_typed_unchecked(ctx, generator, &idx, None))
Ok(shape.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
},
)?
} else {
@ -1286,7 +1211,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
ndarray.store_ndims(ctx, generator, this.load_ndims(ctx));
let ndims = this.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndims);
ndarray.create_dim_sizes(ctx, llvm_usize, ndims);
// Populate the first slices.len() dimensions by computing the size of each dim slice
for (i, (start, stop, step)) in slices.iter().enumerate() {
@ -1318,7 +1243,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap();
unsafe {
ndarray.shape().set_typed_unchecked(
ndarray.dim_sizes().set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
@ -1336,8 +1261,8 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
(this.load_ndims(ctx), false),
|generator, ctx, _, idx| {
unsafe {
let dim_sz = this.shape().get_typed_unchecked(ctx, generator, &idx, None);
ndarray.shape().set_typed_unchecked(ctx, generator, &idx, dim_sz);
let dim_sz = this.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None);
ndarray.dim_sizes().set_typed_unchecked(ctx, generator, &idx, dim_sz);
}
Ok(())
@ -1352,6 +1277,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
ndarray_sliced_copyto_impl(
generator,
ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)),
(this, this.data().base_ptr(ctx, generator)),
0,
@ -1397,7 +1323,7 @@ where
&operand,
|_, ctx, v| Ok(v.load_ndims(ctx)),
|generator, ctx, v, idx| unsafe {
Ok(v.shape().get_typed_unchecked(ctx, generator, &idx, None))
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
},
)
.unwrap()
@ -1434,8 +1360,8 @@ pub fn ndarray_elementwise_binop_impl<'ctx, 'a, G, ValueFn>(
ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type,
res: Option<NDArrayValue<'ctx>>,
lhs: (Type, BasicValueEnum<'ctx>, bool),
rhs: (Type, BasicValueEnum<'ctx>, bool),
lhs: (BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool),
value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String>
where
@ -1448,8 +1374,8 @@ where
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_ty, lhs_val, lhs_scalar) = lhs;
let (rhs_ty, rhs_val, rhs_scalar) = rhs;
let (lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs;
assert!(
!(lhs_scalar && rhs_scalar),
@ -1460,22 +1386,10 @@ where
let ndarray = res.unwrap_or_else(|| {
if lhs_scalar && rhs_scalar {
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
let lhs_val = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
llvm_usize,
None,
);
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
let rhs_val = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
llvm_usize,
None,
);
let lhs_val =
NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
let rhs_val =
NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
let ndarray_dims = call_ndarray_calc_broadcast(generator, ctx, lhs_val, rhs_val);
@ -1491,14 +1405,8 @@ where
)
.unwrap()
} else {
let dtype = arraylike_flatten_element_type(
&mut ctx.unifier,
if lhs_scalar { rhs_ty } else { lhs_ty },
);
let llvm_elem_ty = ctx.get_llvm_type(generator, dtype);
let ndarray = NDArrayValue::from_pointer_value(
let ndarray = NDArrayValue::from_ptr_val(
if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(),
llvm_elem_ty,
llvm_usize,
None,
);
@ -1510,7 +1418,7 @@ where
&ndarray,
|_, ctx, v| Ok(v.load_ndims(ctx)),
|generator, ctx, v, idx| unsafe {
Ok(v.shape().get_typed_unchecked(ctx, generator, &idx, None))
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
},
)
.unwrap()
@ -1571,10 +1479,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
if let Some(res) = res {
let res_ndims = res.load_ndims(ctx);
let res_dim0 = unsafe {
res.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
res.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let res_dim1 = unsafe {
res.shape().get_typed_unchecked(
res.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
@ -1582,10 +1490,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
)
};
let lhs_dim0 = unsafe {
lhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let rhs_dim1 = unsafe {
rhs.shape().get_typed_unchecked(
rhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
@ -1634,10 +1542,15 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let lhs_dim1 = unsafe {
lhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
let rhs_dim0 = unsafe {
rhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
// lhs.dims[1] == rhs.dims[0]
@ -1676,7 +1589,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
},
|generator, ctx| {
Ok(Some(unsafe {
lhs.shape().get_typed_unchecked(
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
@ -1686,7 +1599,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
},
|generator, ctx| {
Ok(Some(unsafe {
rhs.shape().get_typed_unchecked(
rhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
@ -1713,7 +1626,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
let common_dim = {
let lhs_idx1 = unsafe {
lhs.shape().get_typed_unchecked(
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
@ -1721,7 +1634,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
)
};
let rhs_idx0 = unsafe {
rhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let idx = llvm_intrinsics::call_expect(ctx, rhs_idx0, lhs_idx1, None);
@ -2052,18 +1965,11 @@ pub fn gen_ndarray_copy<'ctx>(
let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
let llvm_elem_ty = context.get_llvm_type(generator, this_elem_ty);
ndarray_copy_impl(
generator,
context,
this_elem_ty,
NDArrayValue::from_pointer_value(
this_arg.into_pointer_value(),
llvm_elem_ty,
llvm_usize,
None,
),
NDArrayValue::from_ptr_val(this_arg.into_pointer_value(), llvm_usize, None),
)
.map(NDArrayValue::into)
}
@ -2082,7 +1988,6 @@ pub fn gen_ndarray_fill<'ctx>(
let llvm_usize = generator.get_size_type(context.ctx);
let this_ty = obj.as_ref().unwrap().0;
let this_elem_ty = arraylike_flatten_element_type(&mut context.unifier, this_ty);
let this_arg = obj
.as_ref()
.unwrap()
@ -2093,12 +1998,10 @@ pub fn gen_ndarray_fill<'ctx>(
let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
let llvm_elem_ty = context.get_llvm_type(generator, this_elem_ty);
ndarray_fill_flattened(
generator,
context,
NDArrayValue::from_pointer_value(this_arg, llvm_elem_ty, llvm_usize, None),
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None),
|generator, ctx, _| {
let value = if value_arg.is_pointer_value() {
let llvm_i1 = ctx.ctx.bool_type();
@ -2117,7 +2020,7 @@ pub fn gen_ndarray_fill<'ctx>(
} else if value_arg.is_int_value() || value_arg.is_float_value() {
value_arg
} else {
codegen_unreachable!(ctx)
unreachable!()
};
Ok(value)
@ -2139,9 +2042,8 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
// Dimensions are reversed in the transposed array
let out = create_ndarray_dyn_shape(
@ -2156,7 +2058,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
.builder
.build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "")
.unwrap();
unsafe { Ok(n.shape().get_typed_unchecked(ctx, generator, &new_idx, None)) }
unsafe { Ok(n.dim_sizes().get_typed_unchecked(ctx, generator, &new_idx, None)) }
},
)
.unwrap();
@ -2193,7 +2095,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
.build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "")
.unwrap();
let dim = unsafe {
n1.shape().get_typed_unchecked(ctx, generator, &ndim_rev, None)
n1.dim_sizes().get_typed_unchecked(ctx, generator, &ndim_rev, None)
};
let rem_idx_val =
@ -2227,8 +2129,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
Ok(out.as_base_value().into())
} else {
codegen_unreachable!(
ctx,
unreachable!(
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
)
@ -2243,8 +2144,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
/// 1. A list of `int32`; e.g., `np.reshape(arr, [600, -1, 3])`
/// 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.reshape(arr, 3)`
///
/// Note that unlike other generating functions, one of the dimensions in the shape can be negative.
/// Note that unlike other generating functions, one of the dimesions in the shape can be negative
pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -2259,9 +2159,8 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
@ -2270,11 +2169,11 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
let out = match shape {
BasicValueEnum::PointerValue(shape_list_ptr)
if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() =>
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
{
// 1. A list of ints; e.g., `np.reshape(arr, [int64(600), int64(800, -1])`
let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None);
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
// Check for -1 in dimensions
gen_for_callback_incrementing(
generator,
@ -2471,7 +2370,7 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
.into_int_value();
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}
.unwrap();
@ -2489,7 +2388,7 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
);
// The new shape must be compatible with the old shape
let out_sz = call_ndarray_calc_size(generator, ctx, &out.shape(), (None, None));
let out_sz = call_ndarray_calc_size(generator, ctx, &out.dim_sizes(), (None, None));
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(),
@ -2515,8 +2414,7 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
Ok(out.as_base_value().into())
} else {
codegen_unreachable!(
ctx,
unreachable!(
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
)
@ -2537,22 +2435,17 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_dot";
let (x1_ty, x1) = x1;
let (x2_ty, x2) = x2;
let (_, x2) = x2;
let llvm_usize = generator.get_size_type(ctx.ctx);
match (x1, x2) {
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
let n1_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
let n2_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x2_ty);
let llvm_n1_data_ty = ctx.get_llvm_type(generator, n1_dtype);
let llvm_n2_data_ty = ctx.get_llvm_type(generator, n2_dtype);
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let n2 = NDArrayValue::from_ptr_val(n2, llvm_usize, None);
let n1 = NDArrayValue::from_pointer_value(n1, llvm_n1_data_ty, llvm_usize, None);
let n2 = NDArrayValue::from_pointer_value(n2, llvm_n2_data_ty, llvm_usize, None);
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
ctx.make_assert(
generator,
@ -2589,7 +2482,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
.build_float_mul(e1, elem2.into_float_value(), "")
.unwrap()
.as_basic_value_enum(),
_ => codegen_unreachable!(ctx, "product: {}", elem1.get_type()),
_ => unreachable!(),
};
let acc_val = ctx.builder.build_load(acc, "").unwrap();
let acc_val = match acc_val {
@ -2603,7 +2496,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
.build_float_add(e1, product.into_float_value(), "")
.unwrap()
.as_basic_value_enum(),
_ => codegen_unreachable!(ctx, "acc_val: {}", acc_val.get_type()),
_ => unreachable!(),
};
ctx.builder.build_store(acc, acc_val).unwrap();
@ -2620,8 +2513,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
_ => codegen_unreachable!(
ctx,
_ => unreachable!(
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
),

View File

@ -0,0 +1,210 @@
// TODO: Replace numpy.rs
use inkwell::values::{BasicValue, BasicValueEnum};
use nac3parser::ast::StrRef;
use crate::{
codegen::object::{ndarray::scalar::split_scalar_or_ndarray, tuple::TupleObject},
symbol_resolver::ValueEnum,
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys, DefinitionId},
typecheck::typedef::{FunSignature, Type},
};
use super::{
irrt::call_nac3_ndarray_util_assert_shape_no_negative,
model::*,
object::{
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
AnyObject,
},
CodeGenContext, CodeGenerator,
};
/// Generates LLVM IR for `np.broadcast_to`.
pub fn gen_ndarray_broadcast_to<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<BasicValueEnum<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
// Parse argument #1 input
let input_ty = fun.0.args[0].ty;
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?;
let input = AnyObject { ty: input_ty, value: input };
// Parse argument #2 shape
let shape_ty = fun.0.args[1].ty;
let shape = args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
let shape = AnyObject { ty: shape_ty, value: shape };
// Define models
let sizet_model = IntModel(SizeT);
// Extract broadcast_ndims, this is the only way to get the
// ndims of the ndarray result statically.
let (_, broadcast_ndims_ty) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
let broadcast_ndims = extract_ndims(&ctx.unifier, broadcast_ndims_ty);
// Process `input`
let in_ndarray = split_scalar_or_ndarray(generator, ctx, input).as_ndarray(generator, ctx);
// Process `shape`
let (_, broadcast_shape) = parse_numpy_int_sequence(generator, ctx, shape);
// NOTE: shape.size should equal to `broadcasted_ndims`.
let broadcast_ndims_llvm = sizet_model.constant(generator, ctx.ctx, broadcast_ndims);
call_nac3_ndarray_util_assert_shape_no_negative(
generator,
ctx,
broadcast_ndims_llvm,
broadcast_shape,
);
// Create broadcast view
let broadcast_ndarray =
in_ndarray.broadcast_to(generator, ctx, broadcast_ndims, broadcast_shape);
Ok(broadcast_ndarray.instance.value.as_basic_value_enum())
}
/// Generates LLVM IR for `np.reshape`.
pub fn gen_ndarray_reshape<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<BasicValueEnum<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
// Parse argument #1 input
let input_ty = fun.0.args[0].ty;
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?;
let input = AnyObject { ty: input_ty, value: input };
// Parse argument #2 shape
let shape_ty = fun.0.args[1].ty;
let shape = args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
let shape = AnyObject { ty: shape_ty, value: shape };
// Extract reshaped_ndims
let (_, reshaped_ndims_ty) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
let reshaped_ndims = extract_ndims(&ctx.unifier, reshaped_ndims_ty);
// Process `input`
let in_ndarray = split_scalar_or_ndarray(generator, ctx, input).as_ndarray(generator, ctx);
// Process the shape input from user and resolve negative indices.
// The resulting `new_shape`'s size should be equal to reshaped_ndims.
// This is ensured by the typechecker.
let (_, new_shape) = parse_numpy_int_sequence(generator, ctx, shape);
let reshaped_ndarray = in_ndarray.reshape_or_copy(generator, ctx, reshaped_ndims, new_shape);
Ok(reshaped_ndarray.instance.value.as_basic_value_enum())
}
/// Generates LLVM IR for `np.arange`.
pub fn gen_ndarray_arange<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<BasicValueEnum<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse argument #1 len
let input_ty = fun.0.args[0].ty;
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?.into_int_value();
// Implementation
let input_dim = IntModel(SizeT).s_extend_or_bit_cast(generator, ctx, input, "input_dim");
let ndarray = NDArrayObject::from_np_arange(generator, ctx, input_dim);
Ok(ndarray.instance.value.as_basic_value_enum())
}
/// Generates LLVM IR for `np.size`.
pub fn gen_ndarray_size<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<BasicValueEnum<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let size = ndarray.size(generator, ctx).truncate(generator, ctx, Int32, "size");
Ok(size.value.as_basic_value_enum())
}
/// Generates LLVM IR for `np.shape`.
pub fn gen_ndarray_shape<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<BasicValueEnum<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse argument #1 ndarray
let ndarray_ty = fun.0.args[0].ty;
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
// Process ndarray
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
Ok(ndarray.make_shape_tuple(generator, ctx).value.as_basic_value_enum())
}
/// Generates LLVM IR for `<ndarray>.strides`.
pub fn gen_ndarray_strides<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<BasicValueEnum<'ctx>, String> {
// TODO: Code duplication: This function looks exactly like `gen_ndarray_shapes`.
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse argument #1 ndarray
let ndarray_ty = fun.0.args[0].ty;
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
// Process ndarray
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let mut objects = Vec::with_capacity(ndarray.ndims as usize);
for i in 0..ndarray.ndims {
let dim = ndarray
.instance
.get(generator, ctx, |f| f.strides, "")
.offset_const(generator, ctx, i, "")
.load(generator, ctx, "dim");
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
objects
.push(AnyObject { ty: ctx.primitives.int32, value: dim.value.as_basic_value_enum() });
}
let strides = TupleObject::create(generator, ctx, objects, "strides");
Ok(strides.value.as_basic_value_enum())
}

View File

@ -0,0 +1,121 @@
use crate::{
codegen::{
irrt::{call_nac3_list_slice_assign, list_slice_assignment},
model::*,
object::ndarray::indexing::UserSlice,
structure::List,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
use super::{ndarray::indexing::RustUserSlice, AnyObject};
/// A NAC3 Python List object.
#[derive(Debug, Clone, Copy)]
pub struct ListObject<'ctx> {
/// Typechecker type of the list items
pub item_type: Type,
pub instance: Ptr<'ctx, StructModel<List<AnyModel<'ctx>>>>,
}
impl<'ctx> ListObject<'ctx> {
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
// Check typechecker type and extract `item_type`
let item_type = match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
}
_ => {
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
}
};
let item_model = AnyModel(ctx.get_llvm_type(generator, item_type));
let plist_model = PtrModel(StructModel(List { item: item_model }));
// Create object
let value = plist_model.check_value(generator, ctx.ctx, object.value).unwrap();
ListObject { item_type, instance: value }
}
/// Get the `items` field as an opaque pointer.
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Ptr<'ctx, IntModel<Byte>> {
self.instance.get(generator, ctx, |f| f.items, "items").pointer_cast(
generator,
ctx,
IntModel(Byte),
"items_opaque",
)
}
/// Get the value of this [`ListObject`] as a list with opaque items.
///
/// This function allocates on the stack to create the list, but the
/// reference to the `items` are preserved.
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Ptr<'ctx, StructModel<List<IntModel<Byte>>>> {
let opaque_list_model = StructModel(List { item: IntModel(Byte) });
let opaque_list_ptr = opaque_list_model.alloca(generator, ctx, "opaque_list_ptr");
// Copy items pointer
let items = self.get_opaque_items_ptr(generator, ctx);
opaque_list_ptr.set(ctx, |f| f.items, items);
// Copy len
let len = self.instance.get(generator, ctx, |f| f.len, "len");
opaque_list_ptr.set(ctx, |f| f.len, len);
opaque_list_ptr
}
/// Get the `len()` of this list.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, SizeT> {
self.instance.get(generator, ctx, |f| f.len, "list_len")
}
pub fn slice_assign_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
user_slice: &RustUserSlice<'ctx>,
source: ListObject<'ctx>,
) {
// Sanity check
assert!(ctx.unifier.unioned(self.item_type, source.item_type));
let user_slice_model = StructModel(UserSlice);
let puser_slice = user_slice_model.alloca(generator, ctx, "user_slice");
user_slice.write_to_user_slice(generator, ctx, puser_slice);
let itemsize = self.instance.model.get_type(generator, ctx.ctx).size_of();
call_nac3_list_slice_assign(
generator,
ctx,
self.get_opaque_list_ptr(generator, ctx),
source.instance.value,
itemsize,
user_slice,
);
todo!()
}
}

View File

@ -0,0 +1,608 @@
use inkwell::{
values::{BasicValue, BasicValueEnum, FloatValue, IntValue},
FloatPredicate, IntPredicate,
};
use itertools::Itertools;
use list::ListObject;
use ndarray::{NDArrayObject, NDArrayOut};
use range::RangeObject;
use tuple::TupleObject;
use crate::{
toplevel::helper::PrimDef,
typecheck::typedef::{Type, TypeEnum},
};
use super::{llvm_intrinsics, model::*, CodeGenContext, CodeGenerator};
pub mod list;
pub mod ndarray;
pub mod range;
pub mod tuple;
/// Convenience function to crash the program when types of arguments are not supported.
/// Used to be debugged with a stacktrace.
fn unsupported_type<I>(ctx: &CodeGenContext<'_, '_>, tys: I) -> !
where
I: IntoIterator<Item = Type>,
{
unreachable!(
"unsupported types found '{}'",
tys.into_iter().map(|ty| format!("'{}'", ctx.unifier.stringify(ty))).join(", "),
)
}
#[derive(Debug, Clone, Copy)]
pub enum FloorOrCeil {
Floor,
Ceil,
}
#[derive(Debug, Clone, Copy)]
pub enum MinOrMax {
Min,
Max,
}
fn signed_ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
vec![ctx.primitives.int32, ctx.primitives.int64]
}
fn unsigned_ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
vec![ctx.primitives.uint32, ctx.primitives.uint64]
}
fn ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
vec![ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64]
}
fn int_like(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
vec![
ctx.primitives.bool,
ctx.primitives.int32,
ctx.primitives.int64,
ctx.primitives.uint32,
ctx.primitives.uint64,
]
}
#[derive(Debug, Clone, Copy)]
pub struct AnyObject<'ctx> {
pub ty: Type,
pub value: BasicValueEnum<'ctx>,
}
impl<'ctx> AnyObject<'ctx> {
/// Returns true if this object's type is a [`TypeEnum::TObj`] and has the object ID as `prim`.
pub fn is_obj(&self, ctx: &mut CodeGenContext<'ctx, '_>, prim: PrimDef) -> bool {
match &*ctx.unifier.get_ty(self.ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id == prim.id(),
_ => false,
}
}
/// Returns true if this object's type is a [`TypeEnum::TTuple`]
pub fn is_tuple(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
matches!(&*ctx.unifier.get_ty(self.ty), TypeEnum::TTuple { .. })
}
pub fn into_tuple() {}
pub fn is_int32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned(self.ty, ctx.primitives.int32)
}
pub fn into_int32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Int<'ctx, Int32> {
assert!(self.is_int32(ctx));
IntModel(Int32).believe_value(self.value.into_int_value())
}
pub fn is_uint32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned(self.ty, ctx.primitives.uint32)
}
pub fn is_int64(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned(self.ty, ctx.primitives.int64)
}
pub fn is_uint64(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned(self.ty, ctx.primitives.uint64)
}
pub fn is_bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned(self.ty, ctx.primitives.bool)
}
/// Returns true if the object type is `bool`, `int32`, `int64`, `uint32`, or `uint64`.
pub fn is_int_like(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned_any(self.ty, int_like(ctx))
}
/// Returns true if the object type is `int32`, `int64`.
pub fn is_signed_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned_any(self.ty, signed_ints(ctx))
}
/// Returns true if the object type is `uint32`, `uint64`.
pub fn is_unsigned_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
ctx.unifier.unioned_any(self.ty, unsigned_ints(ctx))
}
pub fn into_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
assert!(self.is_int_like(ctx));
self.value.into_int_value()
}
pub fn is_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
self.is_obj(ctx, PrimDef::Float)
}
pub fn into_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Float<'ctx, Float64> {
assert!(self.is_float(ctx));
FloatModel(Float64).believe_value(self.value.into_float_value())
}
pub fn is_ndarray(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
self.is_obj(ctx, PrimDef::NDArray)
}
pub fn into_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayObject<'ctx> {
NDArrayObject::from_object(generator, ctx, *self)
}
/// Create an object from a boolean from an i1.
///
/// NOTE: In NAC3, booleans are i8. This function does converts the input i1 to an i8.
pub fn from_bool(ctx: &mut CodeGenContext<'ctx, '_>, n: Int<'ctx, Bool>) -> AnyObject<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let value = ctx.builder.build_int_z_extend(n.value, llvm_i8, "bool").unwrap();
AnyObject { value: value.as_basic_value_enum(), ty: ctx.primitives.bool }
}
/// Helper function to compare two scalars.
///
/// Only int-to-int and float-to-float comparisons are allowed.
///
/// Panic otherwise.
pub fn compare_int_or_float_by_predicate<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: AnyObject<'ctx>,
rhs: AnyObject<'ctx>,
int_predicate: IntPredicate,
float_predicate: FloatPredicate,
name: &str,
) -> Int<'ctx, Bool> {
assert!(ctx.unifier.unioned(lhs.ty, rhs.ty), "lhs and rhs type should be the same");
let bool_model = IntModel(Bool);
let common_ty = lhs.ty;
let result = if lhs.is_float(ctx) {
let lhs = lhs.into_float(ctx);
let rhs = rhs.into_float(ctx);
ctx.builder.build_float_compare(float_predicate, lhs.value, rhs.value, name).unwrap()
} else if ctx.unifier.unioned_any(common_ty, int_like(ctx)) {
let lhs = lhs.into_int(ctx);
let rhs = rhs.into_int(ctx);
ctx.builder.build_int_compare(int_predicate, lhs, rhs, name).unwrap()
} else {
unsupported_type(ctx, [lhs.ty, rhs.ty]);
};
bool_model.check_value(generator, ctx.ctx, result).unwrap()
}
/// Helper function for `int32()`, `int64()`, `uint32()`, and `uint64()`.
///
/// TODO: Document me
fn cast_to_int_conversion<'a, G, HandleFloatFn>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_int_ty: Type,
handle_float: HandleFloatFn,
) -> AnyObject<'ctx>
where
G: CodeGenerator + ?Sized,
HandleFloatFn:
FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, FloatValue<'ctx>) -> IntValue<'ctx>,
{
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
let result = if self.is_float(ctx) {
// Handle float to int
let n = self.into_float(ctx);
handle_float(generator, ctx, n.value)
} else if self.is_int_like(ctx) {
// Handle int to a new int type
let n = self.into_int(ctx);
if n.get_type().get_bit_width() <= ret_int_ty_llvm.get_bit_width() {
ctx.builder.build_int_z_extend(n, ret_int_ty_llvm, "zext").unwrap()
} else {
ctx.builder.build_int_truncate(n, ret_int_ty_llvm, "trunc").unwrap()
}
} else {
unsupported_type(ctx, [self.ty]);
};
assert_eq!(ret_int_ty_llvm.get_bit_width(), result.get_type().get_bit_width()); // Sanity check
AnyObject { value: result.into(), ty: ret_int_ty }
}
/// Call `int32()` on this object.
#[must_use]
pub fn call_int32<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
self.cast_to_int_conversion(
generator,
ctx,
ctx.primitives.int32,
|_generator, ctx, input| {
let n =
ctx.builder.build_float_to_signed_int(input, ctx.ctx.i64_type(), "").unwrap();
ctx.builder.build_int_truncate(n, ctx.ctx.i32_type(), "conv").unwrap()
},
)
}
/// Call `int64()` on this object.
#[must_use]
pub fn call_int64<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
self.cast_to_int_conversion(
generator,
ctx,
ctx.primitives.int64,
|_generator, ctx, input| {
ctx.builder.build_float_to_signed_int(input, ctx.ctx.i64_type(), "").unwrap()
},
)
}
/// Call `uint32()` on this object.
#[must_use]
pub fn call_uint32<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
self.cast_to_int_conversion(generator, ctx, ctx.primitives.uint32, |_generator, ctx, n| {
let n_gez = ctx
.builder
.build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "")
.unwrap();
let to_int32 =
ctx.builder.build_float_to_signed_int(n, ctx.ctx.i32_type(), "").unwrap();
let to_uint64 =
ctx.builder.build_float_to_unsigned_int(n, ctx.ctx.i64_type(), "").unwrap();
ctx.builder
.build_select(
n_gez,
ctx.builder.build_int_truncate(to_uint64, ctx.ctx.i32_type(), "").unwrap(),
to_int32,
"conv",
)
.unwrap()
.into_int_value()
})
}
/// Call `uint64()` on this object.
#[must_use]
pub fn call_uint64<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
self.cast_to_int_conversion(generator, ctx, ctx.primitives.uint64, |_generator, ctx, n| {
let val_gez = ctx
.builder
.build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "")
.unwrap();
let to_int64 =
ctx.builder.build_float_to_signed_int(n, ctx.ctx.i64_type(), "").unwrap();
let to_uint64 =
ctx.builder.build_float_to_unsigned_int(n, ctx.ctx.i64_type(), "").unwrap();
ctx.builder.build_select(val_gez, to_uint64, to_int64, "conv").unwrap().into_int_value()
})
}
// Get the `len()` of this object.
#[must_use]
pub fn call_len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
// TODO: Switch to returning SizeT
let result = match &*ctx.unifier.get_ty_immutable(self.ty) {
TypeEnum::TTuple { .. } => {
let tuple = TupleObject::from_object(ctx, *self);
tuple.len(generator, ctx).truncate(generator, ctx, Int32, "tuple_len_32")
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
let range = RangeObject::from_object(generator, ctx, *self);
range.len(generator, ctx)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListObject::from_object(generator, ctx, *self);
list.len(generator, ctx).truncate(generator, ctx, Int32, "list_len_i32")
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, *self);
ndarray.len(generator, ctx).truncate(generator, ctx, Int32, "ndarray_len_i32")
}
_ => unreachable!(),
};
AnyObject { ty: ctx.primitives.int32, value: result.value.as_basic_value_enum() }
}
/// Like [`AnyObject::call_bool`] but this returns an `Int<'ctx, Bool>` instead of an object.
pub fn bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Int<'ctx, Bool> {
let bool_model = IntModel(Bool);
if self.is_int_like(ctx) {
let n = self.into_int(ctx);
let n = ctx
.builder
.build_int_compare(inkwell::IntPredicate::NE, n, n.get_type().const_zero(), "bool")
.unwrap();
bool_model.believe_value(n)
} else if self.is_float(ctx) {
let n = self.value.into_float_value();
let n = ctx
.builder
.build_float_compare(FloatPredicate::UNE, n, n.get_type().const_zero(), "bool")
.unwrap();
bool_model.believe_value(n)
} else {
unsupported_type(ctx, [self.ty])
}
}
/// Call `bool()` on this object.
#[must_use]
pub fn call_bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
let n = self.bool(ctx);
AnyObject::from_bool(ctx, n)
}
/// Call `float()` on this object.
#[must_use]
pub fn call_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
let f64_model = FloatModel(Float64);
let llvm_f64 = ctx.ctx.f64_type();
let result = if self.is_float(ctx) {
self.into_float(ctx)
} else if self.is_signed_int(ctx) || self.is_bool(ctx) {
let n = self.into_int(ctx);
let n = ctx.builder.build_signed_int_to_float(n, llvm_f64, "sitofp").unwrap();
f64_model.believe_value(n)
} else if self.is_unsigned_int(ctx) {
let n = self.into_int(ctx);
let n = ctx.builder.build_unsigned_int_to_float(n, llvm_f64, "uitofp").unwrap();
f64_model.believe_value(n)
} else {
unsupported_type(ctx, [self.ty]);
};
AnyObject { ty: ctx.primitives.float, value: result.value.as_basic_value_enum() }
}
// Call `abs()` on this object.
#[must_use]
pub fn call_abs<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Self {
if self.is_float(ctx) {
let n = self.value.into_float_value();
let n = llvm_intrinsics::call_float_fabs(ctx, n, Some("abs"));
AnyObject { value: n.into(), ty: ctx.primitives.float }
} else if self.is_unsigned_int(ctx) || self.is_signed_int(ctx) {
let is_poisoned = ctx.ctx.bool_type().const_zero(); // is_poisoned = false
let n = self.value.into_int_value();
let n = llvm_intrinsics::call_int_abs(ctx, n, is_poisoned, Some("abs"));
AnyObject { value: n.into(), ty: self.ty }
} else if self.is_ndarray(ctx) {
let ndarray = self.into_ndarray(generator, ctx);
ndarray
.map(
generator,
ctx,
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|generator, ctx, scalar| Ok(scalar.call_abs(generator, ctx)),
)
.unwrap()
.to_any_object(ctx)
} else {
unsupported_type(ctx, [self.ty])
}
}
// Call `round()` on this object.
//
// It is possible to specify which kind of int type to return.
#[must_use]
pub fn call_round<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_int_ty: Type,
) -> AnyObject<'ctx> {
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
let result = if ctx.unifier.unioned(self.ty, ctx.primitives.float) {
let n = self.value.into_float_value();
let n = llvm_intrinsics::call_float_round(ctx, n, None);
ctx.builder.build_float_to_signed_int(n, ret_int_ty_llvm, "round").unwrap()
} else {
unsupported_type(ctx, [self.ty])
};
AnyObject { ty: ret_int_ty, value: result.as_basic_value_enum() }
}
/// Call `np_round()` on this object.
///
/// NOTE: `np.round()` has different behaviors than `round()` when in comes to "tie" cases and return type.
#[must_use]
pub fn call_np_round<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
if self.is_float(ctx) {
let n = self.into_float(ctx);
let n = llvm_intrinsics::call_float_rint(ctx, n.value, None);
AnyObject { ty: ctx.primitives.float, value: n.as_basic_value_enum() }
} else if self.is_ndarray(ctx) {
let ndarray = self.into_ndarray(generator, ctx);
ndarray
.map(
generator,
ctx,
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|generator, ctx, scalar| Ok(scalar.call_np_round(generator, ctx)),
)
.unwrap()
.to_any_object(ctx)
} else {
unsupported_type(ctx, [self.ty])
}
}
/// Call `min()` or `max()` on two objects.
#[must_use]
pub fn call_min_or_max(
ctx: &mut CodeGenContext<'ctx, '_>,
kind: MinOrMax,
a: AnyObject<'ctx>,
b: AnyObject<'ctx>,
) -> AnyObject<'ctx> {
if !ctx.unifier.unioned(a.ty, b.ty) {
unsupported_type(ctx, [a.ty, b.ty])
}
let common_ty = a.ty;
if a.is_float(ctx) {
let function = match kind {
MinOrMax::Min => llvm_intrinsics::call_float_minnum,
MinOrMax::Max => llvm_intrinsics::call_float_maxnum,
};
let a = a.into_float(ctx).value;
let b = b.into_float(ctx).value;
let result = function(ctx, a, b, None);
AnyObject { value: result.as_basic_value_enum(), ty: ctx.primitives.float }
} else if a.is_unsigned_int(ctx) || a.is_bool(ctx) {
// Treating bool has an unsigned int since that is convenient
let function = match kind {
MinOrMax::Min => llvm_intrinsics::call_int_umin,
MinOrMax::Max => llvm_intrinsics::call_int_umax,
};
let a = a.into_int(ctx);
let b = b.into_int(ctx);
let result = function(ctx, a, b, None);
AnyObject { value: result.as_basic_value_enum(), ty: common_ty }
} else if a.is_signed_int(ctx) {
let function = match kind {
MinOrMax::Min => llvm_intrinsics::call_int_smin,
MinOrMax::Max => llvm_intrinsics::call_int_smax,
};
let a = a.into_int(ctx);
let b = b.into_int(ctx);
let result = function(ctx, a, b, None);
AnyObject { value: result.as_basic_value_enum(), ty: common_ty }
} else {
unsupported_type(ctx, [common_ty])
}
}
/// Call `floor()` or `ceil()` on this object.
///
/// It is possible to specify which kind of int type to return.
#[must_use]
pub fn call_floor_or_ceil<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
kind: FloorOrCeil,
ret_int_ty: Type,
) -> Self {
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
if self.is_float(ctx) {
let function = match kind {
FloorOrCeil::Floor => llvm_intrinsics::call_float_floor,
FloorOrCeil::Ceil => llvm_intrinsics::call_float_ceil,
};
let n = self.into_float(ctx).value;
let n = function(ctx, n, None);
let n = ctx.builder.build_float_to_signed_int(n, ret_int_ty_llvm, "").unwrap();
AnyObject { ty: ret_int_ty, value: n.as_basic_value_enum() }
} else {
unsupported_type(ctx, [self.ty])
}
}
/// Call `np_floor()` or `np_ceil()` on this object.
#[must_use]
pub fn call_np_floor_or_ceil<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
kind: FloorOrCeil,
) -> Self {
// TODO:
if self.is_float(ctx) {
let function = match kind {
FloorOrCeil::Floor => llvm_intrinsics::call_float_floor,
FloorOrCeil::Ceil => llvm_intrinsics::call_float_ceil,
};
let n = self.into_float(ctx).value;
let n = function(ctx, n, None);
AnyObject { ty: ctx.primitives.float, value: n.as_basic_value_enum() }
} else if self.is_ndarray(ctx) {
let ndarray = self.into_ndarray(generator, ctx);
ndarray
.map(
generator,
ctx,
NDArrayOut::NewNDArray { dtype: ctx.primitives.float },
|generator, ctx, scalar| Ok(scalar.call_np_floor_or_ceil(generator, ctx, kind)),
)
.unwrap()
.to_any_object(ctx)
} else {
unsupported_type(ctx, [self.ty])
}
}
}

View File

@ -0,0 +1,176 @@
use super::NDArrayObject;
use crate::{
codegen::{
irrt::{call_nac3_array_set_and_validate_list_shape, call_nac3_array_write_list_to_array},
model::*,
object::{list::ListObject, AnyObject},
stmt::gen_if_else_expr_callback,
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
fn get_list_object_dtype_and_ndims<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> (Type, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
let ndims = ndims + 1; // To count `list` itself.
(dtype, ndims)
}
impl<'ctx> NDArrayObject<'ctx> {
fn from_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
let sizet_model = IntModel(SizeT);
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
let list_value = list.get_opaque_list_ptr(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = sizet_model.constant(generator, ctx.ctx, ndims_int);
let shape = sizet_model.array_alloca(generator, ctx, ndims.value, "shape");
call_nac3_array_set_and_validate_list_shape(generator, ctx, list_value, ndims, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int, "ndarray_from_list");
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
// Copy all contents from the list.
call_nac3_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
ndarray
}
fn from_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
// np_array without copy is only possible `list` is not nested.
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
let sizet_model = IntModel(SizeT);
let zero = sizet_model.const_0(generator, ctx.ctx);
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
if ndims == 1 {
// `list` is not nested, does not need to copy.
let ndarray =
NDArrayObject::alloca(generator, ctx, dtype, 1, "ndarray_from_list_no_copy");
// Set data
let data = list.get_opaque_items_ptr(generator, ctx);
ndarray.instance.set(ctx, |f| f.data, data);
// Set shape
// dim = list->len;
// shape[0] = dim;
let shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
let dim = list.instance.get(generator, ctx, |f| f.len, "dim");
shape.offset(generator, ctx, zero.value, "pdim").store(ctx, dim);
// Set strides, the `data` is contiguous
ndarray.update_strides_by_shape(generator, ctx);
// Done
ndarray
} else {
// `list` is nested, it is impossible to not copy.
NDArrayObject::from_np_array_list_copy_impl(generator, ctx, list)
}
}
fn from_np_array_list_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
copy: Int<'ctx, Bool>,
) -> Self {
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = NDArrayObject::from_np_array_list_copy_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
|generator, ctx| {
let ndarray =
NDArrayObject::from_np_array_list_try_no_copy_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
}
pub fn from_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
copy: Int<'ctx, Bool>,
) -> Self {
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx, "np_array_copied_ndarray"); // Force copy
Ok(Some(ndarray.instance.value))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(
generator,
ctx,
ndarray_val,
ndarray.dtype,
ndarray.ndims,
)
}
pub fn from_np_array<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
copy: Int<'ctx, Bool>,
) -> Self {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListObject::from_object(generator, ctx, object);
NDArrayObject::from_np_array_list_impl(generator, ctx, list, copy)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
NDArrayObject::from_np_array_ndarray_impl(generator, ctx, ndarray, copy)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
}
}
}

View File

@ -0,0 +1,161 @@
use itertools::Itertools;
use crate::codegen::{
irrt::{
call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to,
call_nac3_ndarray_util_assert_shape_no_negative,
},
model::*,
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`ShapeEntry`]
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<IntModel<SizeT>>,
pub shape: F::Out<PtrModel<IntModel<SizeT>>>,
}
/// An IRRT structure used in broadcasting.
#[derive(Debug, Clone, Copy, Default)]
pub struct ShapeEntry;
impl<'ctx> StructKind<'ctx> for ShapeEntry {
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create a broadcast view on this ndarray with a target shape.
///
/// The input shape will be checked to make sure that it contains no negative values.
///
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
/// The caller has to figure this out for this function.
/// * `target_shape` - An array pointer pointing to the target shape.
#[must_use]
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target_ndims: u64,
target_shape: Ptr<'ctx, IntModel<SizeT>>,
) -> Self {
let target_ndims_llvm = IntModel(SizeT).constant(generator, ctx.ctx, target_ndims);
call_nac3_ndarray_util_assert_shape_no_negative(
generator,
ctx,
target_ndims_llvm,
target_shape,
);
let broadcast_ndarray = NDArrayObject::alloca(
generator,
ctx,
self.dtype,
target_ndims,
"broadcast_ndarray_to_dst",
);
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
broadcast_ndarray
}
}
/// A result produced by [`broadcast_all_ndarrays`]
#[derive(Debug, Clone)]
pub struct BroadcastAllResult<'ctx> {
/// The statically known `ndims` of the broadcast result.
pub ndims: u64,
/// The broadcasting shape.
pub shape: Ptr<'ctx, IntModel<SizeT>>,
/// Broadcasted views on the inputs.
///
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
/// is the same as the input.
pub ndarrays: Vec<NDArrayObject<'ctx>>,
}
pub fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_entries: &[(Ptr<'ctx, IntModel<SizeT>>, u64)],
broadcast_ndims: u64,
broadcast_shape: Ptr<'ctx, IntModel<SizeT>>,
) {
let sizet_model = IntModel(SizeT);
let shape_model = StructModel(ShapeEntry);
// Prepare input shape entries
let num_shape_entries =
sizet_model.constant(generator, ctx.ctx, u64::try_from(in_entries.len()).unwrap());
let shape_entries =
shape_model.array_alloca(generator, ctx, num_shape_entries.value, "shape_entries");
for (i, (in_shape, in_ndims)) in in_entries.iter().enumerate() {
let i = sizet_model.constant(generator, ctx.ctx, i as u64).value;
let pshape_entry = shape_entries.offset(generator, ctx, i, "shape_entry");
let in_ndims = sizet_model.constant(generator, ctx.ctx, *in_ndims);
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
pshape_entry.set(ctx, |f| f.shape, *in_shape);
}
let broadcast_ndims = sizet_model.constant(generator, ctx.ctx, broadcast_ndims);
call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
num_shape_entries,
shape_entries,
broadcast_ndims,
broadcast_shape,
);
}
impl<'ctx> NDArrayObject<'ctx> {
// TODO: DOCUMENT: Behaves like `np.broadcast()`, except returns results differently.
pub fn broadcast<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarrays: &[Self],
) -> BroadcastAllResult<'ctx> {
assert!(!ndarrays.is_empty());
let sizet_model = IntModel(SizeT);
// Infer the broadcast output ndims.
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
let broadcast_ndims = sizet_model.constant(generator, ctx.ctx, broadcast_ndims_int);
let broadcast_shape =
sizet_model.array_alloca(generator, ctx, broadcast_ndims.value, "broadcast_shape");
let shape_entries = ndarrays
.iter()
.map(|ndarray| {
(ndarray.instance.get(generator, ctx, |f| f.shape, "shape"), ndarray.ndims)
})
.collect_vec();
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
// Broadcast all the inputs to shape `dst_shape`.
let broadcast_ndarrays: Vec<_> = ndarrays
.iter()
.map(|ndarray| {
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
})
.collect_vec();
BroadcastAllResult {
ndims: broadcast_ndims_int,
shape: broadcast_shape,
ndarrays: broadcast_ndarrays,
}
}
}

View File

@ -0,0 +1,238 @@
use inkwell::{values::BasicValueEnum, IntPredicate};
use super::NDArrayObject;
use crate::{
codegen::{
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, object::AnyObject,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").value.into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").value.into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create an ndarray like `np.empty`.
pub fn from_np_empty<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Ptr<'ctx, IntModel<SizeT>>,
) -> Self {
// Validate `shape`
// TODO: Should the caller be responsible for this instead?
let ndims_llvm = IntModel(SizeT).constant(generator, ctx.ctx, ndims);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims, "full_ndarray");
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
ndarray
}
/// Create an ndarray like `np.full`.
pub fn from_np_full<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Ptr<'ctx, IntModel<SizeT>>,
fill_value: AnyObject<'ctx>,
) -> Self {
// Sanity check on `fill_value`'s dtype.
assert!(ctx.unifier.unioned(dtype, fill_value.ty));
let ndarray = NDArrayObject::from_np_empty(generator, ctx, dtype, ndims, shape);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like `np.zero`.
pub fn from_np_zero<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Ptr<'ctx, IntModel<SizeT>>,
) -> Self {
let fill_value = ndarray_zero_value(generator, ctx, dtype);
let fill_value = AnyObject { value: fill_value, ty: dtype };
NDArrayObject::from_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.ones`.
pub fn from_np_ones<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Ptr<'ctx, IntModel<SizeT>>,
) -> Self {
let fill_value = ndarray_one_value(generator, ctx, dtype);
let fill_value = AnyObject { value: fill_value, ty: dtype };
NDArrayObject::from_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.arange`.
/// The returned ndarray's `dtype` is always `float`
pub fn from_np_arange<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
length: Int<'ctx, SizeT>,
) -> Self {
let ndarray = NDArrayObject::alloca(
generator,
ctx,
ctx.primitives.float,
1, // ndims = 1
"arange_ndarray",
);
// `ndarray.shape[0] = length`
ndarray
.instance
.get(generator, ctx, |f| f.shape, "shape")
.offset_const(generator, ctx, 0, "dim")
.store(ctx, length);
// Create data and set elements
ndarray.create_data(generator, ctx);
ndarray
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
// Get the index of the current element, convert that index to float, and write it.
// This is how we get [0.0, 1.0, 2.0, ...].
let index = nditer.get_index(generator, ctx);
let pelement = nditer.get_pointer(generator, ctx);
let val = ctx
.builder
.build_unsigned_int_to_float(index.value, ctx.ctx.f64_type(), "val")
.unwrap();
ctx.builder.build_store(pelement, val).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like `np.eye`.
pub fn from_np_eye<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: Int<'ctx, SizeT>,
ncols: Int<'ctx, SizeT>,
offset: Int<'ctx, SizeT>,
) -> Self {
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = NDArrayObject::alloca_dynamic_shape(
generator,
ctx,
dtype,
&[nrows, ncols],
"eye_ndarray",
);
// Create data and make the matrix like look np.eye()
ndarray.create_data(generator, ctx);
ndarray
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
// Load up `row_i` and `col_i` from indices.
let row_i = nditer
.get_indices()
.offset_const(generator, ctx, 0, "")
.load(generator, ctx, "row_i");
let col_i = nditer
.get_indices()
.offset_const(generator, ctx, 1, "")
.load(generator, ctx, "col_i");
// Write to element
let be_one =
row_i.add(ctx, offset, "").compare(ctx, IntPredicate::EQ, col_i, "write_one");
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like `np.identity`.
pub fn from_np_identity<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: Int<'ctx, SizeT>,
) -> Self {
// Convenient implementation
let offset = IntModel(SizeT).const_0(generator, ctx.ctx);
NDArrayObject::from_np_eye(generator, ctx, dtype, size, size, offset)
}
}

View File

@ -0,0 +1,128 @@
use inkwell::{FloatPredicate, IntPredicate};
use crate::codegen::{
model::*,
object::{AnyObject, MinOrMax},
stmt::gen_if_callback,
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
impl<'ctx> NDArrayObject<'ctx> {
/// Helper function to implement NAC3's builtin `np_min()`, `np_max()`, `np_argmin()`, and `np_argmax()`.
///
/// Generate LLVM IR to find the extremum and index of the **first** extremum value.
///
/// Care has also been taken to make the error messages match that of NumPy.
fn min_max_argmin_argmax_helper<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
kind: MinOrMax,
on_empty_err_msg: &str,
) -> (AnyObject<'ctx>, Int<'ctx, SizeT>) {
let sizet_model = IntModel(SizeT);
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
// If the ndarray is empty, throw an error.
let is_empty = self.is_empty(generator, ctx);
ctx.make_assert(
generator,
is_empty.value,
"0:ValueError",
on_empty_err_msg,
[None, None, None],
ctx.current_loc,
);
// Setup and initialize the extremum to be the first element in the ndarray
let pextremum_index = sizet_model.alloca(generator, ctx, "extremum_index");
let pextremum = ctx.builder.build_alloca(dtype_llvm, "extremum").unwrap();
let zero = sizet_model.const_0(generator, ctx.ctx);
pextremum_index.store(ctx, zero);
let first_scalar = self.get_nth_scalar(generator, ctx, zero);
ctx.builder.build_store(pextremum, first_scalar.value).unwrap();
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let old_extremum = ctx.builder.build_load(pextremum, "current_extremum").unwrap();
let old_extremum = AnyObject { ty: self.dtype, value: old_extremum };
let scalar = nditer.get_scalar(generator, ctx);
let new_extremum = AnyObject::call_min_or_max(ctx, kind, old_extremum, scalar);
gen_if_callback(
generator,
ctx,
|generator, ctx| {
// Is new_extremum is more extreme than old_extremum?
let cmp = AnyObject::compare_int_or_float_by_predicate(
generator,
ctx,
new_extremum,
old_extremum,
IntPredicate::NE,
FloatPredicate::ONE,
"",
);
Ok(cmp.value)
},
|generator, ctx| {
// Yes, update the extremum index
let index = nditer.get_index(generator, ctx);
pextremum_index.store(ctx, index);
Ok(())
},
|_generator, _ctx| {
// No, do nothing
Ok(())
},
)
})
.unwrap();
// Finally return the extremum and extremum index.
let extremum_index = pextremum_index.load(generator, ctx, "extremum_index");
let extremum = ctx.builder.build_load(pextremum, "extremum_value").unwrap();
let extremum = AnyObject { ty: self.dtype, value: extremum };
(extremum, extremum_index)
}
/// Invoke NAC3's builtin `np_min()` or `np_max()`.
pub fn min_or_max<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
kind: MinOrMax,
) -> AnyObject<'ctx> {
let on_empty_err_msg = format!(
"zero-size array to reduction operation {} which has no identity",
match kind {
MinOrMax::Min => "minimum",
MinOrMax::Max => "maximum",
}
);
self.min_max_argmin_argmax_helper(generator, ctx, kind, &on_empty_err_msg).0
}
/// Invoke NAC3's builtin `np_argmin()` or `np_argmax()`.
pub fn argmin_or_argmax<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
kind: MinOrMax,
) -> Int<'ctx, SizeT> {
let on_empty_err_msg = format!(
"attempt to get {} of an empty sequence",
match kind {
MinOrMax::Min => "argmin",
MinOrMax::Max => "argmax",
}
);
self.min_max_argmin_argmax_helper(generator, ctx, kind, &on_empty_err_msg).1
}
}

View File

@ -0,0 +1,321 @@
use crate::codegen::{irrt::call_nac3_ndarray_index, model::*, CodeGenContext, CodeGenerator};
use super::NDArrayObject;
pub type NDIndexType = Byte;
/// Fields of [`NDIndex`]
#[derive(Debug, Clone, Copy)]
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
pub type_: F::Out<IntModel<NDIndexType>>, // Defined to be uint8_t in IRRT
pub data: F::Out<PtrModel<IntModel<Byte>>>,
}
/// An IRRT representation fo an ndarray subscript index.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct NDIndex;
impl<'ctx> StructKind<'ctx> for NDIndex {
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
}
}
/// Fields of [`UserSlice`]
#[derive(Debug, Clone)]
pub struct UserSliceFields<'ctx, F: FieldTraversal<'ctx>> {
pub start_defined: F::Out<IntModel<Bool>>,
pub start: F::Out<IntModel<Int32>>,
pub stop_defined: F::Out<IntModel<Bool>>,
pub stop: F::Out<IntModel<Int32>>,
pub step_defined: F::Out<IntModel<Bool>>,
pub step: F::Out<IntModel<Int32>>,
}
/// An IRRT representation of a user slice.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct UserSlice;
impl<'ctx> StructKind<'ctx> for UserSlice {
type Fields<F: FieldTraversal<'ctx>> = UserSliceFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
start_defined: traversal.add_auto("start_defined"),
start: traversal.add_auto("start"),
stop_defined: traversal.add_auto("stop_defined"),
stop: traversal.add_auto("stop"),
step_defined: traversal.add_auto("step_defined"),
step: traversal.add_auto("step"),
}
}
}
/// A convenience structure to prepare a [`UserSlice`].
#[derive(Debug, Clone)]
pub struct RustUserSlice<'ctx> {
pub start: Option<Int<'ctx, Int32>>,
pub stop: Option<Int<'ctx, Int32>>,
pub step: Option<Int<'ctx, Int32>>,
}
impl<'ctx> RustUserSlice<'ctx> {
/// Write the contents to an LLVM [`UserSlice`].
pub fn write_to_user_slice<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_slice_ptr: Ptr<'ctx, StructModel<UserSlice>>,
) {
let bool_model = IntModel(Bool);
let false_ = bool_model.constant(generator, ctx.ctx, 0);
let true_ = bool_model.constant(generator, ctx.ctx, 1);
// TODO: Code duplication. Probably okay...?
match self.start {
Some(start) => {
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
}
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
}
match self.stop {
Some(stop) => {
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
}
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
}
match self.step {
Some(step) => {
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
}
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
}
}
}
// A convenience enum variant to store the content and type of an NDIndex in high level.
#[derive(Debug, Clone)]
pub enum RustNDIndex<'ctx> {
SingleElement(Int<'ctx, Int32>), // TODO: To be SizeT
Slice(RustUserSlice<'ctx>),
NewAxis,
Ellipsis,
}
impl<'ctx> RustNDIndex<'ctx> {
/// Get the value to set `NDIndex::type` for this variant.
fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
RustNDIndex::NewAxis => 2,
RustNDIndex::Ellipsis => 3,
}
}
/// Write the contents to an LLVM [`NDIndex`].
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_ndindex_ptr: Ptr<'ctx, StructModel<NDIndex>>,
) {
let ndindex_type_model = IntModel(NDIndexType::default());
let i32_model = IntModel(Int32);
let user_slice_model = StructModel(UserSlice);
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr
.gep(ctx, |f| f.type_)
.store(ctx, ndindex_type_model.constant(generator, ctx.ctx, self.get_type_id()));
// Set `dst_ndindex_ptr->data`
match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = i32_model.alloca(generator, ctx, "index");
index_ptr.store(ctx, *in_index);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, index_ptr.pointer_cast(generator, ctx, IntModel(Byte), ""));
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr = user_slice_model.alloca(generator, ctx, "user_slice");
in_rust_slice.write_to_user_slice(generator, ctx, user_slice_ptr);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, IntModel(Byte), ""));
}
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
}
}
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
pub fn alloca_ndindexes<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
in_ndindexes: &[RustNDIndex<'ctx>],
) -> (Int<'ctx, SizeT>, Ptr<'ctx, StructModel<NDIndex>>) {
let sizet_model = IntModel(SizeT);
let ndindex_model = StructModel(NDIndex);
let num_ndindexes = sizet_model.constant(generator, ctx.ctx, in_ndindexes.len() as u64);
let ndindexes =
ndindex_model.array_alloca(generator, ctx, num_ndindexes.value, "ndindexes");
for (i, in_ndindex) in in_ndindexes.iter().enumerate() {
let i = sizet_model.constant(generator, ctx.ctx, i as u64);
let pndindex = ndindexes.offset(generator, ctx, i.value, "");
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
}
(num_ndindexes, ndindexes)
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Get the ndims [`Type`] after indexing with a given slice.
#[must_use]
pub fn deduce_ndims_after_indexing_with(&self, indexes: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indexes {
match index {
RustNDIndex::SingleElement(_) => {
ndims -= 1; // Single elements decrements ndims
}
RustNDIndex::NewAxis => {
ndims += 1; // `np.newaxis` / `none` adds a new axis
}
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
}
}
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
///
/// This function behaves like NumPy's ndarray indexing, but if the indexes index
/// into a single element, an unsized ndarray is returned.
#[must_use]
pub fn index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indexes: &[RustNDIndex<'ctx>],
name: &str,
) -> Self {
let dst_ndims = self.deduce_ndims_after_indexing_with(indexes);
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims, name);
let (num_indexes, indexes) = RustNDIndex::alloca_ndindexes(generator, ctx, indexes);
call_nac3_ndarray_index(
generator,
ctx,
num_indexes,
indexes,
self.instance,
dst_ndarray.instance,
);
dst_ndarray
}
}
pub mod util {
use itertools::Itertools;
use nac3parser::ast::{Constant, Expr, ExprKind};
use crate::{
codegen::{expr::gen_slice, model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
use super::{RustNDIndex, RustUserSlice};
/// Generate LLVM code to transform an ndarray subscript expression to
/// its list of [`RustNDIndex`]
///
/// i.e.,
/// ```python
/// my_ndarray[::3, 1, :2:]
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
/// ```
pub fn gen_ndarray_subscript_ndindexes<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
subscript: &Expr<Option<Type>>,
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
let i32_model = IntModel(Int32);
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// So we first "flatten" out the slice expression
let index_exprs = match &subscript.node {
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
_ => vec![subscript],
};
// Process all index expressions
let mut rust_ndindexes: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
for index_expr in index_exprs {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
// Helper function here to deduce code duplication
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(RustUserSlice { start: lower, stop: upper, step })
} else if let ExprKind::Constant { value: Constant::Ellipsis, .. } = &index_expr.node {
// Handle '...'
RustNDIndex::Ellipsis
} else {
match &*ctx.unifier.get_ty(index_expr.custom.unwrap()) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap() =>
{
// Handle `np.newaxis` / `None`
RustNDIndex::NewAxis
}
_ => {
// Treat and handle everything else as a single element index.
let index =
generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
ctx,
generator,
ctx.primitives.int32, // Must be int32, this checks for illegal values
)?;
let index = i32_model.check_value(generator, ctx.ctx, index).unwrap();
RustNDIndex::SingleElement(index)
}
}
};
rust_ndindexes.push(ndindex);
}
Ok(rust_ndindexes)
}
}

View File

@ -0,0 +1,200 @@
use itertools::Itertools;
use crate::{
codegen::{
object::ndarray::{AnyObject, NDArrayObject},
stmt::gen_for_callback,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
use super::{nditer::NDIterHandle, scalar::ScalarOrNDArray, NDArrayOut};
impl<'ctx> NDArrayObject<'ctx> {
/// TODO: Document me. Has complex behavior.
/// and explain why `ret_dtype` has to be specified beforehand.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[Self],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[AnyObject<'ctx>],
) -> Result<AnyObject<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray = NDArrayObject::alloca(
generator,
ctx,
dtype,
broadcast_result.ndims,
"mapped_ndarray",
);
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
result_ndarray.create_data(generator, ctx);
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.check_can_be_written_by_out(
generator,
ctx,
broadcast_result.ndims,
broadcast_result.shape,
);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_next()`.
// `in_nditers`' `has_next()`s should return the same value.
Ok(out_nditer.has_next(generator, ctx).value)
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars =
in_nditers.iter().map(|nditer| nditer.get_scalar(generator, ctx)).collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
// Sanity check on result's ty
assert!(ctx.unifier.unioned(result.ty, out_ndarray.dtype));
let p = out_nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, result.value).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
out: NDArrayOut<'ctx>,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
AnyObject<'ctx>,
) -> Result<AnyObject<'ctx>, String>,
{
NDArrayObject::broadcasting_starmap(
generator,
ctx,
&[*self],
out,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// TODO: Document me. Has complex behavior.
/// and explain why `ret_dtype` has to be specified beforehand.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[Self],
ret_dtype: Type,
mapping: MappingFn,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[AnyObject<'ctx>],
) -> Result<AnyObject<'ctx>, String>,
{
// Check if all inputs are AnyObjects
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalar = mapping(generator, ctx, &scalars)?;
// Sanity check on scalar's type
assert!(ctx.unifier.unioned(scalar.ty, ret_dtype));
Ok(ScalarOrNDArray::Scalar(scalar))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.as_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayObject::broadcasting_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_dtype: Type,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
AnyObject<'ctx>,
) -> Result<AnyObject<'ctx>, String>,
{
ScalarOrNDArray::broadcasting_starmap(
generator,
ctx,
&[*self],
ret_dtype,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}

View File

@ -0,0 +1,831 @@
pub mod array;
pub mod broadcast;
pub mod factory;
pub mod functions;
pub mod indexing;
pub mod mapping;
pub mod nalgebra;
pub mod nditer;
pub mod product;
pub mod scalar;
pub mod shape_util;
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
call_nac3_ndarray_is_c_contiguous, call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
call_nac3_ndarray_resolve_and_check_new_shape, call_nac3_ndarray_set_strides_by_shape,
call_nac3_ndarray_size, call_nac3_ndarray_transpose,
call_nac3_ndarray_util_assert_output_shape_same,
},
model::*,
stmt::{gen_for_callback, BreakContinueHooks},
structure::{NDArray, SimpleNDArray},
CodeGenContext, CodeGenerator,
},
toplevel::{
helper::{create_ndims, extract_ndims},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
typecheck::typedef::Type,
};
use indexing::RustNDIndex;
use inkwell::{
context::Context,
types::BasicType,
values::{BasicValue, PointerValue},
AddressSpace, IntPredicate,
};
use nditer::NDIterHandle;
use scalar::ScalarOrNDArray;
use util::call_memcpy_model;
use super::{tuple::TupleObject, AnyObject};
/// A NAC3 Python ndarray object.
#[derive(Debug, Clone, Copy)]
pub struct NDArrayObject<'ctx> {
pub dtype: Type,
pub ndims: u64,
pub instance: Ptr<'ctx, StructModel<NDArray>>,
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create an [`NDArrayObject`] from an LLVM value and its typechecker [`Type`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
}
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
/// `dtype` and `ndims`.
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: V,
dtype: Type,
ndims: u64,
) -> Self {
let pndarray_model = PtrModel(StructModel(NDArray));
let value = pndarray_model.check_value(generator, ctx.ctx, value).unwrap();
NDArrayObject { dtype, ndims, instance: value }
}
/// Forget that this is an ndarray and convert to an [`AnyObject`].
pub fn to_any_object(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
let ty = self.get_ndarray_type(ctx);
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
}
/// Create a [`SimpleNDArray`] from the contents of this ndarray.
///
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
///
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
/// the returned [`SimpleNDArray`] and copy contents of this ndarray to there.
///
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`SimpleNDArray`]
/// will have the same `data` field as this ndarray.
///
/// The `item_model` sets the [`Model`] of the returned [`SimpleNDArray`]'s `Item` model, and should match the
/// `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics.
pub fn make_simple_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
item_model: Item,
name: &str,
) -> Ptr<'ctx, StructModel<SimpleNDArray<Item>>> {
// Sanity check on `self.dtype` and `item_model`.
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
let simple_ndarray_model = StructModel(SimpleNDArray { item: item_model });
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
// Allocate and setup the resulting [`SimpleNDArray`].
let result = simple_ndarray_model.alloca(generator, ctx, name);
// Set ndims and shape.
let ndims = self.get_ndims(generator, ctx.ctx);
result.set(ctx, |f| f.ndims, ndims);
let shape = self.instance.get(generator, ctx, |f| f.shape, "shape");
result.set(ctx, |f| f.shape, shape);
// Set data, but we do things differently if this ndarray is contiguous.
let is_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb; This ndarray is contiguous.
let data = self.instance.get(generator, ctx, |f| f.data, "");
let data = data.pointer_cast(generator, ctx, item_model, "");
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
// TODO: Reimplement this? This method does give us the contiguous `data`, but
// this creates a few extra bytes of useless information because an entire NDArray
// is allocated. Though this is super convenient.
let data = self.make_copy(generator, ctx, "").instance.get(generator, ctx, |f| f.data, "");
let data = data.pointer_cast(generator, ctx, item_model, "");
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition to end_bb for continuation
ctx.builder.position_at_end(end_bb);
result
}
/// Create an [`NDArrayObject`] from a [`SimpleNDArray`].
///
/// This operation is super cheap. The newly created [`NDArray`] will not copy contents
/// from `simple_ndarray`, but only having its `data` and `shape` pointing to `simple_array`.
pub fn from_simple_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
simple_ndarray: Ptr<'ctx, StructModel<SimpleNDArray<Item>>>,
dtype: Type,
ndims: u64,
) -> Self {
// Sanity check on `dtype` and `simple_array`'s `Item` model.
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
simple_ndarray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
let byte_model = IntModel(Byte);
// TODO: Check if `ndims` is consistent with that in `simple_array`?
// Allocate the resulting ndarray.
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims, "from_simple_ndarray");
// Set data, shape by simply copying addresses.
let data = simple_ndarray
.get(generator, ctx, |f| f.data, "")
.pointer_cast(generator, ctx, byte_model, "data");
ndarray.instance.set(ctx, |f| f.data, data);
let shape = simple_ndarray.get(generator, ctx, |f| f.shape, "shape");
ndarray.instance.set(ctx, |f| f.shape, shape);
// Set strides. We know `data` is contiguous.
ndarray.update_strides_by_shape(generator, ctx);
ndarray
}
/// Get the typechecker ndarray type of this [`NDArrayObject`].
pub fn get_ndarray_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, SizeT> {
call_nac3_ndarray_size(generator, ctx, self.instance)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, SizeT> {
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, SizeT> {
call_nac3_ndarray_len(generator, ctx, self.instance)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, Bool> {
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
}
/// Get the pointer to the n-th (0-based) element.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
///
/// There is no out-of-bounds check.
pub fn get_nth_pointer<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Int<'ctx, SizeT>,
name: &str,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), name)
.unwrap()
}
/// Get the n-th (0-based) scalar.
///
/// There is no out-of-bounds check.
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Int<'ctx, SizeT>,
) -> AnyObject<'ctx> {
let p = self.get_nth_pointer(generator, ctx, nth, "value");
let value = ctx.builder.build_load(p, "value").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Set the n-th (0-based) scalar.
///
/// There is no out-of-bounds check.
pub fn set_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Int<'ctx, SizeT>,
scalar: AnyObject<'ctx>,
) {
// Sanity check on scalar's `dtype`
assert!(ctx.unifier.unioned(scalar.ty, self.dtype));
let pscalar = self.get_nth_pointer(generator, ctx, nth, "pscalar");
ctx.builder.build_store(pscalar, scalar.value).unwrap();
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Please refer to the IRRT implementation to see its purpose.
pub fn update_strides_by_shape<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayObject<'ctx>,
) {
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated on the stack.
//e
/// The returned ndarray's content will be:
/// - `data`: set to `nullptr`.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
name: &str,
) -> Self {
let sizet_model = IntModel(SizeT);
let ndarray_model = StructModel(NDArray);
let ndarray_data_model = PtrModel(IntModel(Byte));
let pndarray = ndarray_model.alloca(generator, ctx, name);
let data = ndarray_data_model.nullptr(generator, ctx.ctx);
pndarray.set(ctx, |f| f.data, data);
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
let itemsize =
sizet_model.s_extend_or_bit_cast(generator, ctx, itemsize, "alloca_itemsize");
pndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = sizet_model.constant(generator, ctx.ctx, ndims);
pndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = sizet_model.array_alloca(generator, ctx, ndims_val.value, "alloca_shape");
pndarray.set(ctx, |f| f.shape, shape);
let strides = sizet_model.array_alloca(generator, ctx, ndims_val.value, "alloca_strides");
pndarray.set(ctx, |f| f.strides, strides);
NDArrayObject { dtype, ndims, instance: pndarray }
}
/// Convenience function.
/// Like [`NDArrayObject::alloca_uninitialized`] but directly takes the typechecker type of the ndarray.
pub fn alloca_ndarray_type<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ty: Type,
name: &str,
) -> Self {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
Self::alloca(generator, ctx, dtype, ndims, name)
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[u64],
name: &str,
) -> Self {
let sizet_model = IntModel(SizeT);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64, name);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
for (i, dim) in shape.iter().enumerate() {
let dim = sizet_model.constant(generator, ctx.ctx, *dim);
dst_shape.offset_const(generator, ctx, i as u64, "").store(ctx, dim);
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[Int<'ctx, SizeT>],
name: &str,
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64, name);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(generator, ctx, i as u64, "").store(ctx, *dim);
}
ndarray
}
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
///
/// The new ndarray will own its data and will be C-contiguous.
#[must_use]
pub fn make_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: &str,
) -> Self {
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims, name);
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx, "shape");
clone.copy_shape_from_array(generator, ctx, shape);
clone.create_data(generator, ctx);
clone.copy_data_from(generator, ctx, *self);
clone
}
/// Get this ndarray's `ndims` as an LLVM constant.
pub fn get_ndims<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Int<'ctx, SizeT> {
let sizet_model = IntModel(SizeT);
sizet_model.constant(generator, ctx, self.ndims)
}
/// Get if this ndarray's `np.size` is `0` - containing no content.
pub fn is_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, Bool> {
let sizet_model = IntModel(SizeT);
let size = self.size(generator, ctx);
size.compare(ctx, IntPredicate::EQ, sizet_model.const_0(generator, ctx.ctx), "is_empty")
}
/// Return true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
///
/// This is a staticially known property of ndarrays. This is why it is returning
/// a Rust boolean instead of a [`BasicValue`].
#[must_use]
pub fn is_unsized(&self) -> bool {
self.ndims == 0
}
/// If this ndarray is unsized, return its sole value as a [`AnyObject`]. Otherwise, do nothing.
pub fn split_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ScalarOrNDArray<'ctx> {
if self.is_unsized() {
// NOTE: `np.size(self) == 0` here is never possible.
let sizet_model = IntModel(SizeT);
let zero = sizet_model.const_0(generator, ctx.ctx);
ScalarOrNDArray::Scalar(self.get_nth_scalar(generator, ctx, zero))
} else {
ScalarOrNDArray::NDArray(*self)
}
}
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
/// The allocated data buffer is considered to be *owned* by the ndarray.
///
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
///
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
pub fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
let byte_model = IntModel(Byte);
let nbytes = self.nbytes(generator, ctx);
let data = byte_model.array_alloca(generator, ctx, nbytes.value, "data");
self.instance.set(ctx, |f| f.data, data);
self.update_strides_by_shape(generator, ctx);
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_shape: Ptr<'ctx, IntModel<SizeT>>,
) {
let dst_shape = self.instance.get(generator, ctx, |f| f.shape, "dst_shape");
let num_items = self.get_ndims(generator, ctx.ctx).value;
call_memcpy_model(generator, ctx, dst_shape, src_shape, num_items);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape, "src_shape");
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_strides: Ptr<'ctx, IntModel<SizeT>>,
) {
let dst_strides = self.instance.get(generator, ctx, |f| f.strides, "dst_strides");
let num_items = self.get_ndims(generator, ctx.ctx).value;
call_memcpy_model(generator, ctx, dst_strides, src_strides, num_items);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides, "src_strides");
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Iterate through every element in the ndarray.
///
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterHandle<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
/// Make sure the ndarray is at least `ndmin`-dimensional.
///
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
#[must_use]
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndmin: u64,
) -> Self {
if self.ndims < ndmin {
let mut indices = vec![];
for _ in self.ndims..ndmin {
indices.push(RustNDIndex::NewAxis);
}
indices.push(RustNDIndex::Ellipsis);
self.index(generator, ctx, &indices, "atleast_nd_ndarray")
} else {
*self
}
}
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
scalar: AnyObject<'ctx>,
) {
// Sanity check on scalar's type.
assert!(ctx.unifier.unioned(self.dtype, scalar.ty));
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, scalar.value).unwrap();
Ok(())
})
.unwrap();
}
/// Create a reshaped view on this ndarray like `np.reshape()`.
///
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
///
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
///
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
/// * `new_shape` - The target shape to do `np.reshape()`.
#[must_use]
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
new_ndims: u64,
new_shape: Ptr<'ctx, IntModel<SizeT>>,
) -> Self {
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
// without copying data. Look into how numpy does it.
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
let dst_ndarray =
NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims, "reshaped_ndarray");
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
// Reolsve negative indices
let size = self.size(generator, ctx);
let dst_ndims = dst_ndarray.get_ndims(generator, ctx.ctx);
let dst_shape =
dst_ndarray.instance.get(generator, ctx, |f| f.shape, "reshaped_ndarray_shape");
call_nac3_ndarray_resolve_and_check_new_shape(generator, ctx, size, dst_ndims, dst_shape);
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb: reshape is possible without copying
ctx.builder.position_at_end(then_bb);
dst_ndarray.update_strides_by_shape(generator, ctx);
dst_ndarray.instance.set(
ctx,
|f| f.data,
self.instance.get(generator, ctx, |f| f.data, "data"),
);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb: reshape is impossible without copying
ctx.builder.position_at_end(else_bb);
dst_ndarray.create_data(generator, ctx);
dst_ndarray.copy_data_from(generator, ctx, *self);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition for continuation
ctx.builder.position_at_end(end_bb);
dst_ndarray
}
/// Create a flattened view of this ndarray, like `np.ravel()`.
///
/// Uses [`NDArrayObject::reshape_or_copy`] under-the-hood so ndarray may or may not be copied.
#[must_use]
pub fn ravel_or_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Self {
// Define models
let sizet_model = IntModel(SizeT);
let num0 = sizet_model.const_0(generator, ctx.ctx);
let num1 = sizet_model.const_1(generator, ctx.ctx);
let num_neg1 = sizet_model.const_all_1s(generator, ctx.ctx);
// Create `[-1]` and pass to `reshape_or_copy`.
let new_shape = sizet_model.array_alloca(generator, ctx, num1.value, "new_shape");
new_shape.offset(generator, ctx, num0.value, "").store(ctx, num_neg1);
self.reshape_or_copy(generator, ctx, 1, new_shape)
}
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
#[must_use]
pub fn transpose<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
axes: Option<Ptr<'ctx, IntModel<SizeT>>>,
) -> Self {
// Define models
let sizet_model = IntModel(SizeT);
let transposed_ndarray =
NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims, "transposed_ndarray");
let num_axes = self.get_ndims(generator, ctx.ctx);
// `axes = nullptr` if `axes` is unspecified.
let axes = axes.unwrap_or_else(|| PtrModel(sizet_model).nullptr(generator, ctx.ctx));
call_nac3_ndarray_transpose(
generator,
ctx,
self.instance,
transposed_ndarray.instance,
num_axes,
axes,
);
transposed_ndarray
}
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
///
/// Raise an exception if the shapes do not match.
pub fn check_can_be_written_by_out<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
out_ndims: u64,
out_shape: Ptr<'ctx, IntModel<SizeT>>,
) {
let sizet_model = IntModel(SizeT);
let ndarray_ndims = self.get_ndims(generator, ctx.ctx);
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape, "shape");
let output_ndims = sizet_model.constant(generator, ctx.ctx, out_ndims);
let output_shape = out_shape;
call_nac3_ndarray_util_assert_output_shape_same(
generator,
ctx,
ndarray_ndims,
ndarray_shape,
output_ndims,
output_shape,
);
}
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
///
/// The returned integers in the tuple are in int32.
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Don't return a tuple of int32s.
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.shape, "")
.offset_const(generator, ctx, i, "")
.load(generator, ctx, "dim");
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::create(generator, ctx, objects, "shape")
}
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
///
/// The returned integers in the tuple are in int32.
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Don't return a tuple of int32s.
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.strides, "")
.offset_const(generator, ctx, i, "")
.load(generator, ctx, "dim");
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::create(generator, ctx, objects, "strides")
}
}
/// TODO: Document me
#[derive(Debug, Clone, Copy)]
pub enum NDArrayOut<'ctx> {
NewNDArray { dtype: Type },
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
}

View File

@ -0,0 +1,53 @@
use inkwell::values::{BasicValue, BasicValueEnum};
use crate::codegen::{model::*, structure::SimpleNDArray, CodeGenContext, CodeGenerator};
use super::NDArrayObject;
pub fn perform_nalgebra_call<'ctx, 'a, const NUM_INPUTS: usize, const NUM_OUTPUTS: usize, G, F>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: [NDArrayObject<'ctx>; NUM_INPUTS],
output_ndims: [u64; NUM_OUTPUTS],
invoke_function: F,
) -> [NDArrayObject<'ctx>; NUM_OUTPUTS]
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut CodeGenContext<'ctx, 'a>,
[BasicValueEnum<'ctx>; NUM_INPUTS],
[BasicValueEnum<'ctx>; NUM_OUTPUTS],
),
{
// TODO: Allow stacked inputs. See NumPy docs.
let f64_model = FloatModel(Float64);
let simple_ndarray_model = StructModel(SimpleNDArray { item: f64_model });
// Prepare inputs & outputs and invoke
let inputs = inputs.map(|input| {
// Sanity check. Typechecker ensures this.
assert!(ctx.unifier.unioned(input.dtype, ctx.primitives.float));
input
.make_simple_ndarray(generator, ctx, FloatModel(Float64), "nalgebra_input")
.value
.as_basic_value_enum()
});
let outputs = [simple_ndarray_model.alloca(generator, ctx, "nalgebra_output"); NUM_OUTPUTS];
invoke_function(ctx, inputs, outputs.map(|output| output.value.as_basic_value_enum()));
// Turn the outputs into strided NDArrays
let mut output_i = 0;
outputs.map(|output| {
let out = NDArrayObject::from_simple_ndarray(
generator,
ctx,
output,
ctx.primitives.float,
output_ndims[output_i],
);
output_i += 1;
out
})
}

View File

@ -0,0 +1,88 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use crate::codegen::{
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::AnyObject,
structure::NDIter,
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
#[derive(Debug, Clone)]
pub struct NDIterHandle<'ctx> {
ndarray: NDArrayObject<'ctx>,
instance: Ptr<'ctx, StructModel<NDIter>>,
indices: Ptr<'ctx, IntModel<SizeT>>,
}
impl<'ctx> NDIterHandle<'ctx> {
pub fn new<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
) -> Self {
let nditer = StructModel(NDIter).alloca(generator, ctx, "nditer");
let ndims = ndarray.get_ndims(generator, ctx.ctx);
let indices = IntModel(SizeT).array_alloca(generator, ctx, ndims.value, "indices");
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
NDIterHandle { ndarray, instance: nditer, indices }
}
#[must_use]
pub fn has_next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, Bool> {
call_nac3_nditer_has_next(generator, ctx, self.instance)
}
pub fn next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_nditer_next(generator, ctx, self.instance);
}
#[must_use]
pub fn get_pointer<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
let p = self.instance.get(generator, ctx, |f| f.element, "element");
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
#[must_use]
pub fn get_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
let p = self.get_pointer(generator, ctx);
let value = ctx.builder.build_load(p, "value").unwrap();
AnyObject { ty: self.ndarray.dtype, value }
}
#[must_use]
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, SizeT> {
self.instance.get(generator, ctx, |f| f.nth, "index")
}
#[must_use]
pub fn get_indices(&self) -> Ptr<'ctx, IntModel<SizeT>> {
self.indices
}
}

View File

@ -0,0 +1,159 @@
use std::cmp::max;
use crate::codegen::{
irrt::{
call_nac3_ndarray_float64_matmul_at_least_2d, call_nac3_ndarray_matmul_calculate_shapes,
},
model::*,
object::ndarray::indexing::RustNDIndex,
CodeGenContext, CodeGenerator,
};
use super::{NDArrayObject, NDArrayOut};
impl<'ctx> NDArrayObject<'ctx> {
/// TODO: Document me
fn matmul_helper<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a: Self,
b: Self,
) -> Self {
assert!(a.ndims >= 2);
assert!(b.ndims >= 2);
assert!(ctx.unifier.unioned(ctx.primitives.float, a.dtype));
assert!(ctx.unifier.unioned(ctx.primitives.float, b.dtype));
let sizet_model = IntModel(SizeT);
let final_ndims_int = max(a.ndims, b.ndims);
let a_ndims = a.get_ndims(generator, ctx.ctx);
let a_shape = a.instance.get(generator, ctx, |f| f.shape, "a_shape");
let b_ndims = b.get_ndims(generator, ctx.ctx);
let b_shape = b.instance.get(generator, ctx, |f| f.shape, "b_shape");
let final_ndims = sizet_model.constant(generator, ctx.ctx, final_ndims_int);
let new_a_shape =
sizet_model.array_alloca(generator, ctx, final_ndims.value, "new_a_shape");
let new_b_shape =
sizet_model.array_alloca(generator, ctx, final_ndims.value, "new_b_shape");
let dst_shape = sizet_model.array_alloca(generator, ctx, final_ndims.value, "dst_shape");
call_nac3_ndarray_matmul_calculate_shapes(
generator,
ctx,
a_ndims,
a_shape,
b_ndims,
b_shape,
final_ndims,
new_a_shape,
new_b_shape,
dst_shape,
);
let new_a = a.broadcast_to(generator, ctx, final_ndims_int, new_a_shape);
let new_b = b.broadcast_to(generator, ctx, final_ndims_int, new_b_shape);
let dst = NDArrayObject::alloca(
generator,
ctx,
ctx.primitives.float,
final_ndims_int,
"matmul_result",
);
dst.copy_shape_from_array(generator, ctx, dst_shape);
dst.create_data(generator, ctx);
call_nac3_ndarray_float64_matmul_at_least_2d(
generator,
ctx,
new_a.instance,
new_b.instance,
dst.instance,
);
dst
}
/// Perform `np.matmul` according to the rules in
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
///
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`].
pub fn matmul<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a: Self,
b: Self,
out: NDArrayOut<'ctx>,
) -> Self {
// Sanity check, but type inference should prevent this.
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
/*
If both arguments are 2-D they are multiplied like conventional matrices.
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
*/
let new_a = if a.ndims == 1 {
// Prepend 1 to its dimensions
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis], "new_a")
} else {
a
};
let new_b = if b.ndims == 1 {
// Append 1 to its dimensions
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis], "new_a")
} else {
b
};
// NOTE: `result` will always be a newly allocated ndarray.
// Current implementation cannot do in-place matrix muliplication.
let mut result = NDArrayObject::matmul_helper(generator, ctx, new_a, new_b);
let i32_model = IntModel(Int32); // TODO: Upgrade to SizeT
let zero = i32_model.const_0(generator, ctx.ctx);
if a.ndims == 1 {
// Remove the prepended 1
result = result.index(
generator,
ctx,
&[RustNDIndex::SingleElement(zero), RustNDIndex::Ellipsis],
"result_no_prepend_1",
);
}
if b.ndims == 1 {
// Remove the appended 1
result = result.index(
generator,
ctx,
&[RustNDIndex::Ellipsis, RustNDIndex::SingleElement(zero)],
"result_no_append_1",
);
}
match out {
NDArrayOut::NewNDArray { dtype } => {
// We don't support auto-casting right now, nor anything other than float64.
// Force the output dtype to be float64.
assert!(ctx.unifier.unioned(ctx.primitives.float, dtype));
result
}
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
// TODO: It is possible to check the shapes before computing the matmul to save resources.
let result_shape = result.instance.get(generator, ctx, |f| f.shape, "result_shape");
out_ndarray.check_can_be_written_by_out(generator, ctx, result.ndims, result_shape);
// TODO: We can just set `out_ndarray.data` to `result.data`. Should we?
out_ndarray.copy_data_from(generator, ctx, result);
out_ndarray
}
}
}
}

View File

@ -0,0 +1,131 @@
use inkwell::values::{BasicValue, BasicValueEnum};
use crate::{
codegen::{model::*, object::AnyObject, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
use super::NDArrayObject;
impl<'ctx> AnyObject<'ctx> {
/// Promote this scalar to an unsized ndarray (like doing `np.asarray`).
///
/// The scalar value is allocated onto the stack, and the ndarray's `data` will point to that
/// allocated value.
pub fn as_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayObject<'ctx> {
let pbyte_model = PtrModel(IntModel(Byte));
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(self.value.get_type(), "as_ndarray_scalar").unwrap();
ctx.builder.build_store(data, self.value).unwrap();
let data = pbyte_model.pointer_cast(generator, ctx, data, "data");
let ndarray = NDArrayObject::alloca(generator, ctx, self.ty, 0, "scalar_ndarray");
ndarray.instance.set(ctx, |f| f.data, data);
ndarray
}
}
/// A convenience enum for implementing scalar/ndarray agnostic utilities.
#[derive(Debug, Clone, Copy)]
pub enum ScalarOrNDArray<'ctx> {
Scalar(AnyObject<'ctx>),
NDArray(NDArrayObject<'ctx>),
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
#[must_use]
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
match self {
ScalarOrNDArray::Scalar(scalar) => scalar.value,
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
}
}
#[must_use]
pub fn into_scalar(&self) -> AnyObject<'ctx> {
match self {
ScalarOrNDArray::NDArray(_ndarray) => panic!("Got NDArray"),
ScalarOrNDArray::Scalar(scalar) => *scalar,
}
}
#[must_use]
pub fn into_ndarray(&self) -> NDArrayObject<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
ScalarOrNDArray::Scalar(_scalar) => panic!("Got Scalar"),
}
}
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
/// - If this is an ndarray, the ndarray is returned.
/// - If this is a scalar, an unsized ndarray view is created on it.
pub fn as_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayObject<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
ScalarOrNDArray::Scalar(scalar) => scalar.as_ndarray(generator, ctx),
}
}
#[must_use]
pub fn dtype(&self) -> Type {
match self {
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
}
}
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
}
}
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(_scalar) => Err(()),
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
}
}
}
/// Split an [`AnyObject`] into a [`ScalarOrNDArray`] depending on its [`Type`].
pub fn split_scalar_or_ndarray<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> ScalarOrNDArray<'ctx> {
// TODO: Automatically convert a list into an ndarray?
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
ScalarOrNDArray::NDArray(ndarray)
}
_ => {
let scalar = AnyObject { ty: object.ty, value: object.value };
ScalarOrNDArray::Scalar(scalar)
}
}
}

View File

@ -0,0 +1,111 @@
use util::gen_for_model_auto;
use crate::{
codegen::{
model::*,
object::{list::ListObject, tuple::TupleObject, AnyObject},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::TypeEnum,
};
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
input_sequence: AnyObject<'ctx>,
) -> (Int<'ctx, SizeT>, Ptr<'ctx, IntModel<SizeT>>) {
let sizet_model = IntModel(SizeT);
let zero = sizet_model.const_0(generator, ctx.ctx);
let one = sizet_model.const_1(generator, ctx.ctx);
// The result `list` to return.
match &*ctx.unifier.get_ty(input_sequence.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
// Check `input_sequence`
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
let len = input_sequence.instance.gep(ctx, |f| f.len).load(generator, ctx, "len");
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_model_auto(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
// Load the i-th int32 in the input sequence
let int = input_sequence
.instance
.get(generator, ctx, |f| f.items, "")
.offset(generator, ctx, i.value, "")
.load(generator, ctx, "")
.value
.into_int_value();
// Cast to SizeT
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, int, "int");
// Store
result.offset(generator, ctx, i.value, "int").store(ctx, int);
Ok(())
})
.unwrap();
(len, result)
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_sequence = TupleObject::from_object(ctx, input_sequence);
let len_int = input_sequence.len_static();
let len = sizet_model.constant(generator, ctx.ctx, len_int as u64);
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
for i in 0..len_int {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_sequence.get(ctx, i, "dim").value.into_int_value();
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, int, "int");
let offset = sizet_model.constant(generator, ctx.ctx, i as u64);
result.offset(generator, ctx, offset.value, "int").store(ctx, int);
}
(len, result)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_sequence.value.into_int_value();
let len = sizet_model.const_1(generator, ctx.ctx);
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, input_int, "int");
// Storing into result[0]
result.store(ctx, int);
(len, result)
}
_ => panic!(
"encountered unknown sequence type: {}",
ctx.unifier.stringify(input_sequence.ty)
),
}
}

View File

@ -0,0 +1,41 @@
use crate::codegen::{
irrt::calculate_len_for_slice_range, model::*, structure::RangeModel, CodeGenContext,
CodeGenerator,
};
use super::AnyObject;
/// A `range` in NAC3
pub struct RangeObject<'ctx> {
pub instance: Ptr<'ctx, RangeModel>,
}
impl<'ctx> RangeObject<'ctx> {
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
assert!(ctx.unifier.unioned(ctx.primitives.range, object.ty)); // Sanity check on type.
let model = PtrModel(RangeModel::default());
let instance = model.check_value(generator, ctx.ctx, object.value).unwrap();
RangeObject { instance }
}
/// Get the `len()` of this range.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, Int32> {
let start = self.instance.gep_start(generator, ctx, "").load(generator, ctx, "start");
let stop = self.instance.gep_stop(generator, ctx, "").load(generator, ctx, "stop");
let step = self.instance.gep_step(generator, ctx, "").load(generator, ctx, "step");
// TODO: Refactor this
let len =
calculate_len_for_slice_range(generator, ctx, start.value, stop.value, step.value);
IntModel(Int32).check_value(generator, ctx.ctx, len).unwrap()
}
}

View File

@ -0,0 +1,113 @@
use core::panic;
use inkwell::values::StructValue;
use itertools::Itertools;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
use super::AnyObject;
/// A NAC3 tuple object.
///
/// NOTE: This struct has no copy trait.
#[derive(Debug, Clone)]
pub struct TupleObject<'ctx> {
/// The type of the tuple.
pub tys: Vec<Type>,
/// The underlying LLVM value of this tuple.
pub value: StructValue<'ctx>,
}
impl<'ctx> TupleObject<'ctx> {
// NOTE: There is no Model abstraction for Tuples with arbitrary lengths.
// Everything has to be done raw with Inkwell.
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
// TODO: Keep `is_vararg_ctx` from TTuple?
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
panic!(
"Expected type to be a TypeEnum::TTuple, got {}",
ctx.unifier.stringify(object.ty)
);
};
let value = object.value.into_struct_value();
let value_num_fields = value.get_type().count_fields() as usize;
assert!(
value_num_fields == tys.len(),
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
tys.len(),
value_num_fields
);
TupleObject { tys: tys.clone(), value }
}
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
pub fn create<I, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
objects: I,
name: &str,
) -> Self
where
I: IntoIterator<Item = AnyObject<'ctx>>,
{
let (values, tys): (Vec<_>, Vec<_>) =
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
for (i, val) in values.into_iter().enumerate() {
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
ctx.builder.build_store(pval, val).unwrap();
}
let value = ctx.builder.build_load(pllvm_tuple, name).unwrap().into_struct_value();
TupleObject { tys, value }
}
/// Get the `len()` of this tuple statically.
///
/// We statically know the lengths of tuples in NAC3 when compiling.
#[must_use]
pub fn len_static(&self) -> usize {
self.tys.len()
}
/// Get the `len()` of this tuple.
#[must_use]
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Int<'ctx, SizeT> {
IntModel(SizeT).constant(generator, ctx.ctx, self.len_static() as u64)
}
/// Check if this tuple is an empty/unit tuple.
#[must_use]
pub fn is_empty(&self) -> bool {
self.len_static() == 0
}
/// Get the `i`-th (0-based) object in this tuple.
pub fn get(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize, name: &str) -> AnyObject<'ctx> {
assert!(
i < self.len_static(),
"Tuple object with length {} have index {i}",
self.len_static()
);
let value = ctx.builder.build_extract_value(self.value, i as u32, name).unwrap();
let ty = self.tys[i];
AnyObject { ty, value }
}
}

View File

@ -1,3 +1,27 @@
use super::model::*;
use super::object::ndarray::indexing::util::gen_ndarray_subscript_ndindexes;
use super::object::ndarray::scalar::split_scalar_or_ndarray;
use super::object::ndarray::NDArrayObject;
use super::object::AnyObject;
use super::{
super::symbol_resolver::ValueEnum,
expr::destructure_range,
irrt::{handle_slice_indices, list_slice_assignment},
structure::{CSlice, Exception},
CodeGenContext, CodeGenerator, Int32, IntModel, Ptr, StructModel,
};
use crate::{
codegen::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::gen_binop_expr,
gen_in_range_check,
},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
};
use inkwell::{
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
@ -6,28 +30,10 @@ use inkwell::{
IntPredicate,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
};
use super::{
expr::{destructure_range, gen_binop_expr},
gen_in_range_check,
irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable,
values::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
};
/// See [`CodeGenerator::gen_var_alloc`].
pub fn gen_var<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
@ -121,7 +127,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
return Ok(None);
};
let BasicValueEnum::PointerValue(ptr) = val else {
codegen_unreachable!(ctx);
unreachable!();
};
unsafe {
ctx.builder.build_in_bounds_gep(
@ -135,7 +141,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
}
.unwrap()
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}))
}
@ -176,14 +182,6 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
}
}
let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?;
// Perform i1 <-> i8 conversion as needed
let val = if ctx.unifier.unioned(target.custom.unwrap(), ctx.primitives.bool) {
generator.bool_to_i8(ctx, val.into_int_value()).into()
} else {
val
};
ctx.builder.build_store(ptr, val).unwrap();
}
};
@ -201,12 +199,12 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Deconstruct the tuple `value`
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
else {
codegen_unreachable!(ctx)
unreachable!()
};
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
codegen_unreachable!(ctx);
unreachable!();
};
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
@ -266,7 +264,7 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Now assign with that sub-tuple to the starred target.
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
} else {
codegen_unreachable!(ctx) // The typechecker ensures this
unreachable!() // The typechecker ensures this
}
// Handle assignment after the starred target
@ -310,13 +308,11 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?
.into_pointer_value();
let target = ListValue::from_pointer_value(target, llvm_usize, None);
let target = ListValue::from_ptr_val(target, llvm_usize, None);
if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice
let ExprKind::Slice { lower, upper, step } = &key.node else {
codegen_unreachable!(ctx)
};
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
@ -331,7 +327,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
let value =
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
let value = ListValue::from_pointer_value(value, llvm_usize, None);
let value = ListValue::from_ptr_val(value, llvm_usize, None);
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
let Some(src_ind) = handle_slice_indices(
@ -411,7 +407,45 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
// Handle NDArray item assignment
todo!("ndarray subscript assignment is not yet implemented");
// Process target
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?;
let target = AnyObject { value: target, ty: target_ty };
// Process key
let key = gen_ndarray_subscript_ndindexes(generator, ctx, key)?;
// Process value
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
let value = AnyObject { value, ty: value_ty };
/*
Reference code:
```python
target = target[key]
value = np.asarray(value)
shape = np.broadcast_shape((target, value))
target = np.broadcast_to(target, shape)
value = np.broadcast_to(value, shape)
...and finally copy 1-1 from value to target.
```
*/
let target = NDArrayObject::from_object(generator, ctx, target);
let target = target.index(generator, ctx, &key, "assign_target_ndarray");
let value = split_scalar_or_ndarray(generator, ctx, value).as_ndarray(generator, ctx);
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
let target = broadcast_result.ndarrays[0];
let value = broadcast_result.ndarrays[1];
target.copy_data_from(generator, ctx, value);
}
_ => {
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
@ -426,9 +460,7 @@ pub fn gen_for<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else {
codegen_unreachable!(ctx)
};
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -463,15 +495,14 @@ pub fn gen_for<G: CodeGenerator>(
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
let iter_val =
RangeValue::from_pointer_value(iter_val.into_pointer_value(), Some("range"));
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
codegen_unreachable!(ctx)
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
@ -816,7 +847,7 @@ where
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
BreakContinueHooks,
IntValue<'ctx>,
) -> Result<(), String>,
{
@ -914,7 +945,7 @@ pub fn gen_while<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -944,7 +975,7 @@ pub fn gen_while<G: CodeGenerator>(
return Ok(());
};
let BasicValueEnum::IntValue(test) = test else { codegen_unreachable!(ctx) };
let BasicValueEnum::IntValue(test) = test else { unreachable!() };
ctx.builder
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
@ -1092,7 +1123,7 @@ pub fn gen_if<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -1215,11 +1246,11 @@ pub fn exn_constructor<'ctx>(
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
obj_id.0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let defs = ctx.top_level.definitions.read();
let def = defs[zelf_id].read();
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { codegen_unreachable!(ctx) };
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
unsafe {
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
@ -1276,47 +1307,36 @@ pub fn exn_constructor<'ctx>(
pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
exception: Option<&BasicValueEnum<'ctx>>,
exception: Option<Ptr<'ctx, StructModel<Exception>>>,
loc: Location,
) {
if let Some(exception) = exception {
unsafe {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let exception = exception.into_pointer_value();
let file_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(1, false)], "file_ptr")
.unwrap();
let filename = ctx.gen_string(generator, loc.file.0);
ctx.builder.build_store(file_ptr, filename).unwrap();
let row_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(2, false)], "row_ptr")
.unwrap();
ctx.builder.build_store(row_ptr, int32.const_int(loc.row as u64, false)).unwrap();
let col_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(3, false)], "col_ptr")
.unwrap();
ctx.builder.build_store(col_ptr, int32.const_int(loc.column as u64, false)).unwrap();
if let Some(pexn) = exception {
let i32_model = IntModel(Int32);
let cslice_model = StructModel(CSlice);
let current_fun = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let fun_name = ctx.gen_string(generator, current_fun.get_name().to_str().unwrap());
let name_ptr = ctx
.builder
.build_in_bounds_gep(exception, &[zero, int32.const_int(4, false)], "name_ptr")
.unwrap();
ctx.builder.build_store(name_ptr, fun_name).unwrap();
}
// Get and store filename
let filename = loc.file.0;
let filename = ctx.gen_string(generator, &String::from(filename)).value;
let filename = cslice_model.check_value(generator, ctx.ctx, filename).unwrap();
pexn.set(ctx, |f| f.filename, filename);
let row = i32_model.constant(generator, ctx.ctx, loc.row as u64);
pexn.set(ctx, |f| f.line, row);
let column = i32_model.constant(generator, ctx.ctx, loc.column as u64);
pexn.set(ctx, |f| f.column, column);
let current_fn = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let fn_name = ctx.gen_string(generator, current_fn.get_name().to_str().unwrap());
pexn.set(ctx, |f| f.function, fn_name);
let raise = get_builtins(generator, ctx, "__nac3_raise");
let exception = *exception;
ctx.build_call_or_invoke(raise, &[exception], "raise");
ctx.build_call_or_invoke(raise, &[pexn.value.into()], "raise");
} else {
let resume = get_builtins(generator, ctx, "__nac3_resume");
ctx.build_call_or_invoke(resume, &[], "resume");
}
ctx.builder.build_unreachable().unwrap();
}
@ -1327,7 +1347,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
target: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else {
codegen_unreachable!(ctx)
unreachable!()
};
// if we need to generate anything related to exception, we must have personality defined
@ -1404,7 +1424,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) {
*obj_id
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name);
let exn_id = ctx.resolver.get_string_id(&exception_name);
@ -1676,23 +1696,6 @@ pub fn gen_return<G: CodeGenerator>(
} else {
None
};
// Remap boolean return type into i1
let value = value.map(|ret_val| {
// The "return type" of a sret function is in the first parameter
let expected_ty = if ctx.need_sret {
func.get_type().get_param_types()[0]
} else {
func.get_type().get_return_type().unwrap()
};
if matches!(expected_ty, BasicTypeEnum::IntType(ty) if ty.get_bit_width() == 1) {
generator.bool_to_i1(ctx, ret_val.into_int_value()).into()
} else {
ret_val
}
});
if let Some(return_target) = ctx.return_target {
if let Some(value) = value {
ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap();
@ -1703,6 +1706,25 @@ pub fn gen_return<G: CodeGenerator>(
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap();
ctx.builder.build_return(None).unwrap();
} else {
// Remap boolean return type into i1
let value = value.map(|v| {
let expected_ty = func.get_type().get_return_type().unwrap();
let ret_val = v.as_basic_value_enum();
if expected_ty.is_int_type() && ret_val.is_int_value() {
let ret_type = expected_ty.into_int_type();
let ret_val = ret_val.into_int_value();
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, ret_val)
} else {
ret_val
}
.into()
} else {
ret_val
}
});
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value).unwrap();
}
@ -1771,95 +1793,52 @@ pub fn gen_stmt<G: CodeGenerator>(
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => {
if let Some(exc) = exc {
let exn = if let ExprKind::Name { id, .. } = &exc.node {
// Handle "raise Exception" short form
let def_id = ctx.resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), exc.location)
})?;
let def = ctx.top_level.definitions.read();
let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
let TypeEnum::TFunc(signature) =
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
generator
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
.map(Into::into)
} else {
generator.gen_expr(ctx, exc)?
};
let exc = if let Some(v) = exn {
let exc = if let Some(v) = generator.gen_expr(ctx, exc)? {
v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())?
} else {
return Ok(());
};
gen_raise(generator, ctx, Some(&exc), stmt.location);
let pexn_model = PtrModel(StructModel(Exception));
let exn = pexn_model.check_value(generator, ctx.ctx, exc).unwrap();
gen_raise(generator, ctx, Some(exn), stmt.location);
} else {
gen_raise(generator, ctx, None, stmt.location);
}
}
StmtKind::Assert { test, msg, .. } => {
let test = if let Some(v) = generator.gen_expr(ctx, test)? {
v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?
} else {
let byte_model = IntModel(Byte);
let cslice_model = StructModel(CSlice);
let Some(test) = generator.gen_expr(ctx, test)? else {
return Ok(());
};
let test = test.to_basic_value_enum(ctx, generator, ctx.primitives.bool)?;
let test = byte_model.check_value(generator, ctx.ctx, test).unwrap(); // Python `bool` is represented as `i8` in nac3core
// Check `msg`
let err_msg = match msg {
Some(msg) => {
if let Some(v) = generator.gen_expr(ctx, msg)? {
v.to_basic_value_enum(ctx, generator, msg.custom.unwrap())?
} else {
let Some(msg) = generator.gen_expr(ctx, msg)? else {
return Ok(());
}
}
None => ctx.gen_string(generator, "").into(),
};
let msg = msg.to_basic_value_enum(ctx, generator, ctx.primitives.str)?;
cslice_model.check_value(generator, ctx.ctx, msg).unwrap()
}
None => ctx.gen_string(generator, ""),
};
ctx.make_assert_impl(
generator,
generator.bool_to_i1(ctx, test.into_int_value()),
test.value,
"0:AssertionError",
err_msg,
[None, None, None],
stmt.location,
);
}
StmtKind::Global { names, .. } => {
let registered_globals = ctx
.top_level
.definitions
.read()
.iter()
.filter_map(|def| {
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
Some((*simple_name, *ty))
} else {
None
}
})
.collect_vec();
for id in names {
let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else {
return Err(format!("{id} is not a global at {}", stmt.location));
};
let resolver = ctx.resolver.clone();
let ptr = resolver
.get_symbol_value(*id, ctx, generator)
.map(|val| val.to_basic_value_enum(ctx, generator, *ty))
.transpose()?
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ctx.var_assignment.insert(*id, (ptr, None, 0));
}
}
_ => unimplemented!(),
};
Ok(())

Some files were not shown because too many files have changed in this diff Show More