Compare commits

..

36 Commits

Author SHA1 Message Date
2ab7b299b8 core/ndstrides: refactor numpy indexing 2024-07-31 09:53:15 +08:00
86b0d31290 core/ndstrides: pub ScalarOrNDArray::to_basic_value_enum 2024-07-31 09:53:15 +08:00
6369db94ab core/codegen: gen_assign to take in value_ty 2024-07-31 09:53:15 +08:00
3d8240259c core/typecheck: Inferencer allow heterogenerous assignemnt 2024-07-31 09:53:15 +08:00
e4f6adb1ec core/ndstrides: add numpy broadcasting utils 2024-07-31 09:53:15 +08:00
eb295cf7e4 core/ndstrides: implement numpy broadcasting IRRT 2024-07-31 09:53:15 +08:00
7501a086d0 core/irrt: print_value add bool 2024-07-31 09:53:15 +08:00
fb54d5d112 core/ndstrides: add TODO in np_reshape 2024-07-31 09:53:15 +08:00
3dc4b17310 core/ndstrides: introduce NDArrayObject & refactor reshape 2024-07-31 09:53:15 +08:00
7436513b64 core/model: add util.rs & gen_model_memcpy 2024-07-31 09:53:15 +08:00
7e056b9747 core/ndstrides: fix alloca_ndarray comment 2024-07-31 09:53:15 +08:00
ac7cc15d90 core/ndstrides: remove unnecessary Result<_, String> 2024-07-31 09:53:15 +08:00
28e6f23034 core/ndstrides: rewrite and fix np_reshape() bug
Data content should be copied and strides should be updated after
negative indices are resolved.
2024-07-31 09:53:15 +08:00
dfb8bf9748 core/ndstrides: fix and rewrite is_c_contiguous 2024-07-31 09:53:15 +08:00
d5880b119a core/ndstrides: move functions to numpy_new/util.rs 2024-07-31 09:53:15 +08:00
2747869a45 core/ndstrides: implement general ndarray reshaping 2024-07-31 09:53:15 +08:00
bd5cb14d0d core/ndstrides: implement general ndarray basic indexing 2024-07-31 09:53:15 +08:00
4b14609342 core/ndstrides: implement IRRT slice
Needed by ndarray indexing
2024-07-31 09:53:15 +08:00
2211c4d852 core/ndstrides: implement gen_foreach_ndarray_elements & np_{empty,ndarray,zeros,ones,full} 2024-07-31 09:53:15 +08:00
5b9ac9b09c core/ndstrides: implement ndarray len() 2024-07-31 09:53:15 +08:00
02e3ddfce6 core: make get_llvm_type return new NDArray with strides
NOTE: All old numpy functions are now impossible to run, until NDArray
with strides is fully implemented.
2024-07-31 09:53:15 +08:00
8ae9a4294b core/ndstrides: add basic ndarray IRRT functions 2024-07-31 09:53:15 +08:00
e5fe86cc93 core/ndstrides: add ArrayWriter & make_shape_writer 2024-07-31 09:53:15 +08:00
fd3d02bff0 core/ndstrides: add NDArray with strides definition 2024-07-31 09:53:15 +08:00
7502b14d55 core/irrt: add ErrorContext 2024-07-31 09:53:15 +08:00
5b7588df75 core/model: add and use CSlice and Exception 2024-07-31 09:53:15 +08:00
0477e2acfa core/irrt: comment arrays_match() 2024-07-31 09:53:15 +08:00
bf0dcf325e core/irrt: add cstr_utils 2024-07-31 09:53:15 +08:00
c772fdb83a core/model: introduce codegen/model 2024-07-31 09:53:15 +08:00
c1369ea5bd core/irrt: introduce irrt testing
`cargo test -F test` would compile `nac3core/irrt/irrt_test.cpp`
targetted to the host machine (it gets to use `std`) and run the
test executable.
2024-07-31 09:52:43 +08:00
ef28138291 core/irrt: split irrt.cpp into headers
To scale IRRT implementations
2024-07-31 09:52:43 +08:00
984843a46a core/irrt: build.rs capture IR defined constants 2024-07-31 09:52:43 +08:00
c5626e4947 core/irrt: build.rs capture IR defined types 2024-07-31 09:52:43 +08:00
e4ba5e6411 core/irrt: reformat 2024-07-31 09:52:43 +08:00
31d0fdd818 core: add .clang-format 2024-07-31 09:52:43 +08:00
3f0e7e28b8 core/irrt: comment build.rs & move irrt to its own dir
To prepare for future IRRT implementations, and to also make cargo
only have to watch a single directory.
2024-07-31 09:52:43 +08:00
217 changed files with 14648 additions and 22909 deletions

View File

@ -1,2 +0,0 @@
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "link-arg=-fuse-ld=lld"]

View File

@ -1,32 +1,3 @@
BasedOnStyle: LLVM BasedOnStyle: Google
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4 IndentWidth: 4
MaxEmptyLinesToKeep: 1 ReflowComments: false
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

1
.gitignore vendored
View File

@ -1,4 +1,3 @@
__pycache__ __pycache__
/target /target
/nac3standalone/demo/linalg/target
nix/windows/msys2 nix/windows/msys2

View File

@ -1,24 +1,24 @@
# See https://pre-commit.com for more information # See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks # See https://pre-commit.com/hooks.html for more hooks
default_stages: [pre-commit] default_stages: [commit]
repos: repos:
- repo: local - repo: local
hooks: hooks:
- id: nac3-cargo-fmt - id: nac3-cargo-fmt
name: nac3 cargo format name: nac3 cargo format
entry: nix entry: cargo
language: system language: system
types: [file, rust] types: [file, rust]
pass_filenames: false pass_filenames: false
description: Runs cargo fmt on the codebase. description: Runs cargo fmt on the codebase.
args: [develop, -c, cargo, fmt, --all] args: [fmt]
- id: nac3-cargo-clippy - id: nac3-cargo-clippy
name: nac3 cargo clippy name: nac3 cargo clippy
entry: nix entry: cargo
language: system language: system
types: [file, rust] types: [file, rust]
pass_filenames: false pass_filenames: false
description: Runs cargo clippy on the codebase. description: Runs cargo clippy on the codebase.
args: [develop, -c, cargo, clippy, --tests] args: [clippy, --tests]

732
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,6 @@ members = [
"nac3ast", "nac3ast",
"nac3parser", "nac3parser",
"nac3core", "nac3core",
"nac3core/nac3core_derive",
"nac3standalone", "nac3standalone",
"nac3artiq", "nac3artiq",
"runkernel", "runkernel",

6
flake.lock generated
View File

@ -2,11 +2,11 @@
"nodes": { "nodes": {
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1738680400, "lastModified": 1721924956,
"narHash": "sha256-ooLh+XW8jfa+91F1nhf9OF7qhuA/y1ChLx6lXDNeY5U=", "narHash": "sha256-Sb1jlyRO+N8jBXEX9Pg9Z1Qb8Bw9QyOgLDNMEpmjZ2M=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "799ba5bffed04ced7067a91798353d360788b30d", "rev": "5ad6a14c6bf098e98800b091668718c336effc95",
"type": "github" "type": "github"
}, },
"original": { "original": {

View File

@ -6,7 +6,6 @@
outputs = { self, nixpkgs }: outputs = { self, nixpkgs }:
let let
pkgs = import nixpkgs { system = "x86_64-linux"; }; pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec { in rec {
packages.x86_64-linux = rec { packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {}; llvm-nac3 = pkgs.callPackage ./nix/llvm {};
@ -14,24 +13,9 @@
'' ''
mkdir -p $out/bin mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
''; '';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule ( nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec { pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq"; name = "nac3artiq";
@ -40,8 +24,9 @@
cargoLock = { cargoLock = {
lockFile = ./Cargo.lock; lockFile = ./Cargo.lock;
}; };
cargoTestFlags = [ "--features" "test" ];
passthru.cargoLock = cargoLock; passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out pkgs.llvmPackages_14.bintools llvm-nac3 ]; nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ]; buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ]; checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase = checkPhase =
@ -49,9 +34,7 @@
echo "Checking nac3standalone demos..." echo "Checking nac3standalone demos..."
pushd nac3standalone/demo pushd nac3standalone/demo
patchShebangs . patchShebangs .
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a ./check_demos.sh
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd popd
echo "Running Cargo tests..." echo "Running Cargo tests..."
cargoCheckHook cargoCheckHook
@ -85,7 +68,7 @@
name = "nac3artiq-instrumented"; name = "nac3artiq-instrumented";
src = self; src = self;
inherit (nac3artiq) cargoLock; inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt pkgs.llvmPackages_14.bintools llvm-nac3-instrumented ]; nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-instrumented ];
buildInputs = [ pkgs.python3 llvm-nac3-instrumented ]; buildInputs = [ pkgs.python3 llvm-nac3-instrumented ];
cargoBuildFlags = [ "--package" "nac3artiq" "--features" "init-llvm-profile" ]; cargoBuildFlags = [ "--package" "nac3artiq" "--features" "init-llvm-profile" ];
doCheck = false; doCheck = false;
@ -107,20 +90,19 @@
(pkgs.fetchFromGitHub { (pkgs.fetchFromGitHub {
owner = "m-labs"; owner = "m-labs";
repo = "sipyco"; repo = "sipyco";
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd"; rev = "939f84f9b5eef7efbf7423c735d1834783b6140e";
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w="; sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc=";
}) })
(pkgs.fetchFromGitHub { (pkgs.fetchFromGitHub {
owner = "m-labs"; owner = "m-labs";
repo = "artiq"; repo = "artiq";
rev = "554b0749ca5985bf4d006c4f29a05e83de0a226d"; rev = "923ca3377d42c815f979983134ec549dc39d3ca0";
sha256 = "sha256-3eSNHTSlmdzLMcEMIspxqjmjrcQe4aIGqIfRgquUg18="; sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw=";
}) })
]; ];
buildInputs = [ buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ])) (python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out pkgs.llvmPackages_14.llvm.out
pkgs.llvmPackages_14.bintools
]; ];
phases = [ "buildPhase" "installPhase" ]; phases = [ "buildPhase" "installPhase" ];
buildPhase = buildPhase =
@ -148,7 +130,7 @@
name = "nac3artiq-pgo"; name = "nac3artiq-pgo";
src = self; src = self;
inherit (nac3artiq) cargoLock; inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt pkgs.llvmPackages_14.bintools llvm-nac3-pgo ]; nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-pgo ];
buildInputs = [ pkgs.python3 llvm-nac3-pgo ]; buildInputs = [ pkgs.python3 llvm-nac3-pgo ];
cargoBuildFlags = [ "--package" "nac3artiq" ]; cargoBuildFlags = [ "--package" "nac3artiq" ];
cargoTestFlags = [ "--package" "nac3ast" "--package" "nac3parser" "--package" "nac3core" "--package" "nac3artiq" ]; cargoTestFlags = [ "--package" "nac3ast" "--package" "nac3parser" "--package" "nac3core" "--package" "nac3artiq" ];
@ -169,7 +151,7 @@
buildInputs = with pkgs; [ buildInputs = with pkgs; [
# build dependencies # build dependencies
packages.x86_64-linux.llvm-nac3 packages.x86_64-linux.llvm-nac3
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out llvmPackages_14.bintools # for running nac3standalone demos (pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
packages.x86_64-linux.llvm-tools-irrt packages.x86_64-linux.llvm-tools-irrt
cargo cargo
rustc rustc
@ -182,11 +164,6 @@
pre-commit pre-commit
rustfmt rustfmt
]; ];
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
}; };
devShells.x86_64-linux.msys2 = pkgs.mkShell { devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2"; name = "nac3-dev-shell-msys2";

View File

@ -9,14 +9,18 @@ name = "nac3artiq"
crate-type = ["cdylib"] crate-type = ["cdylib"]
[dependencies] [dependencies]
indexmap = "2.7" itertools = "0.13"
itertools = "0.14"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] } pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12" parking_lot = "0.12"
tempfile = "3.16" tempfile = "3.10"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" } nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" } nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features] [features]
init-llvm-profile = [] init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -0,0 +1,66 @@
class EmbeddingMap:
def __init__(self):
self.object_inverse_map = {}
self.object_map = {}
self.string_map = {}
self.string_reverse_map = {}
self.function_map = {}
self.attributes_writeback = []
# preallocate exception names
self.preallocate_runtime_exception_names(["RuntimeError",
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"0:ZeroDivisionError",
"0:IndexError",
"0:ValueError",
"0:RuntimeError",
"0:AssertionError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:IOError",
"0:UnwrapNoneError"])
def preallocate_runtime_exception_names(self, names):
for i, name in enumerate(names):
if ":" not in name:
name = "0:artiq.coredevice.exceptions." + name
exn_id = self.store_str(name)
assert exn_id == i
def store_function(self, key, fun):
self.function_map[key] = fun
return key
def store_object(self, obj):
obj_id = id(obj)
if obj_id in self.object_inverse_map:
return self.object_inverse_map[obj_id]
key = len(self.object_map) + 1
self.object_map[key] = obj
self.object_inverse_map[obj_id] = key
return key
def store_str(self, s):
if s in self.string_reverse_map:
return self.string_reverse_map[s]
key = len(self.string_map)
self.string_map[key] = s
self.string_reverse_map[s] = key
return key
def retrieve_function(self, key):
return self.function_map[key]
def retrieve_object(self, key):
return self.object_map[key]
def retrieve_str(self, key):
return self.string_map[key]

View File

@ -6,6 +6,7 @@ from typing import Generic, TypeVar
from math import floor, ceil from math import floor, ceil
import nac3artiq import nac3artiq
from embedding_map import EmbeddingMap
__all__ = [ __all__ = [
@ -16,7 +17,7 @@ __all__ = [
"rpc", "ms", "us", "ns", "rpc", "ms", "us", "ns",
"print_int32", "print_int64", "print_int32", "print_int64",
"Core", "TTLOut", "Core", "TTLOut",
"parallel", "legacy_parallel", "sequential" "parallel", "sequential"
] ]
@ -111,15 +112,10 @@ def extern(function):
register_function(function) register_function(function)
return function return function
def rpc(function):
def rpc(arg=None, flags={}): """Decorates a function declaration defined by the core device runtime."""
"""Decorates a function or method to be executed on the host interpreter.""" register_function(function)
if arg is None: return function
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method): def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device.""" """Decorates a function or method to be executed on the core device."""
@ -192,46 +188,6 @@ def print_int64(x: int64):
raise NotImplementedError("syscall not simulated") raise NotImplementedError("syscall not simulated")
class EmbeddingMap:
def __init__(self):
self.object_inverse_map = {}
self.object_map = {}
self.string_map = {}
self.string_reverse_map = {}
self.function_map = {}
self.attributes_writeback = []
def store_function(self, key, fun):
self.function_map[key] = fun
return key
def store_object(self, obj):
obj_id = id(obj)
if obj_id in self.object_inverse_map:
return self.object_inverse_map[obj_id]
key = len(self.object_map) + 1
self.object_map[key] = obj
self.object_inverse_map[obj_id] = key
return key
def store_str(self, s):
if s in self.string_reverse_map:
return self.string_reverse_map[s]
key = len(self.string_map)
self.string_map[key] = s
self.string_reverse_map[s] = key
return key
def retrieve_function(self, key):
return self.function_map[key]
def retrieve_object(self, key):
return self.object_map[key]
def retrieve_str(self, key):
return self.string_map[key]
@nac3 @nac3
class Core: class Core:
ref_period: KernelInvariant[float] ref_period: KernelInvariant[float]
@ -245,7 +201,7 @@ class Core:
embedding = EmbeddingMap() embedding = EmbeddingMap()
if allow_registration: if allow_registration:
compiler.analyze(registered_functions, registered_classes, special_ids, set()) compiler.analyze(registered_functions, registered_classes)
allow_registration = False allow_registration = False
if hasattr(method, "__self__"): if hasattr(method, "__self__"):
@ -336,11 +292,4 @@ class UnwrapNoneError(Exception):
artiq_builtin = True artiq_builtin = True
parallel = KernelContextManager() parallel = KernelContextManager()
legacy_parallel = KernelContextManager()
sequential = KernelContextManager() sequential = KernelContextManager()
special_ids = {
"parallel": id(parallel),
"legacy_parallel": id(legacy_parallel),
"sequential": id(sequential),
}

View File

@ -1,26 +0,0 @@
from min_artiq import *
from numpy import int32
# Global Variable Definition
X: Kernel[int32] = 1
# TopLevelFunction Defintion
@kernel
def display_X():
print_int32(X)
# TopLevel Class Definition
@nac3
class A:
@kernel
def __init__(self):
self.set_x(1)
@kernel
def set_x(self, new_val: int32):
global X
X = new_val
@kernel
def get_X(self) -> int32:
return X

View File

@ -1,26 +0,0 @@
from min_artiq import *
import module as module_definition
@nac3
class TestModuleSupport:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def run(self):
# Accessing classes
obj = module_definition.A()
obj.get_X()
obj.set_x(2)
# Calling functions
module_definition.display_X()
# Updating global variables
module_definition.X = 9
module_definition.display_X()
if __name__ == "__main__":
TestModuleSupport().run()

View File

@ -1,29 +0,0 @@
from min_artiq import *
import numpy
from numpy import int32
@nac3
class NumpyBoolDecay:
core: KernelInvariant[Core]
np_true: KernelInvariant[bool]
np_false: KernelInvariant[bool]
np_int: KernelInvariant[int32]
np_float: KernelInvariant[float]
np_str: KernelInvariant[str]
def __init__(self):
self.core = Core()
self.np_true = numpy.True_
self.np_false = numpy.False_
self.np_int = numpy.int32(0)
self.np_float = numpy.float64(0.0)
self.np_str = numpy.str_("")
@kernel
def run(self):
pass
if __name__ == "__main__":
NumpyBoolDecay().run()

View File

@ -1,26 +0,0 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

View File

@ -0,0 +1,24 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
core: KernelInvariant[Core]
attr1: KernelInvariant[str]
attr2: KernelInvariant[int32]
def __init__(self):
self.core = Core()
self.attr2 = 32
self.attr1 = "SAMPLE"
@kernel
def run(self):
print_int32(self.attr2)
self.attr1
if __name__ == "__main__":
Demo().run()

View File

@ -0,0 +1,40 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
attr1: KernelInvariant[int32] = 2
attr2: int32 = 4
attr3: Kernel[int32]
@kernel
def __init__(self):
self.attr3 = 8
@nac3
class NAC3Devices:
core: KernelInvariant[Core]
attr4: KernelInvariant[int32] = 16
def __init__(self):
self.core = Core()
@kernel
def run(self):
Demo.attr1 # Supported
# Demo.attr2 # Field not accessible on Kernel
# Demo.attr3 # Only attributes can be accessed in this way
# Demo.attr1 = 2 # Attributes are immutable
self.attr4 # Attributes can be accessed within class
obj = Demo()
obj.attr1 # Attributes can be accessed by class objects
NAC3Devices.attr4 # Attributes accessible for classes without __init__
if __name__ == "__main__":
NAC3Devices().run()

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,10 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)] #![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)] #![warn(clippy::pedantic)]
#![allow( #![allow(
unsafe_op_in_unsafe_fn, unsafe_op_in_unsafe_fn,
@ -10,66 +16,64 @@
clippy::wildcard_imports clippy::wildcard_imports
)] )]
use std::{ use std::collections::{HashMap, HashSet};
collections::{HashMap, HashSet}, use std::fs;
fs, use std::io::Write;
io::Write, use std::process::Command;
process::Command, use std::rc::Rc;
rc::Rc, use std::sync::Arc;
sync::Arc,
};
use indexmap::IndexMap; use inkwell::{
use itertools::Itertools;
use parking_lot::{Mutex, RwLock};
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PyNone, PySet},
};
use tempfile::{self, TempDir};
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
context::Context, context::Context,
memory_buffer::MemoryBuffer, memory_buffer::MemoryBuffer,
module::{FlagBehavior, Linkage, Module}, module::{Linkage, Module},
passes::PassBuilderOptions, passes::PassBuilderOptions,
support::is_multithreaded, support::is_multithreaded,
targets::*, targets::*,
OptimizationLevel, OptimizationLevel,
}, };
nac3parser::{ use itertools::Itertools;
ast::{self, Constant, ExprKind, Located, Stmt, StmtKind, StrRef}, use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program, parser::parse_program,
}, };
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock};
use nac3core::{
codegen::irrt::load_irrt,
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver, symbol_resolver::SymbolResolver,
toplevel::{ toplevel::{
builtins::get_exn_constructor, composer::{ComposerConfig, TopLevelComposer},
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef, DefinitionId, GenCall, TopLevelDef,
}, },
typecheck::{ typecheck::typedef::{FunSignature, FuncArg},
type_inferencer::PrimitiveStore, typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
}; };
use nac3ld::Linker; use nac3ld::Linker;
use codegen::{ use tempfile::{self, TempDir};
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
use crate::codegen::attributes_writeback;
use crate::{
codegen::{rpc_codegen_callback, ArtiqCodeGenerator},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
}; };
use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
mod codegen; mod codegen;
mod symbol_resolver; mod symbol_resolver;
mod timeline; mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)] #[derive(PartialEq, Clone, Copy)]
enum Isa { enum Isa {
Host, Host,
@ -79,62 +83,14 @@ enum Isa {
} }
impl Isa { impl Isa {
/// Returns the [`TargetTriple`] used for compiling to this ISA. /// Returns the number of bits in `size_t` for the [`Isa`].
pub fn get_llvm_target_triple(self) -> TargetTriple { fn get_size_type(self) -> u32 {
match self { if self == Isa::Host {
Isa::Host => TargetMachine::get_default_triple(), 64u32
Isa::RiscV32G | Isa::RiscV32IMA => TargetTriple::create("riscv32-unknown-linux"), } else {
Isa::CortexA9 => TargetTriple::create("armv7-unknown-linux-gnueabihf"), 32u32
} }
} }
/// Returns the [`String`] representing the target CPU used for compiling to this ISA.
pub fn get_llvm_target_cpu(self) -> String {
match self {
Isa::Host => TargetMachine::get_host_cpu_name().to_string(),
Isa::RiscV32G | Isa::RiscV32IMA => "generic-rv32".to_string(),
Isa::CortexA9 => "cortex-a9".to_string(),
}
}
/// Returns the [`String`] representing the target features used for compiling to this ISA.
pub fn get_llvm_target_features(self) -> String {
match self {
Isa::Host => TargetMachine::get_host_cpu_features().to_string(),
Isa::RiscV32G => "+a,+m,+f,+d".to_string(),
Isa::RiscV32IMA => "+a,+m".to_string(),
Isa::CortexA9 => "+dsp,+fp16,+neon,+vfp3,+long-calls".to_string(),
}
}
/// Returns an instance of [`CodeGenTargetMachineOptions`] representing the target machine
/// options used for compiling to this ISA.
pub fn get_llvm_target_options(self) -> CodeGenTargetMachineOptions {
CodeGenTargetMachineOptions {
triple: self.get_llvm_target_triple().as_str().to_string_lossy().into_owned(),
cpu: self.get_llvm_target_cpu(),
features: self.get_llvm_target_features(),
reloc_mode: RelocMode::PIC,
..CodeGenTargetMachineOptions::from_host()
}
}
/// Returns an instance of [`TargetMachine`] used in compiling and linking of a program of this
/// ISA.
pub fn create_llvm_target_machine(self, opt_level: OptimizationLevel) -> TargetMachine {
self.get_llvm_target_options()
.create_target_machine(opt_level)
.expect("couldn't create target machine")
}
/// Returns the number of bits in `size_t` for this ISA.
fn get_size_type(self, ctx: &Context) -> u32 {
ctx.ptr_sized_int_type(
&self.create_llvm_target_machine(OptimizationLevel::Default).get_target_data(),
None,
)
.get_bit_width()
}
} }
#[derive(Clone)] #[derive(Clone)]
@ -160,14 +116,6 @@ pub struct PrimitivePythonId {
generic_alias: (u64, u64), generic_alias: (u64, u64),
virtual_id: u64, virtual_id: u64,
option: u64, option: u64,
module: u64,
}
#[derive(Clone, Default)]
pub struct SpecialPythonId {
parallel: u64,
legacy_parallel: u64,
sequential: u64,
} }
type TopLevelComponent = (Stmt, String, PyObject); type TopLevelComponent = (Stmt, String, PyObject);
@ -179,7 +127,7 @@ struct Nac3 {
isa: Isa, isa: Isa,
time_fns: &'static (dyn TimeFns + Sync), time_fns: &'static (dyn TimeFns + Sync),
primitive: PrimitiveStore, primitive: PrimitiveStore,
builtins: Vec<BuiltinFuncSpec>, builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>,
pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>, pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
primitive_ids: PrimitivePythonId, primitive_ids: PrimitivePythonId,
working_directory: TempDir, working_directory: TempDir,
@ -187,7 +135,6 @@ struct Nac3 {
string_store: Arc<RwLock<HashMap<String, i32>>>, string_store: Arc<RwLock<HashMap<String, i32>>>,
exception_ids: Arc<RwLock<HashMap<usize, usize>>>, exception_ids: Arc<RwLock<HashMap<usize, usize>>>,
deferred_eval_store: DeferredEvaluationStore, deferred_eval_store: DeferredEvaluationStore,
special_ids: SpecialPythonId,
/// LLVM-related options for code generation. /// LLVM-related options for code generation.
llvm_options: CodeGenLLVMOptions, llvm_options: CodeGenLLVMOptions,
} }
@ -200,32 +147,14 @@ impl Nac3 {
module: &PyObject, module: &PyObject,
registered_class_ids: &HashSet<u64>, registered_class_ids: &HashSet<u64>,
) -> PyResult<()> { ) -> PyResult<()> {
let (module_name, source_file, source) = let (module_name, source_file) = Python::with_gil(|py| -> PyResult<(String, String)> {
Python::with_gil(|py| -> PyResult<(String, String, String)> {
let module: &PyAny = module.extract(py)?; let module: &PyAny = module.extract(py)?;
let source_file = module.getattr("__file__"); Ok((module.getattr("__name__")?.extract()?, module.getattr("__file__")?.extract()?))
let (source_file, source) = if let Ok(source_file) = source_file {
let source_file = source_file.extract()?;
(
source_file,
fs::read_to_string(source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!(
"failed to read input file: {e}"
))
})?,
)
} else {
// kernels submitted by content have no file
// but still can provide source by StringLoader
let get_src_fn = module
.getattr("__loader__")?
.extract::<PyObject>()?
.getattr(py, "get_source")?;
("<expcontent>", get_src_fn.call1(py, (PyNone::get(py),))?.extract(py)?)
};
Ok((module.getattr("__name__")?.extract()?, source_file.to_string(), source))
})?; })?;
let source = fs::read_to_string(&source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!("failed to read input file: {e}"))
})?;
let parser_result = parse_program(&source, source_file.into()) let parser_result = parse_program(&source, source_file.into())
.map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?; .map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?;
@ -265,8 +194,10 @@ impl Nac3 {
body.retain(|stmt| { body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node { if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| { decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) { if let ExprKind::Name { id, .. } = decorator.node {
id == "kernel" || id == "portable" || id == "rpc" id.to_string() == "kernel"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
} else { } else {
false false
} }
@ -279,17 +210,14 @@ impl Nac3 {
} }
StmtKind::FunctionDef { ref decorator_list, .. } => { StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| { decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) { if let ExprKind::Name { id, .. } = decorator.node {
id == "extern" || id == "kernel" || id == "portable" || id == "rpc" let id = id.to_string();
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
} else { } else {
false false
} }
}) })
} }
// Allow global variable declaration with `Kernel` type annotation
StmtKind::AnnAssign { ref annotation, .. } => {
matches!(&annotation.node, ExprKind::Subscript { value, .. } if matches!(&value.node, ExprKind::Name {id, ..} if id == &"Kernel".into()))
}
_ => false, _ => false,
}; };
@ -337,7 +265,7 @@ impl Nac3 {
arg_names.len(), arg_names.len(),
)); ));
} }
for (i, FuncArg { ty, default_value, name, .. }) in args.iter().enumerate() { for (i, FuncArg { ty, default_value, name }) in args.iter().enumerate() {
let in_name = match arg_names.get(i) { let in_name = match arg_names.get(i) {
Some(n) => n, Some(n) => n,
None if default_value.is_none() => { None if default_value.is_none() => {
@ -373,64 +301,6 @@ impl Nac3 {
None None
} }
/// Returns a [`Vec`] of builtins that needs to be initialized during method compilation time.
fn get_lateinit_builtins() -> Vec<Box<BuiltinFuncCreator>> {
vec![
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"core_log".into(),
FunSignature {
args: vec![FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
}],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None)
}))),
)
}),
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"rtio_log".into(),
FunSignature {
args: vec![
FuncArg {
name: "channel".into(),
ty: primitives.str,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
},
],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None)
}))),
)
}),
]
}
fn compile_method<T>( fn compile_method<T>(
&self, &self,
obj: &PyAny, obj: &PyAny,
@ -440,10 +310,9 @@ impl Nac3 {
py: Python, py: Python,
link_fn: &dyn Fn(&Module) -> PyResult<T>, link_fn: &dyn Fn(&Module) -> PyResult<T>,
) -> PyResult<T> { ) -> PyResult<T> {
let size_t = self.isa.get_size_type(&Context::create()); let size_t = self.isa.get_size_type();
let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new( let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new(
self.builtins.clone(), self.builtins.clone(),
Self::get_lateinit_builtins(),
ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" }, ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" },
size_t, size_t,
); );
@ -483,14 +352,12 @@ impl Nac3 {
]; ];
add_exceptions(&mut composer, &mut builtins_def, &mut builtins_ty, &exception_names); add_exceptions(&mut composer, &mut builtins_def, &mut builtins_ty, &exception_names);
// Stores a mapping from module id to attributes
let mut module_to_resolver_cache: HashMap<u64, _> = HashMap::new(); let mut module_to_resolver_cache: HashMap<u64, _> = HashMap::new();
let mut rpc_ids = vec![]; let mut rpc_ids = vec![];
for (stmt, path, module) in &self.top_levels { for (stmt, path, module) in &self.top_levels {
let py_module: &PyAny = module.extract(py)?; let py_module: &PyAny = module.extract(py)?;
let module_id: u64 = id_fn.call1((py_module,))?.extract()?; let module_id: u64 = id_fn.call1((py_module,))?.extract()?;
let module_name: String = py_module.getattr("__name__")?.extract()?;
let helper = helper.clone(); let helper = helper.clone();
let class_obj; let class_obj;
if let StmtKind::ClassDef { name, .. } = &stmt.node { if let StmtKind::ClassDef { name, .. } = &stmt.node {
@ -505,7 +372,7 @@ impl Nac3 {
} else { } else {
class_obj = None; class_obj = None;
} }
let (name_to_pyid, resolver, _, _) = let (name_to_pyid, resolver) =
module_to_resolver_cache.get(&module_id).cloned().unwrap_or_else(|| { module_to_resolver_cache.get(&module_id).cloned().unwrap_or_else(|| {
let mut name_to_pyid: HashMap<StrRef, u64> = HashMap::new(); let mut name_to_pyid: HashMap<StrRef, u64> = HashMap::new();
let members: &PyDict = let members: &PyDict =
@ -522,6 +389,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(), pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(), primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(), global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(), name_to_pyid: name_to_pyid.clone(),
module: module.clone(), module: module.clone(),
id_to_pyval: RwLock::default(), id_to_pyval: RwLock::default(),
@ -534,17 +402,9 @@ impl Nac3 {
}))) })))
as Arc<dyn SymbolResolver + Send + Sync>; as Arc<dyn SymbolResolver + Send + Sync>;
let name_to_pyid = Rc::new(name_to_pyid); let name_to_pyid = Rc::new(name_to_pyid);
let module_location = ast::Location::new(1, 1, stmt.location.file); module_to_resolver_cache
module_to_resolver_cache.insert( .insert(module_id, (name_to_pyid.clone(), resolver.clone()));
module_id, (name_to_pyid, resolver)
(
name_to_pyid.clone(),
resolver.clone(),
module_name.clone(),
Some(module_location),
),
);
(name_to_pyid, resolver, module_name, Some(module_location))
}); });
let (name, def_id, ty) = composer let (name, def_id, ty) = composer
@ -560,25 +420,9 @@ impl Nac3 {
match &stmt.node { match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => { StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
.iter() store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string())) rpc_ids.push((None, def_id));
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
} }
} }
StmtKind::ClassDef { name, body, .. } => { StmtKind::ClassDef { name, body, .. } => {
@ -586,26 +430,19 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap(); let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body { for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node { if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| { if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if name == &"__init__".into() { if name == &"__init__".into() {
return Err(CompileError::new_err(format!( return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})", "compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location class_name, stmt.location
))); )));
} }
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async)); rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
} }
} }
} }
} }
_ => (), _ => ()
} }
let id = *name_to_pyid.get(&name).unwrap(); let id = *name_to_pyid.get(&name).unwrap();
@ -618,24 +455,6 @@ impl Nac3 {
} }
} }
// Adding top level module definitions
for (module_id, (module_name_to_pyid, module_resolver, module_name, module_location)) in
module_to_resolver_cache
{
let def_id = composer
.register_top_level_module(
&module_name,
&module_name_to_pyid,
module_resolver,
module_location,
)
.map_err(|e| {
CompileError::new_err(format!("compilation failed\n----------\n{e}"))
})?;
self.pyid_to_def.write().insert(module_id, def_id);
}
let id_fun = PyModule::import(py, "builtins")?.getattr("id")?; let id_fun = PyModule::import(py, "builtins")?.getattr("id")?;
let mut name_to_pyid: HashMap<StrRef, u64> = HashMap::new(); let mut name_to_pyid: HashMap<StrRef, u64> = HashMap::new();
let module = PyModule::new(py, "tmp")?; let module = PyModule::new(py, "tmp")?;
@ -662,12 +481,13 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(), pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(), primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(), global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(), id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(), id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(), field_to_val: RwLock::default(),
name_to_pyid, name_to_pyid,
module: module.to_object(py), module: module.to_object(py),
helper: helper.clone(), helper,
string_store: self.string_store.clone(), string_store: self.string_store.clone(),
exception_ids: self.exception_ids.clone(), exception_ids: self.exception_ids.clone(),
deferred_eval_store: self.deferred_eval_store.clone(), deferred_eval_store: self.deferred_eval_store.clone(),
@ -678,10 +498,6 @@ impl Nac3 {
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false) .register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
.unwrap(); .unwrap();
// Process IRRT
let context = Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let fun_signature = let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() }; FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
let mut store = ConcreteTypeStore::new(); let mut store = ConcreteTypeStore::new();
@ -719,12 +535,13 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
{ {
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read(); let defs = top_level.definitions.read();
for (class_data, id, is_async) in &rpc_ids { for (class_data, id) in &rpc_ids {
let mut def = defs[id.0].write(); let mut def = defs[id.0].write();
match &mut *def { match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => { TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen_callback(*is_async)); *codegen_callback = Some(rpc_codegen.clone());
} }
TopLevelDef::Class { methods, .. } => { TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap(); let (class_def, method_name) = class_data.as_ref().unwrap();
@ -735,7 +552,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } = if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write() &mut *defs[id.0].write()
{ {
*codegen_callback = Some(rpc_codegen_callback(*is_async)); *codegen_callback = Some(rpc_codegen.clone());
store_fun store_fun
.call1( .call1(
py, py,
@ -750,14 +567,6 @@ impl Nac3 {
} }
} }
} }
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
TopLevelDef::Module { .. } => {
unreachable!("Type module cannot be decorated with @rpc")
}
} }
} }
} }
@ -778,12 +587,33 @@ impl Nac3 {
let task = CodeGenTask { let task = CodeGenTask {
subst: Vec::default(), subst: Vec::default(),
symbol_name: "__modinit__".to_string(), symbol_name: "__modinit__".to_string(),
body: instance.body,
signature,
resolver: resolver.clone(),
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
id: 0,
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
symbol_name: "attributes_writeback".to_string(),
body: Arc::new(Vec::default()), body: Arc::new(Vec::default()),
signature, signature,
resolver, resolver,
store, store,
unifier_index: instance.unifier_id, unifier_index: instance.unifier_id,
calls: instance.calls, calls: Arc::new(HashMap::default()),
id: 0, id: 0,
}; };
@ -796,49 +626,30 @@ impl Nac3 {
let buffer = buffer.as_slice().into(); let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}))); })));
let size_t = Context::create()
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 }; let num_threads = if is_multithreaded() { 4 } else { 1 };
let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect(); let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect();
let threads: Vec<_> = thread_names let threads: Vec<_> = thread_names
.iter() .iter()
.map(|s| { .map(|s| Box::new(ArtiqCodeGenerator::new(s.to_string(), size_t, self.time_fns)))
Box::new(ArtiqCodeGenerator::with_target_machine(
s.to_string(),
&context,
&self.get_llvm_target_machine(),
self.time_fns,
self.special_ids.clone(),
))
})
.collect(); .collect();
let membuffer = membuffers.clone(); let membuffer = membuffers.clone();
let mut has_return = false;
py.allow_threads(|| { py.allow_threads(|| {
let (registry, handles) = let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f); WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let context = Context::create(); let mut generator =
let mut generator = ArtiqCodeGenerator::with_target_machine( ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
"main".to_string(), let context = inkwell::context::Context::create();
&context, let module = context.create_module("attributes_writeback");
&self.get_llvm_target_machine(),
self.time_fns,
self.special_ids.clone(),
);
let module = context.create_module("main");
let target_machine = self.llvm_options.create_target_machine().unwrap(); let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout()); module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple()); module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
FlagBehavior::Warning,
context.i32_type().const_int(3, false),
);
module.add_basic_value_flag(
"Dwarf Version",
FlagBehavior::Warning,
context.i32_type().const_int(4, false),
);
let builder = context.create_builder(); let builder = context.create_builder();
let (_, module, _) = gen_func_impl( let (_, module, _) = gen_func_impl(
&context, &context,
@ -846,27 +657,9 @@ impl Nac3 {
&registry, &registry,
builder, builder,
module, module,
task, attributes_writeback_task,
|generator, ctx| { |generator, ctx| {
assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement"); attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes)
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
unreachable!("toplevel statement must be an expression")
};
let ExprKind::Call { .. } = expr.node else {
unreachable!("toplevel expression must be a function call")
};
let return_obj =
generator.gen_expr(ctx, expr)?.map(|value| (expr.custom.unwrap(), value));
has_return = return_obj.is_some();
registry.wait_tasks_complete(handles);
attributes_writeback(
ctx,
generator,
inner_resolver.as_ref(),
&host_attributes,
return_obj,
)
}, },
) )
.unwrap(); .unwrap();
@ -875,24 +668,37 @@ impl Nac3 {
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}); });
embedding_map.setattr("expects_return", has_return).unwrap(); let context = inkwell::context::Context::create();
// Link all modules into `main`.
let buffers = membuffers.lock(); let buffers = membuffers.lock();
let main = context let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range( .create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
buffers.last().unwrap(),
"main",
))
.unwrap(); .unwrap();
for buffer in buffers.iter().rev().skip(1) { for buffer in buffers.iter().skip(1) {
let other = context let other = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main")) .create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap(); .unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?; main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
} }
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?; let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
main.link_in_module(load_irrt(&context))
.map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function(); let mut function_iter = main.get_first_function();
while let Some(func) = function_iter { while let Some(func) = function_iter {
@ -926,65 +732,58 @@ impl Nac3 {
panic!("Failed to run optimization for module `main`: {}", err.to_string()); panic!("Failed to run optimization for module `main`: {}", err.to_string());
} }
Python::with_gil(|py| {
let string_store = self.string_store.read();
let mut string_store_vec = string_store.iter().collect::<Vec<_>>();
string_store_vec.sort_by(|(_s1, key1), (_s2, key2)| key1.cmp(key2));
for (s, key) in string_store_vec {
let embed_key: i32 = helper.store_str.call1(py, (s,)).unwrap().extract(py).unwrap();
assert_eq!(
embed_key, *key,
"string {s} is out of sync between embedding map (key={embed_key}) and \
the internal string store (key={key})"
);
}
});
link_fn(&main) link_fn(&main)
} }
/// Returns the [`TargetTriple`] used for compiling to [isa].
fn get_llvm_target_triple(isa: Isa) -> TargetTriple {
match isa {
Isa::Host => TargetMachine::get_default_triple(),
Isa::RiscV32G | Isa::RiscV32IMA => TargetTriple::create("riscv32-unknown-linux"),
Isa::CortexA9 => TargetTriple::create("armv7-unknown-linux-gnueabihf"),
}
}
/// Returns the [`String`] representing the target CPU used for compiling to [isa].
fn get_llvm_target_cpu(isa: Isa) -> String {
match isa {
Isa::Host => TargetMachine::get_host_cpu_name().to_string(),
Isa::RiscV32G | Isa::RiscV32IMA => "generic-rv32".to_string(),
Isa::CortexA9 => "cortex-a9".to_string(),
}
}
/// Returns the [`String`] representing the target features used for compiling to [isa].
fn get_llvm_target_features(isa: Isa) -> String {
match isa {
Isa::Host => TargetMachine::get_host_cpu_features().to_string(),
Isa::RiscV32G => "+a,+m,+f,+d".to_string(),
Isa::RiscV32IMA => "+a,+m".to_string(),
Isa::CortexA9 => "+dsp,+fp16,+neon,+vfp3,+long-calls".to_string(),
}
}
/// Returns an instance of [`CodeGenTargetMachineOptions`] representing the target machine
/// options used for compiling to [isa].
fn get_llvm_target_options(isa: Isa) -> CodeGenTargetMachineOptions {
CodeGenTargetMachineOptions {
triple: Nac3::get_llvm_target_triple(isa).as_str().to_string_lossy().into_owned(),
cpu: Nac3::get_llvm_target_cpu(isa),
features: Nac3::get_llvm_target_features(isa),
reloc_mode: RelocMode::PIC,
..CodeGenTargetMachineOptions::from_host()
}
}
/// Returns an instance of [`TargetMachine`] used in compiling and linking of a program to the /// Returns an instance of [`TargetMachine`] used in compiling and linking of a program to the
/// target [ISA][isa]. /// target [isa].
fn get_llvm_target_machine(&self) -> TargetMachine { fn get_llvm_target_machine(&self) -> TargetMachine {
self.isa.create_llvm_target_machine(self.llvm_options.opt_level) Nac3::get_llvm_target_options(self.isa)
.create_target_machine(self.llvm_options.opt_level)
.expect("couldn't create target machine")
} }
} }
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> { fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![ let linker_args = vec![
"-shared".to_string(), "-shared".to_string(),
@ -1054,8 +853,7 @@ impl Nac3 {
Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS, Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS,
Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS, Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS,
}; };
let (primitive, _) = let primitive: PrimitiveStore = TopLevelComposer::make_primitives(isa.get_size_type()).0;
TopLevelComposer::make_primitives(isa.get_size_type(&Context::create()));
let builtins = vec![ let builtins = vec![
( (
"now_mu".into(), "now_mu".into(),
@ -1071,7 +869,6 @@ impl Nac3 {
name: "t".into(), name: "t".into(),
ty: primitive.int64, ty: primitive.int64,
default_value: None, default_value: None,
is_vararg: false,
}], }],
ret: primitive.none, ret: primitive.none,
vars: VarMap::new(), vars: VarMap::new(),
@ -1091,7 +888,6 @@ impl Nac3 {
name: "dt".into(), name: "dt".into(),
ty: primitive.int64, ty: primitive.int64,
default_value: None, default_value: None,
is_vararg: false,
}], }],
ret: primitive.none, ret: primitive.none,
vars: VarMap::new(), vars: VarMap::new(),
@ -1143,54 +939,11 @@ impl Nac3 {
tuple: get_attr_id(builtins_mod, "tuple"), tuple: get_attr_id(builtins_mod, "tuple"),
exception: get_attr_id(builtins_mod, "Exception"), exception: get_attr_id(builtins_mod, "Exception"),
option: get_id(artiq_builtins.get_item("Option").ok().flatten().unwrap()), option: get_id(artiq_builtins.get_item("Option").ok().flatten().unwrap()),
module: get_attr_id(types_mod, "ModuleType"),
}; };
let working_directory = tempfile::Builder::new().prefix("nac3-").tempdir().unwrap(); let working_directory = tempfile::Builder::new().prefix("nac3-").tempdir().unwrap();
fs::write(working_directory.path().join("kernel.ld"), include_bytes!("kernel.ld")).unwrap(); fs::write(working_directory.path().join("kernel.ld"), include_bytes!("kernel.ld")).unwrap();
let mut string_store: HashMap<String, i32> = HashMap::default();
// Keep this list of exceptions in sync with `EXCEPTION_ID_LOOKUP` in `artiq::firmware::ksupport::eh_artiq`
// The exceptions declared here must be defined in `artiq.coredevice.exceptions`
// Verify synchronization by running the test cases in `artiq.test.coredevice.test_exceptions`
let runtime_exception_names = [
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"SubkernelError",
"0:AssertionError",
"0:AttributeError",
"0:IndexError",
"0:IOError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:RuntimeError",
"0:TimeoutError",
"0:TypeError",
"0:ValueError",
"0:ZeroDivisionError",
"0:LinAlgError",
"UnwrapNoneError",
];
// Preallocate runtime exception names
for (i, name) in runtime_exception_names.iter().enumerate() {
let exn_name = if name.find(':').is_none() {
format!("0:artiq.coredevice.exceptions.{name}")
} else {
(*name).to_string()
};
let id = i32::try_from(i).unwrap();
string_store.insert(exn_name, id);
}
Ok(Nac3 { Ok(Nac3 {
isa, isa,
time_fns, time_fns,
@ -1200,74 +953,40 @@ impl Nac3 {
top_levels: Vec::default(), top_levels: Vec::default(),
pyid_to_def: Arc::default(), pyid_to_def: Arc::default(),
working_directory, working_directory,
string_store: Arc::new(string_store.into()), string_store: Arc::default(),
exception_ids: Arc::default(), exception_ids: Arc::default(),
deferred_eval_store: DeferredEvaluationStore::new(), deferred_eval_store: DeferredEvaluationStore::new(),
special_ids: SpecialPythonId::default(),
llvm_options: CodeGenLLVMOptions { llvm_options: CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default, opt_level: OptimizationLevel::Default,
target: isa.get_llvm_target_options(), target: Nac3::get_llvm_target_options(isa),
}, },
}) })
} }
fn analyze( fn analyze(&mut self, functions: &PySet, classes: &PySet) -> PyResult<()> {
&mut self,
functions: &PySet,
classes: &PySet,
special_ids: &PyDict,
content_modules: &PySet,
) -> PyResult<()> {
let (modules, class_ids) = let (modules, class_ids) =
Python::with_gil(|py| -> PyResult<(IndexMap<u64, PyObject>, HashSet<u64>)> { Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> {
let mut modules: IndexMap<u64, PyObject> = IndexMap::new(); let mut modules: HashMap<u64, PyObject> = HashMap::new();
let mut class_ids: HashSet<u64> = HashSet::new(); let mut class_ids: HashSet<u64> = HashSet::new();
let id_fn = PyModule::import(py, "builtins")?.getattr("id")?; let id_fn = PyModule::import(py, "builtins")?.getattr("id")?;
let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?; let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?;
for function in functions { for function in functions {
let module: PyObject = getmodule_fn.call1((function,))?.extract()?; let module = getmodule_fn.call1((function,))?.extract()?;
if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module); modules.insert(id_fn.call1((&module,))?.extract()?, module);
} }
}
for class in classes { for class in classes {
let module: PyObject = getmodule_fn.call1((class,))?.extract()?; let module = getmodule_fn.call1((class,))?.extract()?;
if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module); modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
class_ids.insert(id_fn.call1((class,))?.extract()?); class_ids.insert(id_fn.call1((class,))?.extract()?);
} }
for module in content_modules {
let module: PyObject = module.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
Ok((modules, class_ids)) Ok((modules, class_ids))
})?; })?;
for module in modules.into_values() { for module in modules.into_values() {
self.register_module(&module, &class_ids)?; self.register_module(&module, &class_ids)?;
} }
self.special_ids = SpecialPythonId {
parallel: special_ids.get_item("parallel").ok().flatten().unwrap().extract().unwrap(),
legacy_parallel: special_ids
.get_item("legacy_parallel")
.ok()
.flatten()
.unwrap()
.extract()
.unwrap(),
sequential: special_ids
.get_item("sequential")
.ok()
.flatten()
.unwrap()
.extract()
.unwrap(),
};
Ok(()) Ok(())
} }

View File

@ -1,32 +1,14 @@
use std::{ use inkwell::{
collections::{HashMap, HashSet}, types::{BasicType, BasicTypeEnum},
sync::{ values::BasicValueEnum,
atomic::{AtomicBool, Ordering::Relaxed}, AddressSpace,
Arc,
},
}; };
use itertools::Itertools; use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyErr, PyObject, PyResult, Python,
};
use super::PrimitivePythonId;
use nac3core::{ use nac3core::{
codegen::{ codegen::{
types::{ndarray::NDArrayType, structure::StructProxyType, ProxyType}, classes::{NDArrayType, ProxyType},
values::ndarray::make_contiguous_strides,
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}, },
inkwell::{
module::Linkage,
types::{BasicType, BasicTypeEnum},
values::{BasicValue, BasicValueEnum},
AddressSpace,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum}, symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{ toplevel::{
helper::PrimDef, helper::PrimDef,
@ -38,6 +20,21 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap}, typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
}, },
}; };
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use crate::PrimitivePythonId;
pub enum PrimitiveValue { pub enum PrimitiveValue {
I32(i32), I32(i32),
@ -82,6 +79,7 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>, pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>, pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>, pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>, pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>, pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId, pub primitive_ids: PrimitivePythonId,
@ -135,8 +133,6 @@ impl StaticValue for PythonValue {
format!("{}_const", self.id).as_str(), format!("{}_const", self.id).as_str(),
); );
global.set_constant(true); global.set_constant(true);
// Set linkage of global to private to avoid name collisions
global.set_linkage(Linkage::Private);
global.set_initializer(&ctx.ctx.const_struct( global.set_initializer(&ctx.ctx.const_struct(
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()], &[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
false, false,
@ -167,7 +163,7 @@ impl StaticValue for PythonValue {
PrimitiveValue::Bool(val) => { PrimitiveValue::Bool(val) => {
ctx.ctx.i8_type().const_int(u64::from(*val), false).into() ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
} }
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(), PrimitiveValue::Str(val) => ctx.ctx.const_string(val.as_bytes(), true).into(),
}); });
} }
if let Some(global) = ctx.module.get_global(&self.id.to_string()) { if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
@ -355,7 +351,7 @@ impl InnerResolver {
Ok(Ok((ndarray, false))) Ok(Ok((ndarray, false)))
} else if ty_id == self.primitive_ids.tuple { } else if ty_id == self.primitive_ids.tuple {
// do not handle type var param and concrete check here // do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false }), false))) Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
} else if ty_id == self.primitive_ids.option { } else if ty_id == self.primitive_ids.option {
Ok(Ok((primitives.option, false))) Ok(Ok((primitives.option, false)))
} else if ty_id == self.primitive_ids.none { } else if ty_id == self.primitive_ids.none {
@ -559,10 +555,7 @@ impl InnerResolver {
Err(err) => return Ok(Err(err)), Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string())) _ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
}; };
Ok(Ok(( Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
unifier.add_ty(TypeEnum::TTuple { ty: args, is_vararg_ctx: false }),
true,
)))
} }
TypeEnum::TObj { params, obj_id, .. } => { TypeEnum::TObj { params, obj_id, .. } => {
let subst = { let subst = {
@ -674,48 +667,6 @@ impl InnerResolver {
}) })
}); });
// check if obj is module
if self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?
== self.primitive_ids.module
&& self.pyid_to_def.read().contains_key(&py_obj_id)
{
let def_id = self.pyid_to_def.read()[&py_obj_id];
let def = defs[def_id.0].read();
let TopLevelDef::Module { name: module_name, module_id, attributes, methods, .. } =
&*def
else {
unreachable!("must be a module here");
};
// Construct the module return type
let mut module_attributes = HashMap::new();
for (name, _) in attributes {
let attribute_obj = obj.getattr(name.to_string().as_str())?;
let attribute_ty =
self.get_obj_type(py, attribute_obj, unifier, defs, primitives)?;
if let Ok(attribute_ty) = attribute_ty {
module_attributes.insert(*name, (attribute_ty, false));
} else {
return Ok(Err(format!("Unable to resolve {module_name}.{name}")));
}
}
for name in methods.keys() {
let method_obj = obj.getattr(name.to_string().as_str())?;
let method_ty = self.get_obj_type(py, method_obj, unifier, defs, primitives)?;
if let Ok(method_ty) = method_ty {
module_attributes.insert(*name, (method_ty, true));
} else {
return Ok(Err(format!("Unable to resolve {module_name}.{name}")));
}
}
let module_ty =
TypeEnum::TModule { module_id: *module_id, attributes: module_attributes };
let ty = unifier.add_ty(module_ty);
return Ok(Ok(ty));
}
if let Some(ty) = constructor_ty { if let Some(ty) = constructor_ty {
self.pyid_to_type.write().insert(py_obj_id, ty); self.pyid_to_type.write().insert(py_obj_id, ty);
return Ok(Ok(ty)); return Ok(Ok(ty));
@ -846,9 +797,7 @@ impl InnerResolver {
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives)) .map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect(); .collect();
let types = types?; let types = types?;
Ok(types.map(|types| { Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
unifier.add_ty(TypeEnum::TTuple { ty: types, is_vararg_ctx: false })
}))
} }
// special handling for option type since its class member layout in python side // special handling for option type since its class member layout in python side
// is special and cannot be mapped directly to a nac3 type as below // is special and cannot be mapped directly to a nac3 type as below
@ -973,13 +922,10 @@ impl InnerResolver {
|_| Ok(Ok(extracted_ty)), |_| Ok(Ok(extracted_ty)),
) )
} else if unifier.unioned(extracted_ty, primitives.bool) { } else if unifier.unioned(extracted_ty, primitives.bool) {
if obj.extract::<bool>().is_ok() obj.extract::<bool>().map_or_else(
|| obj.call_method("__bool__", (), None)?.extract::<bool>().is_ok() |_| Ok(Err(format!("{obj} is not in the range of bool"))),
{ |_| Ok(Ok(extracted_ty)),
Ok(Ok(extracted_ty)) )
} else {
Ok(Err(format!("{obj} is not in the range of bool")))
}
} else if unifier.unioned(extracted_ty, primitives.float) { } else if unifier.unioned(extracted_ty, primitives.float) {
obj.extract::<f64>().map_or_else( obj.extract::<f64>().map_or_else(
|_| Ok(Err(format!("{obj} is not in the range of float64"))), |_| Ok(Err(format!("{obj} is not in the range of float64"))),
@ -1019,18 +965,14 @@ impl InnerResolver {
let val: u64 = obj.extract().unwrap(); let val: u64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val, false).into())) Ok(Some(ctx.ctx.i64_type().const_int(val, false).into()))
} else if ty_id == self.primitive_ids.bool { } else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.extract().unwrap(); let val: bool = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into())) Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap(); let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone())); self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
Ok(Some(ctx.gen_string(generator, val).into())) Ok(Some(ctx.ctx.const_string(val.as_bytes(), true).into()))
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 { } else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
let val: f64 = obj.extract().unwrap(); let val: f64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
@ -1049,7 +991,7 @@ impl InnerResolver {
} }
_ => unreachable!("must be list"), _ => unreachable!("must be list"),
}; };
let size_t = ctx.get_size_type(); let size_t = generator.get_size_type(ctx.ctx);
let ty = if len == 0 let ty = if len == 0
&& matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. }) && matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. })
{ {
@ -1134,19 +1076,18 @@ impl InnerResolver {
} else { } else {
unreachable!("must be ndarray") unreachable!("must be ndarray")
}; };
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty); let (ndarray_dtype, ndarray_ndims) =
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let llvm_i8 = ctx.ctx.i8_type(); let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default()); let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
let llvm_usize = ctx.get_size_type(); let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
let llvm_ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty);
let dtype = llvm_ndarray.element_type();
{ {
if self.global_value_ids.read().contains_key(&id) { if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global( ctx.module.add_global(
llvm_ndarray.as_abi_type().get_element_type().into_struct_type(), ndarray_llvm_ty.as_underlying_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
) )
@ -1156,44 +1097,40 @@ impl InnerResolver {
self.global_value_ids.write().insert(id, obj.into()); self.global_value_ids.write().insert(id, obj.into());
} }
let ndims = llvm_ndarray.ndims(); let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndarray_ndims)
else {
unreachable!("Expected Literal for ndarray_ndims")
};
let ndarray_ndims = if values.len() == 1 {
values[0].clone()
} else {
todo!("Unpacking literal of more than one element unimplemented")
};
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
unreachable!("Expected u64 value for ndarray_ndims")
};
// Obtain the shape of the ndarray // Obtain the shape of the ndarray
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?; let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
assert_eq!(shape_tuple.len(), ndims as usize); assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
// The Rust type inferencer cannot figure this out
let shape_values = shape_tuple
.iter() .iter()
.enumerate() .enumerate()
.map(|(i, elem)| { .map(|(i, elem)| {
let value = self self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err(
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()) |e| super::CompileError::new_err(format!("Error getting element {i}: {e}")),
.map_err(|e| { )
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})?
.unwrap();
let value = ctx
.builder
.build_int_z_extend(value.into_int_value(), llvm_usize, "")
.unwrap();
Ok(value)
}) })
.collect::<Result<Vec<_>, PyErr>>()?; .collect();
let shape_values = shape_values?.unwrap();
// Also use this opportunity to get the constant values of `shape_values` for calculating strides. let shape_values = llvm_usize.const_array(
let shape_u64s = shape_values &shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
.iter() );
.map(|dim| {
assert!(dim.is_const());
dim.get_zero_extended_constant().unwrap()
})
.collect_vec();
let shape_values = llvm_usize.const_array(&shape_values);
// create a global for ndarray.shape and initialize it using the shape // create a global for ndarray.shape and initialize it using the shape
let shape_global = ctx.module.add_global( let shape_global = ctx.module.add_global(
llvm_usize.array_type(ndims as u32), llvm_usize.array_type(ndarray_ndims as u32),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".shape"), &(id_str.clone() + ".shape"),
); );
@ -1201,25 +1138,17 @@ impl InnerResolver {
// Obtain the (flattened) elements of the ndarray // Obtain the (flattened) elements of the ndarray
let sz: usize = obj.getattr("size")?.extract()?; let sz: usize = obj.getattr("size")?.extract()?;
let data: Vec<_> = (0..sz) let data: Result<Option<Vec<_>>, _> = (0..sz)
.map(|i| { .map(|i| {
obj.getattr("flat")?.get_item(i).and_then(|elem| { obj.getattr("flat")?.get_item(i).and_then(|elem| {
let value = self self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| {
.get_obj_value(py, elem, ctx, generator, ndarray_dtype) super::CompileError::new_err(format!("Error getting element {i}: {e}"))
.map_err(|e| {
super::CompileError::new_err(format!(
"Error getting element {i}: {e}"
))
})?
.unwrap();
assert_eq!(value.get_type(), dtype);
Ok(value)
}) })
}) })
.try_collect()?; })
let data = data.into_iter(); .collect();
let data = match dtype { let data = data?.unwrap().into_iter();
let data = match ndarray_dtype_llvm_ty {
BasicTypeEnum::ArrayType(ty) => { BasicTypeEnum::ArrayType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec()) ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
} }
@ -1244,98 +1173,37 @@ impl InnerResolver {
}; };
// create a global for ndarray.data and initialize it using the elements // create a global for ndarray.data and initialize it using the elements
//
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
// We will have to cast it to an `u8*` later.
let data_global = ctx.module.add_global( let data_global = ctx.module.add_global(
dtype.array_type(sz as u32), ndarray_dtype_llvm_ty.array_type(sz as u32),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".data"), &(id_str.clone() + ".data"),
); );
data_global.set_initializer(&data); data_global.set_initializer(&data);
// Get the constant itemsize.
//
// NOTE: dtype.size_of() may return a non-constant, where `TargetData::get_store_size`
// will always return a constant size.
let itemsize = ctx
.registry
.llvm_options
.create_target_machine()
.map(|tm| tm.get_target_data().get_store_size(&dtype))
.unwrap();
assert_ne!(itemsize, 0);
// Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
let strides =
strides.into_iter().map(|stride| llvm_usize.const_int(stride, false)).collect_vec();
let strides = llvm_usize.const_array(&strides);
// create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global(
llvm_usize.array_type(ndims as u32),
Some(AddressSpace::default()),
&format!("${id_str}.strides"),
);
strides_global.set_initializer(&strides);
// create a global for the ndarray object and initialize it // create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
// NOTE: data_global is an array of dtype, we want a `u8*`. llvm_usize.const_int(ndarray_ndims, false).into(),
let ndarray_data = data_global.as_pointer_value(); shape_global
let ndarray_data = ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap(); .as_pointer_value()
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
let ndarray_itemsize = llvm_usize.const_int(itemsize, false); .into(),
data_global
let ndarray_ndims = llvm_usize.const_int(ndims, false); .as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
// calling as_pointer_value on shape and strides returns [i64 x ndims]* .into(),
// convert into i64* to conform with expected layout of ndarray
let ndarray_shape = shape_global.as_pointer_value();
let ndarray_shape = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_shape,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray_strides = strides_global.as_pointer_value();
let ndarray_strides = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_strides,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray = llvm_ndarray.get_struct_type().const_named_struct(&[
ndarray_itemsize.into(),
ndarray_ndims.into(),
ndarray_shape.into(),
ndarray_strides.into(),
ndarray_data.into(),
]); ]);
let ndarray_global = ctx.module.add_global( let ndarray = ctx.module.add_global(
llvm_ndarray.as_abi_type().get_element_type().into_struct_type(), ndarray_llvm_ty.as_underlying_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
); );
ndarray_global.set_initializer(&ndarray); ndarray.set_initializer(&value);
Ok(Some(ndarray_global.as_pointer_value().into())) Ok(Some(ndarray.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple { } else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty); let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else { let TypeEnum::TTuple { ty } = expected_ty_enum.as_ref() else { unreachable!() };
unreachable!()
};
let tup_tys = ty.iter(); let tup_tys = ty.iter();
let elements: &PyTuple = obj.downcast()?; let elements: &PyTuple = obj.downcast()?;
@ -1411,77 +1279,6 @@ impl InnerResolver {
None => Ok(None), None => Ok(None),
} }
} }
} else if ty_id == self.primitive_ids.module {
let id_str = id.to_string();
if let Some(global) = ctx.module.get_global(&id_str) {
return Ok(Some(global.as_pointer_value().into()));
}
let top_level_defs = ctx.top_level.definitions.read();
let ty = self
.get_obj_type(py, obj, &mut ctx.unifier, &top_level_defs, &ctx.primitives)?
.unwrap();
let ty = ctx
.get_llvm_type(generator, ty)
.into_pointer_type()
.get_element_type()
.into_struct_type();
{
if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(ty, Some(AddressSpace::default()), &id_str)
});
return Ok(Some(global.as_pointer_value().into()));
}
self.global_value_ids.write().insert(id, obj.into());
}
let fields = {
let definition =
top_level_defs.get(self.pyid_to_def.read().get(&id).unwrap().0).unwrap().read();
let TopLevelDef::Module { attributes, .. } = &*definition else { unreachable!() };
attributes
.iter()
.filter_map(|f| {
let definition = top_level_defs.get(f.1 .0).unwrap().read();
if let TopLevelDef::Variable { ty, .. } = &*definition {
Some((f.0, *ty))
} else {
None
}
})
.collect_vec()
};
let values: Result<Option<Vec<_>>, _> = fields
.iter()
.map(|(name, ty)| {
self.get_obj_value(
py,
obj.getattr(name.to_string().as_str())?,
ctx,
generator,
*ty,
)
.map_err(|e| {
super::CompileError::new_err(format!("Error getting field {name}: {e}"))
})
})
.collect();
let values = values?;
if let Some(values) = values {
let val = ty.const_named_struct(&values);
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(ty, Some(AddressSpace::default()), &id_str)
});
global.set_initializer(&val);
Ok(Some(global.as_pointer_value().into()))
} else {
Ok(None)
}
} else { } else {
let id_str = id.to_string(); let id_str = id.to_string();
@ -1561,12 +1358,9 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.uint64 { } else if ty_id == self.primitive_ids.uint64 {
let val: u64 = obj.extract()?; let val: u64 = obj.extract()?;
Ok(SymbolValue::U64(val)) Ok(SymbolValue::U64(val))
} else if ty_id == self.primitive_ids.bool { } else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.extract()?; let val: bool = obj.extract()?;
Ok(SymbolValue::Bool(val)) Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract()?; let val: String = obj.extract()?;
Ok(SymbolValue::Str(val)) Ok(SymbolValue::Str(val))
@ -1664,50 +1458,8 @@ impl SymbolResolver for Resolver {
fn get_symbol_value<'ctx>( fn get_symbol_value<'ctx>(
&self, &self,
id: StrRef, id: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
if let Some(def_id) = self.0.id_to_def.read().get(&id) {
let top_levels = ctx.top_level.definitions.read();
if matches!(&*top_levels[def_id.0].read(), TopLevelDef::Variable { .. }) {
let module_val = &self.0.module;
let ret = Python::with_gil(|py| -> PyResult<Result<BasicValueEnum, String>> {
let module_val = module_val.as_ref(py);
let ty = self.0.get_obj_type(
py,
module_val,
&mut ctx.unifier,
&top_levels,
&ctx.primitives,
)?;
if let Err(ty) = ty {
return Ok(Err(ty));
}
let ty = ty.unwrap();
let obj = self.0.get_obj_value(py, module_val, ctx, generator, ty)?.unwrap();
let (idx, _) = ctx.get_attr_index(ty, id);
let ret = unsafe {
ctx.builder.build_gep(
obj.into_pointer_value(),
&[
ctx.ctx.i32_type().const_zero(),
ctx.ctx.i32_type().const_int(idx as u64, false),
],
id.to_string().as_str(),
)
}
.unwrap();
Ok(Ok(ret.as_basic_value_enum()))
})
.unwrap();
if ret.is_err() {
return None;
}
return Some(ret.unwrap().into());
}
}
let sym_value = { let sym_value = {
let id_to_val = self.0.id_to_pyval.read(); let id_to_val = self.0.id_to_pyval.read();
id_to_val.get(&id).cloned() id_to_val.get(&id).cloned()
@ -1768,7 +1520,10 @@ impl SymbolResolver for Resolver {
if let Some(id) = string_store.get(s) { if let Some(id) = string_store.get(s) {
*id *id
} else { } else {
let id = i32::try_from(string_store.len()).unwrap(); let id = Python::with_gil(|py| -> PyResult<i32> {
self.0.helper.store_str.call1(py, (s,))?.extract(py)
})
.unwrap();
string_store.insert(s.into(), id); string_store.insert(s.into(), id);
id id
} }

View File

@ -1,7 +1,9 @@
use nac3core::{ use inkwell::{
codegen::{expr::infer_and_call_function, CodeGenContext}, values::{BasicValueEnum, CallSiteValue},
inkwell::{values::BasicValueEnum, AddressSpace, AtomicOrdering}, AddressSpace, AtomicOrdering,
}; };
use itertools::Either;
use nac3core::codegen::CodeGenContext;
/// Functions for manipulating the timeline. /// Functions for manipulating the timeline.
pub trait TimeFns { pub trait TimeFns {
@ -29,7 +31,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -78,7 +80,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -107,7 +109,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -205,7 +207,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -256,7 +258,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap(); let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -283,27 +285,36 @@ pub struct ExternTimeFns {}
impl TimeFns for ExternTimeFns { impl TimeFns for ExternTimeFns {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> { fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
infer_and_call_function( let now_mu = ctx.module.get_function("now_mu").unwrap_or_else(|| {
ctx, ctx.module.add_function("now_mu", ctx.ctx.i64_type().fn_type(&[], false), None)
"now_mu", });
Some(ctx.ctx.i64_type().into()), ctx.builder
&[], .build_call(now_mu, &[], "now_mu")
Some("now_mu"), .map(CallSiteValue::try_as_basic_value)
None, .map(Either::unwrap_left)
)
.unwrap() .unwrap()
} }
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) { fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
assert_eq!(t.get_type(), ctx.ctx.i64_type().into()); let at_mu = ctx.module.get_function("at_mu").unwrap_or_else(|| {
ctx.module.add_function(
infer_and_call_function(ctx, "at_mu", None, &[t], Some("at_mu"), None); "at_mu",
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false),
None,
)
});
ctx.builder.build_call(at_mu, &[t.into()], "at_mu").unwrap();
} }
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) { fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
assert_eq!(dt.get_type(), ctx.ctx.i64_type().into()); let delay_mu = ctx.module.get_function("delay_mu").unwrap_or_else(|| {
ctx.module.add_function(
infer_and_call_function(ctx, "delay_mu", None, &[dt], Some("delay_mu"), None); "delay_mu",
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false),
None,
)
});
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu").unwrap();
} }
} }

View File

@ -10,6 +10,7 @@ constant-optimization = ["fold"]
fold = [] fold = []
[dependencies] [dependencies]
lazy_static = "1.5"
parking_lot = "0.12" parking_lot = "0.12"
string-interner = "0.18" string-interner = "0.17"
fxhash = "0.2" fxhash = "0.2"

View File

@ -5,12 +5,14 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher; use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard}; use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock}; use std::{cell::RefCell, collections::HashMap, fmt};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner}; use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>; pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
static INTERNER: LazyLock<Mutex<Interner>> = lazy_static! {
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()))); static ref INTERNER: Mutex<Interner> =
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
thread_local! { thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default(); static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -1,4 +1,10 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)] #![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)] #![warn(clippy::pedantic)]
#![allow( #![allow(
clippy::missing_errors_doc, clippy::missing_errors_doc,
@ -8,6 +14,9 @@
clippy::wildcard_imports clippy::wildcard_imports
)] )]
#[macro_use]
extern crate lazy_static;
mod ast_gen; mod ast_gen;
mod constant; mod constant;
#[cfg(feature = "fold")] #[cfg(feature = "fold")]

View File

@ -1,28 +1,26 @@
[features]
test = []
[package] [package]
name = "nac3core" name = "nac3core"
version = "0.1.0" version = "0.1.0"
authors = ["M-Labs"] authors = ["M-Labs"]
edition = "2021" edition = "2021"
[features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = []
[dependencies] [dependencies]
itertools = "0.14" itertools = "0.13"
crossbeam = "0.8" crossbeam = "0.8"
indexmap = "2.7" indexmap = "2.2"
parking_lot = "0.12" parking_lot = "0.12"
nac3core_derive = { path = "nac3core_derive", optional = true } rayon = "1.8"
nac3parser = { path = "../nac3parser" } nac3parser = { path = "../nac3parser" }
strum = "0.26" strum = "0.26.2"
strum_macros = "0.26" strum_macros = "0.26.4"
[dependencies.inkwell] [dependencies.inkwell]
version = "0.5" version = "0.4"
default-features = false default-features = false
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"] features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies] [dev-dependencies]
test-case = "1.2.0" test-case = "1.2.0"
@ -30,4 +28,4 @@ indoc = "2.0"
insta = "=1.11.0" insta = "=1.11.0"
[build-dependencies] [build-dependencies]
regex = "1.11" regex = "1.10"

View File

@ -1,32 +1,46 @@
use regex::Regex;
use std::{ use std::{
env, env,
fs::File, fs::File,
io::Write, io::Write,
path::Path, path::{Path, PathBuf},
process::{Command, Stdio}, process::{Command, Stdio},
}; };
use regex::Regex; const CMD_IRRT_CLANG: &str = "clang-irrt";
const CMD_IRRT_CLANG_TEST: &str = "clang-irrt-test";
const CMD_IRRT_LLVM_AS: &str = "llvm-as-irrt";
fn main() { fn get_out_dir() -> PathBuf {
let out_dir = env::var("OUT_DIR").unwrap(); PathBuf::from(env::var("OUT_DIR").unwrap())
let out_dir = Path::new(&out_dir); }
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp"); fn get_irrt_dir() -> &'static Path {
Path::new("irrt")
}
/// Compile `irrt.cpp` for use in `src/codegen`
fn compile_irrt_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
/* /*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode. * HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get. * Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/ */
let mut flags: Vec<&str> = vec![ let irrt_cpp_path = irrt_dir.join("irrt.cpp");
let flags: &[&str] = &[
"--target=wasm32", "--target=wasm32",
"-x", "-x",
"c++", "c++",
"-std=c++20",
"-fno-discard-value-names", "-fno-discard-value-names",
"-fno-exceptions", "-fno-exceptions",
"-fno-rtti", "-fno-rtti",
match env::var("PROFILE").as_deref() {
Ok("debug") => "-O0",
Ok("release") => "-O3",
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
},
"-emit-llvm", "-emit-llvm",
"-S", "-S",
"-Wall", "-Wall",
@ -38,26 +52,16 @@ fn main() {
irrt_cpp_path.to_str().unwrap(), irrt_cpp_path.to_str().unwrap(),
]; ];
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes // Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap()); println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output // Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt") let output = Command::new(CMD_IRRT_CLANG)
.args(flags) .args(flags)
.output() .output()
.inspect(|o| { .map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap()); assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
}) })
.unwrap(); .unwrap();
@ -98,7 +102,9 @@ fn main() {
file.write_all(filtered_output.as_bytes()).unwrap(); file.write_all(filtered_output.as_bytes()).unwrap();
} }
let mut llvm_as = Command::new("llvm-as-irrt") // Assemble the emitted and filtered IR to .bc
// That .bc will be integrated into nac3core's codegen
let mut llvm_as = Command::new(CMD_IRRT_LLVM_AS)
.stdin(Stdio::piped()) .stdin(Stdio::piped())
.arg("-o") .arg("-o")
.arg(out_dir.join("irrt.bc")) .arg(out_dir.join("irrt.bc"))
@ -107,3 +113,48 @@ fn main() {
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap(); llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success()); assert!(llvm_as.wait().unwrap().success());
} }
/// Compile `irrt_test.cpp` for testing
fn compile_irrt_test_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
let exe_path = out_dir.join("irrt_test.out"); // Output path of the compiled test executable
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
let flags: &[&str] = &[
irrt_test_cpp_path.to_str().unwrap(),
"-x",
"c++",
"-I",
irrt_dir.to_str().unwrap(),
"-g",
"-fno-discard-value-names",
"-O0",
"-Wall",
"-Wextra",
"-Werror=return-type",
"-lm", // for `tgamma()`, `lgamma()`
"-o",
exe_path.to_str().unwrap(),
];
Command::new(CMD_IRRT_CLANG_TEST)
.args(flags)
.output()
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
}
fn main() {
compile_irrt_cpp();
// https://github.com/rust-lang/cargo/issues/2549
// `cargo test -F test` to also build `irrt_test.cpp
if cfg!(feature = "test") {
compile_irrt_test_cpp();
}
}

View File

@ -1,15 +1,10 @@
#include "irrt/exception.hpp" #define IRRT_DEFINE_TYPEDEF_INTS
#include "irrt/list.hpp" #include <irrt_everything.hpp>
#include "irrt/math.hpp"
#include "irrt/range.hpp" /*
#include "irrt/slice.hpp" * All IRRT implementations.
#include "irrt/string.hpp" *
#include "irrt/ndarray/basic.hpp" * We don't have pre-compiled objects, so we are writing all implementations in
#include "irrt/ndarray/def.hpp" * headers and concatenate them with `#include` into one massive source file that
#include "irrt/ndarray/iter.hpp" * contains all the IRRT stuff.
#include "irrt/ndarray/indexing.hpp" */
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"

View File

@ -0,0 +1,39 @@
#pragma once
#include <irrt/int_defs.hpp>
/*
This file defines all ARTIQ-specific structures
*/
/**
* @brief ARTIQ's `cslice` object
*
* See https://docs.rs/cslice/0.3.0/src/cslice/lib.rs.html#33-37
*/
template <typename SizeT>
struct CSlice {
const char *base;
SizeT len;
};
/**
* @brief Int type of ARTIQ's `Exception` IDs.
*/
typedef uint32_t ExceptionId;
/**
* @brief ARTIQ's `Exception` object
*
* See https://github.com/m-labs/artiq/blob/b0d2705c385f64b6e6711c1726cd9178f40b598e/artiq/firmware/libeh/eh_artiq.rs#L1C1-L17C1
*/
template <typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> file;
uint32_t line;
uint32_t column;
CSlice<SizeT> function;
CSlice<SizeT> message;
uint32_t param;
};

347
nac3core/irrt/irrt/core.hpp Normal file
View File

@ -0,0 +1,347 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/slice.hpp>
#include <irrt/utils.hpp>
// NDArray indices are always `uint32_t`.
using NDIndexInt = uint32_t;
namespace {
// adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
template <typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len,
SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template <typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims,
SizeT num_dims, NDIndexInt* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template <typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims,
const NDIndexInt* indices,
SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims, SizeT lhs_ndims,
const SizeT* rhs_dims, SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz =
i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz =
i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end,
const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else
// len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(
SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
uint8_t* dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_step, uint8_t* src_arr,
SliceIndex src_arr_len, const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support
* extending list
*/
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of
* the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len =
(src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len =
(dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size,
src_arr + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr) &&
!(max(dest_start, dest_end) < min(src_start, src_end) ||
max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
uint8_t* tmp =
reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous
* alloca */
__builtin_memcpy(dest_arr + dest_ind * size,
src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size + size + size + size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) { return __builtin_isinf(x); }
int32_t __nac3_isnan(double x) { return __builtin_isnan(x); }
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len,
uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
end_idx);
}
uint64_t __nac3_ndarray_calc_size64(const uint64_t* list_data,
uint64_t list_len, uint64_t begin_idx,
uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims,
uint32_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims,
uint64_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t __nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims,
const NDIndexInt* indices,
uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims,
const NDIndexInt* indices,
uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims, uint32_t lhs_ndims,
const uint32_t* rhs_dims, uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims, uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
out_idx);
}
} // extern "C"

View File

@ -1,9 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
void* base;
SizeT len;
};

View File

@ -1,25 +0,0 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -0,0 +1,92 @@
#pragma once
#include <irrt/artiq_defs.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/utils.hpp>
namespace {
/**
* @brief A (limited) set of known Exception IDs usable in IRRT
*/
struct ErrorContextExceptions {
ExceptionId index_error;
ExceptionId value_error;
ExceptionId assertion_error;
ExceptionId runtime_error;
ExceptionId type_error;
};
/**
* @brief The IRRT error context object
*
* This object contains all the details needed to propagate Python-like Exceptions in
* IRRT - within IRRT itself or propagate out of extern calls from nac3core.
*/
struct ErrorContext {
const ErrorContextExceptions *exceptions;
// Exception thrown by IRRT
ExceptionId exception_id;
// Points to empty c-string if there is no thrown Exception
const char *msg;
uint64_t param1;
uint64_t param2;
uint64_t param3;
void initialize(const ErrorContextExceptions *exceptions) {
this->exceptions = exceptions;
clear_error();
}
void clear_error() {
// NOTE: Point the msg to an empty str.
// Don't set it to nullptr - to implement `has_exception`
this->msg = "";
}
void set_exception(ExceptionId exception_id, const char *msg,
uint64_t param1 = 0, uint64_t param2 = 0,
uint64_t param3 = 0) {
this->exception_id = exception_id;
this->msg = msg;
this->param1 = param1;
this->param2 = param2;
this->param3 = param3;
}
bool has_exception() { return !cstr_utils::is_empty(msg); }
template <typename SizeT>
void get_exception_str(CSlice<SizeT> *dst_str) {
dst_str->base = msg;
dst_str->len = (SizeT)cstr_utils::length(msg);
}
};
} // namespace
extern "C" {
void __nac3_error_context_initialize(ErrorContext *errctx,
ErrorContextExceptions *exceptions) {
errctx->initialize(exceptions);
}
bool __nac3_error_context_has_exception(ErrorContext *errctx) {
return errctx->has_exception();
}
void __nac3_error_context_get_exception_str(ErrorContext *errctx,
CSlice<int32_t> *dst_str) {
errctx->get_exception_str<int32_t>(dst_str);
}
void __nac3_error_context_get_exception_str64(ErrorContext *errctx,
CSlice<int64_t> *dst_str) {
errctx->get_exception_str<int64_t>(dst_str);
}
// Used for testing
void __nac3_error_dummy_raise(ErrorContext *errctx) {
errctx->set_exception(errctx->exceptions->runtime_error,
"Error thrown from __nac3_error_dummy_raise");
}
}

View File

@ -1,85 +0,0 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
using ExceptionId = int32_t;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
} // namespace
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)

View File

@ -0,0 +1,12 @@
#pragma once
// This is made toggleable since `irrt_test.cpp` itself would include
// headers that define these typedefs
#ifdef IRRT_DEFINE_TYPEDEF_INTS
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#endif

View File

@ -1,25 +0,0 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,96 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template<typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -1,95 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -1,13 +0,0 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -1,132 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::array {
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
/**
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
*
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
*
* # Notes on `ndarray`
* The caller is responsible for allocating space for `ndarray`.
* Here is what this function expects from `ndarray` when called:
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
* - `ndarray->itemsize` has to be initialized.
* - `ndarray->ndims` has to be initialized.
* - `ndarray->shape` has to be initialized.
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
/**
* @brief See `write_list_to_array_helper`.
*/
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace ndarray::array
} // namespace
extern "C" {
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -1,66 +1,44 @@
#pragma once #pragma once
#include "irrt/debug.hpp" #include <irrt/error_context.hpp>
#include "irrt/exception.hpp" #include <irrt/int_defs.hpp>
#include "irrt/int_types.hpp" #include <irrt/ndarray/def.hpp>
#include "irrt/ndarray/def.hpp"
namespace { namespace {
namespace ndarray::basic { namespace ndarray {
namespace basic {
namespace util {
/** /**
* @brief Assert that `shape` does not contain negative dimensions. * @brief Asserts that `shape` does not contain negative dimensions.
* *
* @param ndims Number of dimensions in `shape` * @param ndims Number of dimensions in `shape`
* @param shape The shape to check on * @param shape The shape to check on
*/ */
template<typename SizeT> template <typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) { void assert_shape_no_negative(ErrorContext* errctx, SizeT ndims,
const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) { for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) { if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, errctx->set_exception(
errctx->exceptions->value_error,
"negative dimensions are not allowed; axis {0} " "negative dimensions are not allowed; axis {0} "
"has dimension {1}", "has dimension {1}",
axis, shape[axis], NO_PARAM); axis, shape[axis]);
return;
} }
} }
} }
/** /**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray. * @brief Returns the number of elements of an ndarray given its shape.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
* *
* @param ndims Number of dimensions in `shape` * @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray * @param shape The shape of the ndarray
*/ */
template<typename SizeT> template <typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) { SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1; SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++) for (SizeT axis = 0; axis < ndims; axis++) size *= shape[axis];
size *= shape[axis];
return size; return size;
} }
@ -72,25 +50,27 @@ SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
* @param indices The returned indices indexing the ndarray with shape `shape`. * @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest. * @param nth The index of the element of interest.
*/ */
template<typename SizeT> template <typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) { void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices,
for (SizeT i = 0; i < ndims; i++) { SizeT nth) {
SizeT axis = ndims - i - 1; for (int32_t i = 0; i < ndims; i++) {
SizeT dim = shape[axis]; int32_t axis = ndims - i - 1;
int32_t dim = shape[axis];
indices[axis] = nth % dim; indices[axis] = nth % dim;
nth /= dim; nth /= dim;
} }
} }
} // namespace util
/** /**
* @brief Return the number of elements of an `ndarray` * @brief Return the number of elements of an `ndarray`
* *
* This function corresponds to `<an_ndarray>.size` * This function corresponds to `<an_ndarray>.size`
*/ */
template<typename SizeT> template <typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) { SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape); return util::calc_size_from_shape(ndarray->ndims, ndarray->shape);
} }
/** /**
@ -98,47 +78,128 @@ SizeT size(const NDArray<SizeT>* ndarray) {
* *
* This function corresponds to `<an_ndarray>.nbytes`. * This function corresponds to `<an_ndarray>.nbytes`.
*/ */
template<typename SizeT> template <typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) { SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize; return size(ndarray) * ndarray->itemsize;
} }
/**
* @brief Update the strides of an ndarray given an ndarray `shape`
* and assuming that the ndarray is fully c-contagious.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template <typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
int axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Return the pointer to the element indexed by `indices`.
*/
template <typename SizeT>
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray,
const SizeT* indices) {
uint8_t* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
*/
template <typename SizeT>
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
SizeT* indices = (SizeT*)__builtin_alloca(sizeof(SizeT) * ndarray->ndims);
util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, nth);
return get_pelement_by_indices(ndarray, indices);
}
/**
* @brief Like `get_nth_pelement` but asserts that `nth` is in bounds.
*/
template <typename SizeT>
uint8_t* checked_get_nth_pelement(ErrorContext* errctx,
const NDArray<SizeT>* ndarray, SizeT nth) {
SizeT arr_size = ndarray->size();
if (!(0 <= nth && nth < arr_size)) {
errctx->set_exception(
errctx->exceptions->index_error,
"index {0} is out of bounds, valid range is {1} <= index < {2}",
nth, 0, arr_size);
return 0;
}
return get_nth_pelement(ndarray, nth);
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template <typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement,
const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/** /**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object. * @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
* *
* This function corresponds to `<an_ndarray>.__len__`. * This function corresponds to `<an_ndarray>.__len__`.
* *
* @param dst_length The length. * @param dst_length The returned result
*/ */
template<typename SizeT> template <typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) { void len(ErrorContext* errctx, const NDArray<SizeT>* ndarray,
if (ndarray->ndims != 0) { SliceIndex* dst_length) {
return ndarray->shape[0]; // numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0) {
errctx->set_exception(errctx->exceptions->type_error,
"len() of unsized object");
return;
} }
// numpy prohibits `__len__` on unsized objects *dst_length = (SliceIndex)ndarray->shape[0];
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM); }
__builtin_unreachable();
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template <typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
__builtin_assume(src_ndarray->itemsize == dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element,
src_element);
}
} }
/** /**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous. * @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
* *
* You may want to see ndarray's rules for C-contiguity: * You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/ */
template<typename SizeT> template <typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) { bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References: // Other references:
// - tinynumpy's implementation: // - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102 // - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's flags["C_CONTIGUOUS"]: // - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From // From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
// //
// The traditional rule is that for an array to be flagged as C contiguous, // The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold: // the following must hold:
@ -162,118 +223,22 @@ bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
return false; return false;
} }
for (SizeT i = 1; i < ndarray->ndims; i++) { for (SizeT i = 0; i < ndarray->ndims - 1; i++) {
SizeT axis_i = ndarray->ndims - i - 1; if (ndarray->strides[i] !=
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) { ndarray->shape[i + 1] + ndarray->strides[i + 1]) {
return false; return false;
} }
} }
return true; return true;
} }
} // namespace basic
/** } // namespace ndarray
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
void* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
void* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace ndarray::basic
} // namespace } // namespace
extern "C" { extern "C" {
using namespace ndarray::basic; using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) { uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray); return size(ndarray);
} }
@ -290,36 +255,26 @@ uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray); return nbytes(ndarray);
} }
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) { void __nac3_ndarray_len(ErrorContext* errctx, NDArray<int32_t>* ndarray,
return len(ndarray); SliceIndex* dst_len) {
return len(errctx, ndarray, dst_len);
} }
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) { void __nac3_ndarray_len64(ErrorContext* errctx, NDArray<int64_t>* ndarray,
return len(ndarray); SliceIndex* dst_len) {
return len(errctx, ndarray, dst_len);
} }
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) { void __nac3_ndarray_util_assert_shape_no_negative(ErrorContext* errctx,
return is_c_contiguous(ndarray); int32_t ndims,
int32_t* shape) {
util::assert_shape_no_negative(errctx, ndims, shape);
} }
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) { void __nac3_ndarray_util_assert_shape_no_negative64(ErrorContext* errctx,
return is_c_contiguous(ndarray); int64_t ndims,
} int64_t* shape) {
util::assert_shape_no_negative(errctx, ndims, shape);
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
} }
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) { void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
@ -330,11 +285,31 @@ void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray); set_strides_by_shape(ndarray);
} }
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) { bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray); copy_data(src_ndarray, dst_ndarray);
} }
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) { void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray); copy_data(src_ndarray, dst_ndarray);
} }
uint8_t* __nac3_ndarray_get_nth_pelement(NDArray<int32_t>* ndarray,
int32_t index) {
return get_nth_pelement(ndarray, index);
}
uint8_t* __nac3_ndarray_get_nth_pelement64(NDArray<int64_t>* ndarray,
int64_t index) {
return get_nth_pelement(ndarray, index);
}
} }

View File

@ -1,11 +1,12 @@
#pragma once #pragma once
#include "irrt/int_types.hpp" #include <irrt/error_context.hpp>
#include "irrt/ndarray/def.hpp" #include <irrt/int_defs.hpp>
#include "irrt/slice.hpp" #include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
namespace { namespace {
template<typename SizeT> template <typename SizeT>
struct ShapeEntry { struct ShapeEntry {
SizeT ndims; SizeT ndims;
SizeT* shape; SizeT* shape;
@ -13,88 +14,109 @@ struct ShapeEntry {
} // namespace } // namespace
namespace { namespace {
namespace ndarray::broadcast { namespace ndarray {
namespace broadcast {
namespace util {
/** /**
* @brief Return true if `src_shape` can broadcast to `dst_shape`. * @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/ */
template<typename SizeT> template <typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) { bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape,
if (src_ndims > target_ndims) { SizeT src_ndims, const SizeT* src_shape) {
return false; /*
* // See https://numpy.org/doc/stable/user/basics.broadcasting.html
* This function handles this example:
* ```
* Image (3d array): 256 x 256 x 3
* Scale (1d array): 3
* Result (3d array): 256 x 256 x 3
* ```
* Other interesting examples to consider:
* - `can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true`
* - `can_broadcast_shape_to([3], [3, 1]) == false`
* - `can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true`
* In cases when the shapes contain zero(es):
* - `can_broadcast_shape_to([0], [1]) == true`
* - `can_broadcast_shape_to([0], [2]) == false`
* - `can_broadcast_shape_to([0, 4, 0, 0], [1]) == true`
* - `can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true`
* - `can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true`
* - `can_broadcast_shape_to([4, 3], [0, 3]) == false`
* - `can_broadcast_shape_to([4, 3], [0, 0]) == false`
*/
// This is essentially doing the following in Python:
// `for target_dim, src_dim in itertools.zip_longest(target_shape[::-1], src_shape[::-1], fillvalue=1)`
for (SizeT i = 0; i < max(target_ndims, src_ndims); i++) {
SizeT target_dim_i = target_ndims - i - 1;
SizeT src_dim_i = src_ndims - i - 1;
bool target_dim_exists = target_dim_i >= 0;
bool src_dim_exists = src_dim_i >= 0;
SizeT target_dim = target_dim_exists ? target_shape[target_dim_i] : 1;
SizeT src_dim = src_dim_exists ? src_shape[src_dim_i] : 1;
bool ok = src_dim == 1 || target_dim == src_dim;
if (!ok) return false;
} }
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true; return true;
} }
/** /**
* @brief Performs `np.broadcast_shapes(<shapes>)` * @brief Performs `np.broadcast_shapes`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/ */
template<typename SizeT> template <typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) { void broadcast_shapes(ErrorContext* errctx, SizeT num_shapes,
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) { const ShapeEntry<SizeT>* shapes, SizeT dst_ndims,
dst_shape[dst_axis] = 1; SizeT* dst_shape) {
} // `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it
// for this function since it should already know in order to allocate `dst_shape` in the first place.
// `dst_shape` must be pre-allocated.
// `dst_shape` does not have to be initialized
#ifdef IRRT_DEBUG_ASSERT // TODO: Implementation is not obvious
SizeT max_ndims_found = 0;
#endif // This is essentially a `mconcat` where the neutral element is `[1, 1, 1, 1, ...]`, and the operation is commutative.
// Set `dst_shape` to all `1`s.
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 0;
}
for (SizeT i = 0; i < num_shapes; i++) { for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i]; ShapeEntry<SizeT> entry = shapes[i];
SizeT entry_axis = entry.ndims - i;
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])` SizeT dst_axis = dst_ndims - i;
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis]; SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis]; SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) { if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim; dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) { } else if (entry_dim == 1) {
// Do nothing
} else if (entry_dim == dst_dim) {
// Do nothing // Do nothing
} else { } else {
raise_exception(SizeT, EXN_VALUE_ERROR, errctx->set_exception(errctx->exceptions->value_error,
"shape mismatch: objects cannot be broadcast " "shape mismatch: objects cannot be broadcast "
"to a single shape.", "to a single shape.");
NO_PARAM, NO_PARAM, NO_PARAM); return;
} }
} }
}
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
} }
} // namespace util
/** /**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions. * @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
* *
* Cautious note on https://github.com/numpy/numpy/issues/21744..
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`, * This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`. * and return the result by modifying `dst_ndarray`.
* *
@ -113,53 +135,87 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT d
* - `dst_ndarray->shape` is unchanged. * - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works. * - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/ */
template<typename SizeT> template <typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) { void broadcast_to(ErrorContext* errctx, const NDArray<SizeT>* src_ndarray,
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims, NDArray<SizeT>* dst_ndarray) {
/*
* Cautions:
* ```
* xs = np.zeros((4,))
* ys = np.zero((4, 1))
* ys[:] = xs # ok
*
* xs = np.zeros((1, 4))
* ys = np.zero((4,))
* ys[:] = xs # allowed
* # However `np.broadcast_to(xs, (4,))` would fails, as per numpy's broadcasting rule.
* # and apparently numpy will "deprecate" this? SEE https://github.com/numpy/numpy/issues/21744
* # This implementation will NOT support this assignment.
* ```
*/
if (!ndarray::broadcast::util::can_broadcast_shape_to(
dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) { src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM, errctx->set_exception(errctx->exceptions->value_error,
NO_PARAM); "operands could not be broadcast together");
return;
} }
dst_ndarray->data = src_ndarray->data; dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize; dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) { // TODO: Implementation is not obvious
SizeT src_axis = src_ndarray->ndims - i - 1; SizeT stride_product = 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1; for (SizeT i = 0; i < max(src_ndarray->ndims, dst_ndarray->ndims); i++) {
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) { SizeT src_ndarray_dim_i = src_ndarray->ndims - i - 1;
// Freeze the steps in-place SizeT dst_dim_i = dst_ndarray->ndims - i - 1;
dst_ndarray->strides[dst_axis] = 0;
bool src_ndarray_dim_exists = src_ndarray_dim_i >= 0;
bool dst_dim_exists = dst_dim_i >= 0;
bool c1 = src_ndarray_dim_exists &&
src_ndarray->shape[src_ndarray_dim_i] == 1;
bool c2 = dst_dim_exists && dst_ndarray->shape[dst_dim_i] != 1;
if (!src_ndarray_dim_exists || (c1 && c2)) {
dst_ndarray->strides[dst_dim_i] = 0; // Freeze it in-place
} else { } else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis]; dst_ndarray->strides[dst_dim_i] =
stride_product * src_ndarray->itemsize;
stride_product *= src_ndarray->shape[src_ndarray_dim_i];
} }
} }
} }
} // namespace ndarray::broadcast } // namespace broadcast
} // namespace ndarray
} // namespace } // namespace
extern "C" { extern "C" {
using namespace ndarray::broadcast; using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) { void __nac3_ndarray_broadcast_to(ErrorContext* errctx,
broadcast_to(src_ndarray, dst_ndarray); NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
broadcast_to(errctx, src_ndarray, dst_ndarray);
} }
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) { void __nac3_ndarray_broadcast_to64(ErrorContext* errctx,
broadcast_to(src_ndarray, dst_ndarray); NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
broadcast_to(errctx, src_ndarray, dst_ndarray);
} }
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, void __nac3_ndarray_broadcast_shapes(ErrorContext* errctx, int32_t num_shapes,
const ShapeEntry<int32_t>* shapes, const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims, int32_t dst_ndims, int32_t* dst_shape) {
int32_t* dst_shape) { ndarray::broadcast::util::broadcast_shapes(errctx, num_shapes, shapes,
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape); dst_ndims, dst_shape);
} }
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, void __nac3_ndarray_broadcast_shapes64(ErrorContext* errctx, int64_t num_shapes,
const ShapeEntry<int64_t>* shapes, const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims, int64_t dst_ndims, int64_t* dst_shape) {
int64_t* dst_shape) { ndarray::broadcast::util::broadcast_shapes(errctx, num_shapes, shapes,
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape); dst_ndims, dst_shape);
} }
} }

View File

@ -1,22 +1,20 @@
#pragma once #pragma once
#include "irrt/int_types.hpp"
namespace { namespace {
/** /**
* @brief The NDArray object * @brief The NDArray object
* *
* Official numpy implementation: * The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
*
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
* `data`. There are also minor differences in the struct layout.
*/ */
template<typename SizeT> template <typename SizeT>
struct NDArray { struct NDArray {
/**
* @brief The underlying data this `ndarray` is pointing to.
*
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
*/
uint8_t* data;
/** /**
* @brief The number of bytes of a single element in `data`. * @brief The number of bytes of a single element in `data`.
*/ */
@ -39,13 +37,8 @@ struct NDArray {
* *
* The stride values are in units of bytes, not number of elements. * The stride values are in units of bytes, not number of elements.
* *
* Note that `strides` can have negative values or contain 0. * Note that `strides` can have negative values.
*/ */
SizeT* strides; SizeT* strides;
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
void* data;
}; };
} // namespace } // namespace

View File

@ -1,11 +1,9 @@
#pragma once #pragma once
#include "irrt/exception.hpp" #include <irrt/error_context.hpp>
#include "irrt/int_types.hpp" #include <irrt/ndarray/basic.hpp>
#include "irrt/ndarray/basic.hpp" #include <irrt/ndarray/def.hpp>
#include "irrt/ndarray/def.hpp" #include <irrt/slice.hpp>
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
namespace { namespace {
typedef uint8_t NDIndexType; typedef uint8_t NDIndexType;
@ -13,65 +11,81 @@ typedef uint8_t NDIndexType;
/** /**
* @brief A single element index * @brief A single element index
* *
* `data` points to a `int32_t`. * See https://numpy.org/doc/stable/user/basics.indexing.html#single-element-indexing
*
* `data` points to a `SliceIndex`.
*/ */
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0; const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/** /**
* @brief A slice index * @brief A slice index
* *
* `data` points to a `Slice<int32_t>`. * See https://numpy.org/doc/stable/user/basics.indexing.html#slicing-and-striding
*
* `data` points to a `UserRange`.
*/ */
const NDIndexType ND_INDEX_TYPE_SLICE = 1; const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/** /**
* @brief An index used in ndarray indexing * @brief An index used in ndarray indexing
*
* That is:
* ```
* my_ndarray[::-1, 3, ..., np.newaxis]
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/ */
struct NDIndex { struct NDIndex {
/** /**
* @brief Enum tag to specify the type of index. * @brief Enum tag to specify the type of index.
* *
* Please see the comment of each enum constant. * Please see comments of each enum constant.
*/ */
NDIndexType type; NDIndexType type;
/** /**
* @brief The accompanying data associated with `type`. * @brief The accompanying data associated with `type`.
* *
* Please see the comment of each enum constant. * Please see comments of each enum constant.
*/ */
uint8_t* data; uint8_t* data;
}; };
} // namespace } // namespace
namespace { namespace {
namespace ndarray::indexing { namespace ndarray {
namespace indexing {
namespace util {
/**
* @brief Return the expected rank of the resulting ndarray
* created by indexing an ndarray of rank `ndims` using `indexes`.
*/
template <typename SizeT>
void deduce_ndims_after_indexing(ErrorContext* errctx, SizeT* final_ndims,
SizeT ndims, SizeT num_indexes,
const NDIndex* indexes) {
if (num_indexes > ndims) {
errctx->set_exception(errctx->exceptions->index_error,
"too many indices for array: array is "
"{0}-dimensional, but {1} were indexed",
ndims, num_indexes);
return;
}
*final_ndims = ndims;
for (SizeT i = 0; i < num_indexes; i++) {
if (indexes[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
// An index demotes the rank by 1
(*final_ndims)--;
}
}
}
} // namespace util
/** /**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing) * @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
* *
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python. * This is function very similar to performing `dst_ndarray = src_ndarray[indexes]` in Python (where the variables
* can all be found in the parameter of this function).
* *
* This function also does proper assertions on `indices` to check for out of bounds access and more. * In other words, this function takes in an ndarray (`src_ndarray`), index it with `indexes`, and return the
* indexed array (by writing the result to `dst_ndarray`).
*
* This function also does proper assertions on `indexes`.
* *
* # Notes on `dst_ndarray` * # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray. * The caller is responsible for allocating space for the resulting ndarray.
@ -79,111 +93,68 @@ namespace ndarray::indexing {
* - `dst_ndarray->data` does not have to be initialized. * - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized. * - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after * - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`. * indexing `src_ndarray` with `indexes`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values. * - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values. * - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends: * When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data`. * - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`. * - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged. * - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed. * - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works. * - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
* *
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python. * @param indexes Indexes to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed. * @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above, * @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/ */
template<typename SizeT> template <typename SizeT>
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) { void index(ErrorContext* errctx, SizeT num_indexes, const NDIndex* indexes,
// Validate `indices`. const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1) {
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data; dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize; dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0; SizeT src_axis = 0;
SizeT dst_axis = 0; SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) { for (SliceIndex i = 0; i < num_indexes; i++) {
const NDIndex* index = &indices[i]; const NDIndex* index = &indexes[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) { if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data); SliceIndex input = *((SliceIndex*)index->data);
SliceIndex k = slice::resolve_index_in_length(
src_ndarray->shape[src_axis], input);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input); if (k == slice::OUT_OF_BOUNDS) {
if (k == -1) { errctx->set_exception(errctx->exceptions->index_error,
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} " "index {0} is out of bounds for axis {1} "
"with size {2}", "with size {2}",
input, src_axis, src_ndarray->shape[src_axis]); input, src_axis,
src_ndarray->shape[src_axis]);
return;
} }
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis]; dst_ndarray->data += k * src_ndarray->strides[src_axis];
src_axis++; src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) { } else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data; UserSlice* input = (UserSlice*)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]); Slice slice;
input->indices_checked(errctx, src_ndarray->shape[src_axis],
dst_ndarray->data = &slice);
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis]; if (errctx->has_exception()) {
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis]; return;
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
} }
dst_ndarray->data +=
(SizeT)slice.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] =
((SizeT)slice.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)slice.len();
dst_axis++;
src_axis++;
} else { } else {
__builtin_unreachable(); __builtin_unreachable();
} }
@ -193,27 +164,37 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis]; dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis]; dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
} }
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
} }
} // namespace ndarray::indexing } // namespace indexing
} // namespace ndarray
} // namespace } // namespace
extern "C" { extern "C" {
using namespace ndarray::indexing; using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices, void __nac3_ndarray_indexing_deduce_ndims_after_indexing(
NDIndex* indices, ErrorContext* errctx, int32_t* result, int32_t ndims, int32_t num_indexes,
NDArray<int32_t>* src_ndarray, const NDIndex* indexes) {
NDArray<int32_t>* dst_ndarray) { ndarray::indexing::util::deduce_ndims_after_indexing(errctx, result, ndims,
index(num_indices, indices, src_ndarray, dst_ndarray); num_indexes, indexes);
} }
void __nac3_ndarray_index64(int64_t num_indices, void __nac3_ndarray_indexing_deduce_ndims_after_indexing64(
NDIndex* indices, ErrorContext* errctx, int64_t* result, int64_t ndims, int64_t num_indexes,
NDArray<int64_t>* src_ndarray, const NDIndex* indexes) {
ndarray::indexing::util::deduce_ndims_after_indexing(errctx, result, ndims,
num_indexes, indexes);
}
void __nac3_ndarray_index(ErrorContext* errctx, int32_t num_indexes,
NDIndex* indexes, NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(errctx, num_indexes, indexes, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(ErrorContext* errctx, int64_t num_indexes,
NDIndex* indexes, NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) { NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray); index(errctx, num_indexes, indexes, src_ndarray, dst_ndarray);
} }
} }

View File

@ -1,146 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*
* Initially this points to first element of the ndarray.
*/
void* element;
/**
* @brief Cache for the product of shape.
*
* Could be 0 if `shape` has 0s in it.
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
} else {
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -1,98 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray::matmul {
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace ndarray::matmul
} // namespace
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -1,11 +1,14 @@
#pragma once #pragma once
#include "irrt/exception.hpp" #include <irrt/error_context.hpp>
#include "irrt/int_types.hpp" #include <irrt/int_defs.hpp>
#include "irrt/ndarray/def.hpp" #include <irrt/ndarray/def.hpp>
namespace { namespace {
namespace ndarray::reshape { namespace ndarray {
namespace reshape {
namespace util {
/** /**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)` * @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
* *
@ -19,8 +22,9 @@ namespace ndarray::reshape {
* @param new_ndims Number of elements in `new_shape` * @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to * @param new_shape Target shape to reshape to
*/ */
template<typename SizeT> template <typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) { void resolve_and_check_new_shape(ErrorContext* errctx, SizeT size,
SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`? // Is there a -1 in `new_shape`?
bool neg1_exists = false; bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true // Location of -1, only initialized if `neg1_exists` is true
@ -34,8 +38,10 @@ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape)
if (dim == -1) { if (dim == -1) {
if (neg1_exists) { if (neg1_exists) {
// Multiple `-1` found. Throw an error. // Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM, errctx->set_exception(
NO_PARAM, NO_PARAM); errctx->exceptions->value_error,
"can only specify one unknown dimension");
return;
} else { } else {
neg1_exists = true; neg1_exists = true;
neg1_axis_i = axis_i; neg1_axis_i = axis_i;
@ -49,8 +55,10 @@ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape)
// It is not documented by numpy. // It is not documented by numpy.
// Throw an error for now... // Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i, errctx->set_exception(
NO_PARAM); errctx->exceptions->value_error,
"Found negative dimension {0} on axis {1}", dim, axis_i);
return;
} }
} else { } else {
new_size *= dim; new_size *= dim;
@ -60,7 +68,7 @@ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape)
bool can_reshape; bool can_reshape;
if (neg1_exists) { if (neg1_exists) {
// Let `x` be the unknown dimension // Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>` // solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) { if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions // `x` has infinitely many solutions
can_reshape = false; can_reshape = false;
@ -79,19 +87,31 @@ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape)
} }
if (!can_reshape) { if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM, errctx->set_exception(
NO_PARAM); errctx->exceptions->value_error,
"cannot reshape array of size {0} into given shape", size);
return;
} }
} }
} // namespace ndarray::reshape } // namespace util
} // namespace reshape
} // namespace ndarray
} // namespace } // namespace
extern "C" { extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape); void __nac3_ndarray_resolve_and_check_new_shape(ErrorContext* errctx,
int32_t size, int32_t new_ndims,
int32_t* new_shape) {
ndarray::reshape::util::resolve_and_check_new_shape(errctx, size, new_ndims,
new_shape);
} }
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) { void __nac3_ndarray_resolve_and_check_new_shape64(ErrorContext* errctx,
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape); int64_t size,
int64_t new_ndims,
int64_t* new_shape) {
ndarray::reshape::util::resolve_and_check_new_shape(errctx, size, new_ndims,
new_shape);
} }
} }

View File

@ -1,143 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace {
namespace ndarray::transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace ndarray::transpose
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -1,47 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
}
} // namespace range
/**
* @brief A Python range.
*/
template<typename T>
struct Range {
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template<typename SizeT>
T len() {
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,67 +1,78 @@
#pragma once #pragma once
#include "irrt/debug.hpp" #include <irrt/error_context.hpp>
#include "irrt/exception.hpp" #include <irrt/int_defs.hpp>
#include "irrt/int_types.hpp" #include <irrt/slice.hpp>
#include "irrt/math_util.hpp" #include <irrt/utils.hpp>
#include "irrt/range.hpp"
// The type of an index or a value describing the length of a
// range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace { namespace {
/**
* @brief A Python-like slice with resolved indices.
*
* "Resolved indices" means that `start` and `stop` must be positive and are
* bound to a known length.
*/
struct Slice {
SliceIndex start;
SliceIndex stop;
SliceIndex step;
/**
* @brief Calculate and return the length / the number of the slice.
*
* If this were a Python range, this function would be `len(range(start, stop, step))`.
*/
SliceIndex len() {
SliceIndex diff = stop - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
};
namespace slice { namespace slice {
/** /**
* @brief Resolve a possibly negative index in a list of a known length. * @brief Resolve a slice index under a given length like Python indexing.
*
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
*
* If `length` is 0, 0 is returned for any value of `index`.
*
* If `index` is out of bounds, clamps the returned value between `0` and
* `length - 1` (inclusive).
* *
* Returns -1 if the resolved index is out of the list's bounds.
*/ */
template<typename T> SliceIndex resolve_index_in_length_clamped(SliceIndex length,
T resolve_index_in_length(T length, T index) { SliceIndex index) {
T resolved = index < 0 ? length + index : index; if (index < 0) {
if (0 <= resolved && resolved < length) { return max<SliceIndex>(length + index, 0);
return resolved;
} else { } else {
return -1; return min<SliceIndex>(length, index);
} }
} }
const SliceIndex OUT_OF_BOUNDS = -1;
/** /**
* @brief Resolve a slice as a range. * @brief Like `resolve_index_in_length_clamped`, but returns `OUT_OF_BOUNDS`
* * if `index` is out of bounds.
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/ */
template<typename T> SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
void indices(bool start_defined, SliceIndex resolved = index < 0 ? length + index : index;
T start, if (0 <= resolved && resolved < length) {
bool stop_defined, return resolved;
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative) {
lower = -1;
upper = length - 1;
} else { } else {
lower = 0; return OUT_OF_BOUNDS;
upper = length;
}
if (start_defined) {
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} else {
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined) {
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} else {
*range_stop = step_is_negative ? lower : upper;
} }
} }
} // namespace slice } // namespace slice
@ -69,18 +80,17 @@ void indices(bool start_defined,
/** /**
* @brief A Python-like slice with **unresolved** indices. * @brief A Python-like slice with **unresolved** indices.
*/ */
template<typename T> struct UserSlice {
struct Slice {
bool start_defined; bool start_defined;
T start; SliceIndex start;
bool stop_defined; bool stop_defined;
T stop; SliceIndex stop;
bool step_defined; bool step_defined;
T step; SliceIndex step;
Slice() { this->reset(); } UserSlice() { this->reset(); }
void reset() { void reset() {
this->start_defined = false; this->start_defined = false;
@ -88,69 +98,69 @@ struct Slice {
this->step_defined = false; this->step_defined = false;
} }
void set_start(T start) { void set_start(SliceIndex start) {
this->start_defined = true; this->start_defined = true;
this->start = start; this->start = start;
} }
void set_stop(T stop) { void set_stop(SliceIndex stop) {
this->stop_defined = true; this->stop_defined = true;
this->stop = stop; this->stop = stop;
} }
void set_step(T step) { void set_step(SliceIndex step) {
this->step_defined = true; this->step_defined = true;
this->step = step; this->step = step;
} }
/** /**
* @brief Resolve this slice as a range. * @brief Resolve this slice.
* *
* In Python, this would be `range(*slice(start, stop, step).indices(length))`. * In Python, this would be `slice(start, stop, step).indices(length)`.
*
* @return A `Slice` with the resolved indices.
*/ */
template<typename SizeT> Slice indices(SliceIndex length) {
Range<T> indices(T length) { Slice result;
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388 result.step = step_defined ? step : 1;
debug_assert(SizeT, length >= 0); bool step_is_negative = result.step < 0;
if (start_defined) {
result.start =
slice::resolve_index_in_length_clamped(length, start);
} else {
result.start = step_is_negative ? length - 1 : 0;
}
if (stop_defined) {
result.stop = slice::resolve_index_in_length_clamped(length, stop);
} else {
result.stop = step_is_negative ? -1 : length;
}
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result; return result;
} }
/** /**
* @brief Like `.indices()` but with assertions. * @brief Like `.indices()` but with assertions.
*/ */
template<typename SizeT> void indices_checked(ErrorContext* errctx, SliceIndex length,
Range<T> indices_checked(T length) { Slice* result) {
// TODO: Switch to `SizeT length`
if (length < 0) { if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM, errctx->set_exception(errctx->exceptions->value_error,
NO_PARAM); "length should not be negative, got {0}",
length);
return;
} }
if (this->step_defined && this->step == 0) { if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM); errctx->set_exception(errctx->exceptions->value_error,
"slice step cannot be zero");
return;
} }
return this->indices<SizeT>(length); *result = this->indices(length);
} }
}; };
} // namespace } // namespace
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
}

View File

@ -1,23 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
if (len1 != len2) {
return 0;
}
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
}
} // namespace
extern "C" {
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
}
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
}
}

View File

@ -0,0 +1,104 @@
#pragma once
namespace {
template <typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
/**
* @brief Compare contents of two arrays with the same length.
*/
template <typename T>
bool arrays_match(int len, T* as, T* bs) {
for (int i = 0; i < len; i++) {
if (as[i] != bs[i]) return false;
}
return true;
}
namespace cstr_utils {
/**
* @brief Return true if `str` is empty.
*/
bool is_empty(const char* str) { return str[0] == '\0'; }
/**
* @brief Implementation of `strcmp()`
*/
int8_t compare(const char* a, const char* b) {
uint32_t i = 0;
while (true) {
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else {
if (a[i] == '\0') {
return 0;
} else {
i++;
}
}
}
}
/**
* @brief Return true two strings have the same content.
*/
int8_t equal(const char* a, const char* b) { return compare(a, b) == 0; }
/**
* @brief Implementation of `strlen()`.
*/
uint32_t length(const char* str) {
uint32_t length = 0;
while (*str != '\0') {
length++;
str++;
}
return length;
}
/**
* @brief Copy a null-terminated string to a buffer with limited size and guaranteed null-termination.
*
* `dst_max_size` must be greater than 0, otherwise this function has undefined behavior.
*
* This function attempts to copy everything from `src` from `dst`, and *always* null-terminates `dst`.
*
* If the size of `dst` is too small, the final byte (`dst[dst_max_size - 1]`) of `dst` will be set to
* the null terminator.
*
* @param src String to copy from.
* @param dst Buffer to copy string to.
* @param dst_max_size
* Number of bytes of this buffer, including the space needed for the null terminator.
* Must be greater than 0.
* @return If `dst` is too small to contain everything in `src`.
*/
bool copy(const char* src, char* dst, uint32_t dst_max_size) {
for (uint32_t i = 0; i < dst_max_size; i++) {
bool is_last = i + 1 == dst_max_size;
if (is_last && src[i] != '\0') {
dst[i] = '\0';
return false;
}
if (src[i] == '\0') {
dst[i] = '\0';
return true;
}
dst[i] = src[i];
}
__builtin_unreachable();
}
} // namespace cstr_utils
} // namespace

View File

@ -0,0 +1,13 @@
#pragma once
#include <irrt/artiq_defs.hpp>
#include <irrt/core.hpp>
#include <irrt/error_context.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/ndarray/indexing.hpp>
#include <irrt/ndarray/reshape.hpp>
#include <irrt/slice.hpp>
#include <irrt/utils.hpp>

View File

@ -0,0 +1,20 @@
// This file will be compiled like a real C++ program,
// and we do have the luxury to use the standard libraries.
// That is if the nix flakes do not have issues... especially on msys2...
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <test/test_core.hpp>
#include <test/test_ndarray_basic.hpp>
#include <test/test_ndarray_broadcast.hpp>
#include <test/test_ndarray_indexing.hpp>
#include <test/test_slice.hpp>
int main() {
test::core::run();
test::slice::run();
test::ndarray_basic::run();
test::ndarray_indexing::run();
test::ndarray_broadcast::run();
return 0;
}

View File

@ -0,0 +1,11 @@
#pragma once
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <irrt_everything.hpp>
#include <test/util.hpp>
/*
Include this header for every test_*.cpp
*/

View File

@ -0,0 +1,16 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace core {
void test_int_exp() {
BEGIN_TEST();
assert_values_match(125, __nac3_int_exp_impl<int32_t>(5, 3));
assert_values_match(3125, __nac3_int_exp_impl<int32_t>(5, 5));
}
void run() { test_int_exp(); }
} // namespace core
} // namespace test

View File

@ -0,0 +1,30 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace ndarray_basic {
void test_calc_size_from_shape_normal() {
// Test shapes with normal values
BEGIN_TEST();
int32_t shape[4] = {2, 3, 5, 7};
assert_values_match(
210, ndarray::basic::util::calc_size_from_shape<int32_t>(4, shape));
}
void test_calc_size_from_shape_has_zero() {
// Test shapes with 0 in them
BEGIN_TEST();
int32_t shape[4] = {2, 0, 5, 7};
assert_values_match(
0, ndarray::basic::util::calc_size_from_shape<int32_t>(4, shape));
}
void run() {
test_calc_size_from_shape_normal();
test_calc_size_from_shape_has_zero();
}
} // namespace ndarray_basic
} // namespace test

View File

@ -0,0 +1,129 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace ndarray_broadcast {
void test_can_broadcast_shape() {
BEGIN_TEST();
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){3}, 5, (int32_t[]){1, 1, 1, 1, 3}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){3}, 2, (int32_t[]){3, 1}));
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){3}, 1, (int32_t[]){3}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){1}, 1, (int32_t[]){3}));
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){1}, 1, (int32_t[]){1}));
assert_values_match(
true, ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 3, (int32_t[]){256, 1, 3}));
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){3}));
assert_values_match(false,
ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){2}));
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){1}));
// In cases when the shapes contain zero(es)
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){0}, 1, (int32_t[]){1}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
1, (int32_t[]){0}, 1, (int32_t[]){2}));
assert_values_match(true,
ndarray::broadcast::util::can_broadcast_shape_to(
4, (int32_t[]){0, 4, 0, 0}, 1, (int32_t[]){1}));
assert_values_match(
true, ndarray::broadcast::util::can_broadcast_shape_to(
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 1, 1, 1}));
assert_values_match(
true, ndarray::broadcast::util::can_broadcast_shape_to(
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 4, 1, 1}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 3}));
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 0}));
}
void test_ndarray_broadcast() {
/*
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
# >>> [[19.9 29.9 39.9 49.9]]
#
# array = np.broadcast_to(array, (2, 3, 4))
# >>> [[[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]
# >>> [[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]]
#
# assery array.strides == (0, 0, 8)
*/
BEGIN_TEST();
double in_data[4] = {19.9, 29.9, 39.9, 49.9};
const int32_t in_ndims = 2;
int32_t in_shape[in_ndims] = {1, 4};
int32_t in_strides[in_ndims] = {};
NDArray<int32_t> ndarray = {.data = (uint8_t*)in_data,
.itemsize = sizeof(double),
.ndims = in_ndims,
.shape = in_shape,
.strides = in_strides};
ndarray::basic::set_strides_by_shape(&ndarray);
const int32_t dst_ndims = 3;
int32_t dst_shape[dst_ndims] = {2, 3, 4};
int32_t dst_strides[dst_ndims] = {};
NDArray<int32_t> dst_ndarray = {
.ndims = dst_ndims, .shape = dst_shape, .strides = dst_strides};
ErrorContext errctx = create_testing_errctx();
ndarray::broadcast::broadcast_to(&errctx, &ndarray, &dst_ndarray);
assert_errctx_no_exception(&errctx);
assert_arrays_match(dst_ndims, ((int32_t[]){0, 0, 8}), dst_ndarray.strides);
assert_values_match(19.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 0}))));
assert_values_match(29.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 1}))));
assert_values_match(39.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 2}))));
assert_values_match(49.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 0, 3}))));
assert_values_match(19.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 0}))));
assert_values_match(29.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 1}))));
assert_values_match(39.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 2}))));
assert_values_match(49.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){0, 1, 3}))));
assert_values_match(49.9,
*((double*)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, ((int32_t[]){1, 2, 3}))));
}
void run() {
test_can_broadcast_shape();
test_ndarray_broadcast();
}
} // namespace ndarray_broadcast
} // namespace test

View File

@ -0,0 +1,220 @@
#pragma once
#include <test/includes.hpp>
namespace test {
namespace ndarray_indexing {
void test_normal_1() {
/*
Reference Python code:
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[-2:, 1::2]
# array([[ 5., 7.],
# [ 9., 11.]])
assert dst_ndarray.shape == (2, 2)
assert dst_ndarray.strides == (32, 16)
assert dst_ndarray[0, 0] == 5.0
assert dst_ndarray[0, 1] == 7.0
assert dst_ndarray[1, 0] == 9.0
assert dst_ndarray[1, 1] == 11.0
```
*/
BEGIN_TEST();
// Prepare src_ndarray
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
int32_t src_itemsize = sizeof(double);
const int32_t src_ndims = 2;
int32_t src_shape[src_ndims] = {3, 4};
int32_t src_strides[src_ndims] = {};
NDArray<int32_t> src_ndarray = {.data = (uint8_t *)src_data,
.itemsize = src_itemsize,
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Prepare dst_ndarray
const int32_t dst_ndims = 2;
int32_t dst_shape[dst_ndims] = {999, 999}; // Empty values
int32_t dst_strides[dst_ndims] = {999, 999}; // Empty values
NDArray<int32_t> dst_ndarray = {.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides};
// Create the subscripts in `ndarray[-2::, 1::2]`
UserSlice subscript_1;
subscript_1.set_start(-2);
UserSlice subscript_2;
subscript_2.set_start(1);
subscript_2.set_step(2);
const int32_t num_indexes = 2;
NDIndex indexes[num_indexes] = {
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_1},
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
ErrorContext errctx = create_testing_errctx();
ndarray::indexing::index(&errctx, num_indexes, indexes, &src_ndarray,
&dst_ndarray);
assert_errctx_no_exception(&errctx);
int32_t expected_shape[dst_ndims] = {2, 2};
int32_t expected_strides[dst_ndims] = {32, 16};
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
// dst_ndarray[0, 0]
assert_values_match(5.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int32_t[dst_ndims]){0, 0})));
// dst_ndarray[0, 1]
assert_values_match(7.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int32_t[dst_ndims]){0, 1})));
// dst_ndarray[1, 0]
assert_values_match(9.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int32_t[dst_ndims]){1, 0})));
// dst_ndarray[1, 1]
assert_values_match(11.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int32_t[dst_ndims]){1, 1})));
}
void test_normal_2() {
/*
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[2, ::-2]
# array([11., 9.])
assert dst_ndarray.shape == (2,)
assert dst_ndarray.strides == (-16,)
assert dst_ndarray[0] == 11.0
assert dst_ndarray[1] == 9.0
```
*/
BEGIN_TEST();
// Prepare src_ndarray
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
int32_t src_itemsize = sizeof(double);
const int32_t src_ndims = 2;
int32_t src_shape[src_ndims] = {3, 4};
int32_t src_strides[src_ndims] = {};
NDArray<int32_t> src_ndarray = {.data = (uint8_t *)src_data,
.itemsize = src_itemsize,
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Prepare dst_ndarray
const int32_t dst_ndims = 1;
int32_t dst_shape[dst_ndims] = {999}; // Empty values
int32_t dst_strides[dst_ndims] = {999}; // Empty values
NDArray<int32_t> dst_ndarray = {.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides};
// Create the subscripts in `ndarray[2, ::-2]`
int32_t subscript_1 = 2;
UserSlice subscript_2;
subscript_2.set_step(-2);
const int32_t num_indexes = 2;
NDIndex indexes[num_indexes] = {
{.type = ND_INDEX_TYPE_SINGLE_ELEMENT, .data = (uint8_t *)&subscript_1},
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
ErrorContext errctx = create_testing_errctx();
ndarray::indexing::index(&errctx, num_indexes, indexes, &src_ndarray,
&dst_ndarray);
assert_errctx_no_exception(&errctx);
int32_t expected_shape[dst_ndims] = {2};
int32_t expected_strides[dst_ndims] = {-16};
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
assert_values_match(11.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int32_t[dst_ndims]){0})));
assert_values_match(9.0,
*((double *)ndarray::basic::get_pelement_by_indices(
&dst_ndarray, (int32_t[dst_ndims]){1})));
}
void test_index_subscript_out_of_bounds() {
/*
# Consider `my_array`
print(my_array.shape)
# (4, 5, 6)
my_array[2, 100] # error, index subscript at axis 1 is out of bounds
*/
BEGIN_TEST();
// Prepare src_ndarray
const int32_t src_ndims = 2;
int32_t src_shape[src_ndims] = {3, 4};
int32_t src_strides[src_ndims] = {};
NDArray<int32_t> src_ndarray = {
.data = (uint8_t *)nullptr, // placeholder, we wouldn't access it
.itemsize = sizeof(double), // placeholder
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Create the subscripts in `my_array[2, 100]`
int32_t subscript_1 = 2;
int32_t subscript_2 = 100;
const int32_t num_indexes = 2;
NDIndex indexes[num_indexes] = {
{.type = ND_INDEX_TYPE_SINGLE_ELEMENT, .data = (uint8_t *)&subscript_1},
{.type = ND_INDEX_TYPE_SINGLE_ELEMENT,
.data = (uint8_t *)&subscript_2}};
// Prepare dst_ndarray
const int32_t dst_ndims = 0;
int32_t dst_shape[dst_ndims] = {};
int32_t dst_strides[dst_ndims] = {};
NDArray<int32_t> dst_ndarray = {.data = nullptr, // placehloder
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides};
ErrorContext errctx = create_testing_errctx();
ndarray::indexing::index(&errctx, num_indexes, indexes, &src_ndarray,
&dst_ndarray);
assert_errctx_has_exception(&errctx, errctx.exceptions->index_error);
}
void run() {
test_normal_1();
test_normal_2();
test_index_subscript_out_of_bounds();
}
} // namespace ndarray_indexing
} // namespace test

View File

@ -0,0 +1,92 @@
#pragma once
#include <irrt_everything.hpp>
#include <test/includes.hpp>
namespace test {
namespace slice {
void test_slice_normal() {
// Normal situation
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_stop(5);
Slice slice = user_slice.indices(100);
printf("%d, %d, %d\n", slice.start, slice.stop, slice.step);
assert_values_match(0, slice.start);
assert_values_match(5, slice.stop);
assert_values_match(1, slice.step);
}
void test_slice_start_too_large() {
// Start is too large and should be clamped to length
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_start(400);
Slice slice = user_slice.indices(100);
assert_values_match(100, slice.start);
assert_values_match(100, slice.stop);
assert_values_match(1, slice.step);
}
void test_slice_negative_start_stop() {
// Negative start/stop should be resolved
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_start(-10);
user_slice.set_stop(-5);
Slice slice = user_slice.indices(100);
assert_values_match(90, slice.start);
assert_values_match(95, slice.stop);
assert_values_match(1, slice.step);
}
void test_slice_only_negative_step() {
// Things like `[::-5]` should be handled correctly
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_step(-5);
Slice slice = user_slice.indices(100);
assert_values_match(99, slice.start);
assert_values_match(-1, slice.stop);
assert_values_match(-5, slice.step);
}
void test_slice_step_zero() {
// Step = 0 is a value error
BEGIN_TEST();
ErrorContext errctx = create_testing_errctx();
UserSlice user_slice;
user_slice.set_start(2);
user_slice.set_stop(12);
user_slice.set_step(0);
Slice slice;
user_slice.indices_checked(&errctx, 100, &slice);
assert_errctx_has_exception(&errctx, errctx.exceptions->value_error);
}
void run() {
test_slice_normal();
test_slice_start_too_large();
test_slice_negative_start_stop();
test_slice_only_negative_step();
test_slice_step_zero();
}
} // namespace slice
} // namespace test

188
nac3core/irrt/test/util.hpp Normal file
View File

@ -0,0 +1,188 @@
#pragma once
#include <cstdio>
#include <cstdlib>
template <class T>
void print_value(const T& value);
template <>
void print_value(const bool& value) {
printf("%s", value ? "true" : "false");
}
template <>
void print_value(const int8_t& value) {
printf("%d", value);
}
template <>
void print_value(const int32_t& value) {
printf("%d", value);
}
template <>
void print_value(const uint8_t& value) {
printf("%u", value);
}
template <>
void print_value(const uint32_t& value) {
printf("%u", value);
}
template <>
void print_value(const float& value) {
printf("%f", value);
}
template <>
void print_value(const double& value) {
printf("%f", value);
}
void __begin_test(const char* function_name, const char* file, int line) {
printf("######### Running %s @ %s:%d\n", function_name, file, line);
}
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
void test_fail() {
printf("[!] Test failed. Exiting with status code 1.\n");
exit(1);
}
template <typename T>
void debug_print_array(int len, const T* as) {
printf("[");
for (int i = 0; i < len; i++) {
if (i != 0) printf(", ");
print_value(as[i]);
}
printf("]");
}
void print_assertion_passed(const char* file, int line) {
printf("[*] Assertion passed on %s:%d\n", file, line);
}
void print_assertion_failed(const char* file, int line) {
printf("[!] Assertion failed on %s:%d\n", file, line);
}
void __assert_true(const char* file, int line, bool cond) {
if (cond) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
test_fail();
}
}
#define assert_true(cond) __assert_true(__FILE__, __LINE__, cond)
template <typename T>
void __assert_arrays_match(const char* file, int line, int len,
const T* expected, const T* got) {
if (arrays_match(len, expected, got)) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
debug_print_array(len, expected);
printf("\n");
printf(" Got = ");
debug_print_array(len, got);
printf("\n");
test_fail();
}
}
#define assert_arrays_match(len, expected, got) \
__assert_arrays_match(__FILE__, __LINE__, len, expected, got)
template <typename T>
void __assert_values_match(const char* file, int line, T expected, T got) {
if (expected == got) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
print_value(expected);
printf("\n");
printf(" Got = ");
print_value(got);
printf("\n");
test_fail();
}
}
#define assert_values_match(expected, got) \
__assert_values_match(__FILE__, __LINE__, expected, got)
// A fake set of ExceptionIds for testing only
const ErrorContextExceptions TEST_ERROR_CONTEXT_EXCEPTIONS = {
.index_error = 0,
.value_error = 1,
.assertion_error = 2,
.runtime_error = 3,
.type_error = 4,
};
ErrorContext create_testing_errctx() {
// Everything is global so it is fine to directly return a struct
// ErrorContext
ErrorContext errctx;
errctx.initialize(&TEST_ERROR_CONTEXT_EXCEPTIONS);
return errctx;
}
void print_errctx_content(ErrorContext* errctx) {
if (errctx->has_exception()) {
printf(
"(Exception ID %d): %s ... where param1 = %ld, param2 = %ld, "
"param3 = "
"%ld\n",
errctx->exception_id, errctx->msg, errctx->param1, errctx->param2,
errctx->param3);
} else {
printf("<no exception>\n");
}
}
void __assert_errctx_no_exception(const char* file, int line,
ErrorContext* errctx) {
if (errctx->has_exception()) {
print_assertion_failed(file, line);
printf("Expecting no exception but caught the following:\n\n");
print_errctx_content(errctx);
test_fail();
}
}
#define assert_errctx_no_exception(errctx) \
__assert_errctx_no_exception(__FILE__, __LINE__, errctx)
void __assert_errctx_has_exception(const char* file, int line,
ErrorContext* errctx,
ExceptionId expected_exception_id) {
if (errctx->has_exception()) {
if (errctx->exception_id != expected_exception_id) {
print_assertion_failed(file, line);
printf(
"Expecting exception id %d but got exception id %d. Error "
"caught:\n\n",
expected_exception_id, errctx->exception_id);
print_errctx_content(errctx);
test_fail();
}
} else {
print_assertion_failed(file, line);
printf("Expecting an exception, but there is none.");
test_fail();
}
}
#define assert_errctx_has_exception(errctx, expected_exception_id) \
__assert_errctx_has_exception(__FILE__, __LINE__, errctx, \
expected_exception_id)

View File

@ -1,21 +0,0 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -1,320 +0,0 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -1,9 +0,0 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -1,20 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,10 +0,0 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,3 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{ use crate::{
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
toplevel::DefinitionId, toplevel::DefinitionId,
@ -15,6 +9,10 @@ use crate::{
}, },
}; };
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore { pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>, store: Vec<ConcreteTypeEnum>,
} }
@ -27,7 +25,6 @@ pub struct ConcreteFuncArg {
pub name: StrRef, pub name: StrRef,
pub ty: ConcreteType, pub ty: ConcreteType,
pub default_value: Option<SymbolValue>, pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
} }
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
@ -49,17 +46,12 @@ pub enum ConcreteTypeEnum {
TPrimitive(Primitive), TPrimitive(Primitive),
TTuple { TTuple {
ty: Vec<ConcreteType>, ty: Vec<ConcreteType>,
is_vararg_ctx: bool,
}, },
TObj { TObj {
obj_id: DefinitionId, obj_id: DefinitionId,
fields: HashMap<StrRef, (ConcreteType, bool)>, fields: HashMap<StrRef, (ConcreteType, bool)>,
params: IndexMap<TypeVarId, ConcreteType>, params: IndexMap<TypeVarId, ConcreteType>,
}, },
TModule {
module_id: DefinitionId,
methods: HashMap<StrRef, (ConcreteType, bool)>,
},
TVirtual { TVirtual {
ty: ConcreteType, ty: ConcreteType,
}, },
@ -110,16 +102,8 @@ impl ConcreteTypeStore {
.iter() .iter()
.map(|arg| ConcreteFuncArg { .map(|arg| ConcreteFuncArg {
name: arg.name, name: arg.name,
ty: if arg.is_vararg { ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
}) })
.collect(), .collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache), ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
@ -174,12 +158,11 @@ impl ConcreteTypeStore {
cache.insert(ty, None); cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty); let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum { let result = match &*ty_enum {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple { TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
ty: ty ty: ty
.iter() .iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache)) .map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(), .collect(),
is_vararg_ctx: *is_vararg_ctx,
}, },
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj { TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id, obj_id: *obj_id,
@ -209,19 +192,6 @@ impl ConcreteTypeStore {
}) })
.collect(), .collect(),
}, },
TypeEnum::TModule { module_id, attributes } => ConcreteTypeEnum::TModule {
module_id: *module_id,
methods: attributes
.iter()
.filter_map(|(name, ty)| match &*unifier.get_ty(ty.0) {
TypeEnum::TFunc(..) | TypeEnum::TObj { .. } => None,
_ => Some((
*name,
(self.from_unifier_type(unifier, primitives, ty.0, cache), ty.1),
)),
})
.collect(),
},
TypeEnum::TVirtual { ty } => ConcreteTypeEnum::TVirtual { TypeEnum::TVirtual { ty } => ConcreteTypeEnum::TVirtual {
ty: self.from_unifier_type(unifier, primitives, *ty, cache), ty: self.from_unifier_type(unifier, primitives, *ty, cache),
}, },
@ -278,12 +248,11 @@ impl ConcreteTypeStore {
*cache.get_mut(&cty).unwrap() = Some(ty); *cache.get_mut(&cty).unwrap() = Some(ty);
return ty; return ty;
} }
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple { ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
ty: ty ty: ty
.iter() .iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache)) .map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(), .collect(),
is_vararg_ctx: *is_vararg_ctx,
}, },
ConcreteTypeEnum::TVirtual { ty } => { ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) } TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
@ -301,15 +270,6 @@ impl ConcreteTypeStore {
TypeVar { id, ty } TypeVar { id, ty }
})), })),
}, },
ConcreteTypeEnum::TModule { module_id, methods } => TypeEnum::TModule {
module_id: *module_id,
attributes: methods
.iter()
.map(|(name, cty)| {
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
})
.collect::<HashMap<_, _>>(),
},
ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature { ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature {
args: args args: args
.iter() .iter()
@ -317,7 +277,6 @@ impl ConcreteTypeStore {
name: arg.name, name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache), ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: false,
}) })
.collect(), .collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache), ret: self.to_unifier_type(unifier, primitives, *ret, cache),

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,8 @@
use inkwell::{ use inkwell::attributes::{Attribute, AttributeLoc};
attributes::{Attribute, AttributeLoc}, use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
values::{BasicValueEnum, FloatValue, IntValue}, use itertools::Either;
};
use super::{expr::infer_and_call_function, CodeGenContext}; use crate::codegen::CodeGenContext;
/// Macro to generate extern function /// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue` /// Both function return type and function parameter type are `FloatValue`
@ -14,8 +13,8 @@ use super::{expr::infer_and_call_function, CodeGenContext};
/// * `$extern_fn:literal`: Name of underlying extern function /// * `$extern_fn:literal`: Name of underlying extern function
/// ///
/// Optional Arguments: /// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function. /// * `$(,$attributes:literal)*)`: Attributes linked with the extern function
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly". /// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly"
/// These will be used unless other attributes are specified /// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function /// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue` /// The data type of these operands will be set to `FloatValue`
@ -36,8 +35,8 @@ macro_rules! generate_extern_fn {
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => { ($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )] #[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
pub fn $fn_name<'ctx>( pub fn $fn_name<'ctx>(
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>
$($args: FloatValue<'ctx>,)* $(,$args: FloatValue<'ctx>)*,
name: Option<&str>, name: Option<&str>,
) -> FloatValue<'ctx> { ) -> FloatValue<'ctx> {
const FN_NAME: &str = $extern_fn; const FN_NAME: &str = $extern_fn;
@ -45,22 +44,23 @@ macro_rules! generate_extern_fn {
let llvm_f64 = ctx.ctx.f64_type(); let llvm_f64 = ctx.ctx.f64_type();
$(debug_assert_eq!($args.get_type(), llvm_f64);)* $(debug_assert_eq!($args.get_type(), llvm_f64);)*
infer_and_call_function( let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
ctx, let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
FN_NAME, let func = ctx.module.add_function(FN_NAME, fn_type, None);
Some(llvm_f64.into()),
&[$($args.into()),*],
name,
Some(&|func| {
for attr in [$($attributes),*] { for attr in [$($attributes),*] {
func.add_attribute( func.add_attribute(
AttributeLoc::Function, AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0), ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
); );
} }
}) func
) });
.map(BasicValueEnum::into_float_value)
ctx.builder
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap() .unwrap()
} }
}; };
@ -110,82 +110,23 @@ pub fn call_ldexp<'ctx>(
debug_assert_eq!(arg.get_type(), llvm_f64); debug_assert_eq!(arg.get_type(), llvm_f64);
debug_assert_eq!(exp.get_type(), llvm_i32); debug_assert_eq!(exp.get_type(), llvm_i32);
infer_and_call_function( let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
ctx, let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_i32.into()], false);
FN_NAME, let func = ctx.module.add_function(FN_NAME, fn_type, None);
Some(llvm_f64.into()),
&[arg.into(), exp.into()],
name,
Some(&|func| {
for attr in ["mustprogress", "nofree", "nounwind", "willreturn"] { for attr in ["mustprogress", "nofree", "nounwind", "willreturn"] {
func.add_attribute( func.add_attribute(
AttributeLoc::Function, AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0), ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
); );
} }
}),
) func
.map(BasicValueEnum::into_float_value) });
ctx.builder
.build_call(extern_fn, &[arg.into(), exp.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap() .unwrap()
} }
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
$($input_matrix: BasicValueEnum<'ctx>,)*
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
infer_and_call_function(
ctx,
FN_NAME,
None,
&[$($input_matrix.into(),)*],
name,
Some(&|func| {
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
}),
);
}
};
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -1,27 +1,20 @@
use inkwell::{
context::Context,
targets::TargetMachine,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_int_type, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{ use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum, symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef}, toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type}, typecheck::typedef::{FunSignature, Type},
}; };
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
pub trait CodeGenerator { pub trait CodeGenerator {
/// Return the module name for the code generator. /// Return the module name for the code generator.
fn get_name(&self) -> &str; fn get_name(&self) -> &str;
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
///
/// Prefer using [`CodeGenContext::get_size_type`] if [`CodeGenContext`] is available, as it is
/// equivalent to this function in a more concise syntax.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>; fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value. /// Generate function call and returns the function return value.
@ -64,7 +57,6 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key. /// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the /// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method. /// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to /// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example. /// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>( fn gen_func_instance<'ctx>(
@ -139,39 +131,6 @@ pub trait CodeGenerator {
gen_assign(self, ctx, target, value, value_ty) gen_assign(self, ctx, target, value, value_ty)
} }
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
}
/// Generate code for a while expression. /// Generate code for a while expression.
/// Return true if the while loop must early return /// Return true if the while loop must early return
fn gen_while( fn gen_while(
@ -248,32 +207,22 @@ pub trait CodeGenerator {
gen_block(self, ctx, stmts) gen_block(self, ctx, stmts)
} }
/// Converts the value of a boolean-like value `bool_value` into an `i1`. /// See [`bool_to_i1`].
fn bool_to_i1<'ctx>( fn bool_to_i1<'ctx>(
&self, &self,
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>, bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
self.bool_to_int_type(ctx, bool_value, ctx.ctx.bool_type()) bool_to_i1(&ctx.builder, bool_value)
} }
/// Converts the value of a boolean-like value `bool_value` into an `i8`. /// See [`bool_to_i8`].
fn bool_to_i8<'ctx>( fn bool_to_i8<'ctx>(
&self, &self,
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>, bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
self.bool_to_int_type(ctx, bool_value, ctx.ctx.i8_type()) bool_to_i8(&ctx.builder, ctx.ctx, bool_value)
}
/// See [`bool_to_int_type`].
fn bool_to_int_type<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
ty: IntType<'ctx>,
) -> IntValue<'ctx> {
bool_to_int_type(&ctx.builder, bool_value, ty)
} }
} }
@ -284,27 +233,19 @@ pub struct DefaultCodeGenerator {
impl DefaultCodeGenerator { impl DefaultCodeGenerator {
#[must_use] #[must_use]
pub fn new(name: String, size_t: IntType<'_>) -> DefaultCodeGenerator { pub fn new(name: String, size_t: u32) -> DefaultCodeGenerator {
assert!(matches!(size_t.get_bit_width(), 32 | 64)); assert!(matches!(size_t, 32 | 64));
DefaultCodeGenerator { name, size_t: size_t.get_bit_width() } DefaultCodeGenerator { name, size_t }
}
#[must_use]
pub fn with_target_machine(
name: String,
ctx: &Context,
target_machine: &TargetMachine,
) -> DefaultCodeGenerator {
let llvm_usize = ctx.ptr_sized_int_type(&target_machine.get_target_data(), None);
Self::new(name, llvm_usize)
} }
} }
impl CodeGenerator for DefaultCodeGenerator { impl CodeGenerator for DefaultCodeGenerator {
/// Returns the name for this [`CodeGenerator`].
fn get_name(&self) -> &str { fn get_name(&self) -> &str {
&self.name &self.name
} }
/// Returns an LLVM integer type representing `size_t`.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> { fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> {
// it should be unsigned, but we don't really need unsigned and this could save us from // it should be unsigned, but we don't really need unsigned and this could save us from
// having to do a bit cast... // having to do a bit cast...

View File

@ -0,0 +1,198 @@
use super::util::{function::CallFunction, get_sizet_dependent_function_name};
use crate::codegen::{
model::*,
structure::{cslice::CSlice, exception::ExceptionId},
CodeGenContext, CodeGenerator,
};
#[allow(clippy::struct_field_names)]
pub struct ErrorContextExceptionsFields<F: FieldVisitor> {
pub index_error: F::Field<IntModel<ExceptionId>>,
pub value_error: F::Field<IntModel<ExceptionId>>,
pub assertion_error: F::Field<IntModel<ExceptionId>>,
pub runtime_error: F::Field<IntModel<ExceptionId>>,
pub type_error: F::Field<IntModel<ExceptionId>>,
}
/// Corresponds to IRRT's `struct ErrorContextExceptions`
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct ErrorContextExceptions;
impl StructKind for ErrorContextExceptions {
type Fields<F: FieldVisitor> = ErrorContextExceptionsFields<F>;
fn visit_fields<F: FieldVisitor>(&self, visitor: &mut F) -> Self::Fields<F> {
Self::Fields {
index_error: visitor.add("index_error"),
value_error: visitor.add("value_error"),
assertion_error: visitor.add("assertion_error"),
runtime_error: visitor.add("runtime_error"),
type_error: visitor.add("type_error"),
}
}
}
pub struct ErrorContextFields<F: FieldVisitor> {
pub exceptions: F::Field<PtrModel<StructModel<ErrorContextExceptions>>>,
pub exception_id: F::Field<IntModel<ExceptionId>>,
pub msg: F::Field<PtrModel<IntModel<Byte>>>,
pub param1: F::Field<IntModel<Int64>>,
pub param2: F::Field<IntModel<Int64>>,
pub param3: F::Field<IntModel<Int64>>,
}
/// Corresponds to IRRT's `struct ErrorContext`
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct ErrorContext;
impl StructKind for ErrorContext {
type Fields<F: FieldVisitor> = ErrorContextFields<F>;
fn visit_fields<F: FieldVisitor>(&self, visitor: &mut F) -> Self::Fields<F> {
Self::Fields {
exceptions: visitor.add("exceptions"),
exception_id: visitor.add("exception_id"),
msg: visitor.add("msg"),
param1: visitor.add("param1"),
param2: visitor.add("param2"),
param3: visitor.add("param3"),
}
}
}
/// Build an [`ErrorContextExceptions`] loaded with resolved [`ExceptionID`]s according to the [`SymbolResolver`].
fn build_error_context_exceptions<'ctx>(
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
) -> Ptr<'ctx, StructModel<ErrorContextExceptions>> {
let exceptions =
StructModel(ErrorContextExceptions).alloca(tyctx, ctx, "error_context_exceptions");
let i32_model = IntModel(Int32);
let get_string_id = |string_id| {
i32_model.constant(tyctx, ctx.ctx, ctx.resolver.get_string_id(string_id) as u64)
};
exceptions.gep(ctx, |f| f.index_error).store(ctx, get_string_id("0:IndexError"));
exceptions.gep(ctx, |f| f.value_error).store(ctx, get_string_id("0:ValueError"));
exceptions.gep(ctx, |f| f.assertion_error).store(ctx, get_string_id("0:AssertionError"));
exceptions.gep(ctx, |f| f.runtime_error).store(ctx, get_string_id("0:RuntimeError"));
exceptions.gep(ctx, |f| f.type_error).store(ctx, get_string_id("0:TypeError"));
exceptions
}
pub fn call_nac3_error_context_initialize<'ctx>(
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
perrctx: Ptr<'ctx, StructModel<ErrorContext>>,
pexceptions: Ptr<'ctx, StructModel<ErrorContextExceptions>>,
) {
CallFunction::begin(tyctx, ctx, "__nac3_error_context_initialize")
.arg("errctx", perrctx)
.arg("exceptions", pexceptions)
.returning_void();
}
pub fn call_nac3_error_context_has_exception<'ctx>(
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
perrctx: Ptr<'ctx, StructModel<ErrorContext>>,
) -> Int<'ctx, Bool> {
CallFunction::begin(tyctx, ctx, "__nac3_error_context_has_exception")
.arg("errctx", perrctx)
.returning("has_exception")
}
pub fn call_nac3_error_context_get_exception_str<'ctx>(
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
perrctx: Ptr<'ctx, StructModel<ErrorContext>>,
dst_str: Ptr<'ctx, StructModel<CSlice>>,
) {
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(tyctx, "__nac3_error_context_get_exception_str"),
)
.arg("errctx", perrctx)
.arg("dst_str", dst_str)
.returning_void();
}
/// Setup a [`ErrorContext`] that could be passed to IRRT functions taking in a `ErrorContext* errctx`
/// for error reporting purposes.
///
/// Also see: [`check_error_context`]
pub fn setup_error_context<'ctx>(
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
) -> Ptr<'ctx, StructModel<ErrorContext>> {
let errctx_model = StructModel(ErrorContext);
let exceptions = build_error_context_exceptions(tyctx, ctx);
let errctx_ptr = errctx_model.alloca(tyctx, ctx, "errctx");
call_nac3_error_context_initialize(tyctx, ctx, errctx_ptr, exceptions);
errctx_ptr
}
/// Check a [`ErrorContext`] to see if it contains error. **If there is an error,
/// a Pythonic exception will be raised in the firmware**.
pub fn check_error_context<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
perrctx: Ptr<'ctx, StructModel<ErrorContext>>,
) {
let tyctx = generator.type_context(ctx.ctx);
let cslice_model = StructModel(CSlice);
let current_bb = ctx.builder.get_insert_block().unwrap();
let irrt_has_exception_bb = ctx.ctx.insert_basic_block_after(current_bb, "irrt_has_exception");
let end_bb = ctx.ctx.insert_basic_block_after(irrt_has_exception_bb, "end");
// Inserting into `current_bb`
let has_exception = call_nac3_error_context_has_exception(tyctx, ctx, perrctx);
ctx.builder
.build_conditional_branch(has_exception.value, irrt_has_exception_bb, end_bb)
.unwrap();
// Inserting into `irrt_has_exception_bb`
ctx.builder.position_at_end(irrt_has_exception_bb);
// Load all the values for `ctx.make_assert_impl_by_id`
let pexception_str = cslice_model.alloca(tyctx, ctx, "exception_str");
call_nac3_error_context_get_exception_str(tyctx, ctx, perrctx, pexception_str);
let exception_id = perrctx.gep(ctx, |f| f.exception_id).load(tyctx, ctx, "exception_id");
let msg = pexception_str.load(tyctx, ctx, "msg");
let param1 = perrctx.gep(ctx, |f| f.param1).load(tyctx, ctx, "param1");
let param2 = perrctx.gep(ctx, |f| f.param2).load(tyctx, ctx, "param2");
let param3 = perrctx.gep(ctx, |f| f.param3).load(tyctx, ctx, "param3");
ctx.raise_exn_impl(
generator,
exception_id,
msg,
[Some(param1), Some(param2), Some(param3)],
ctx.current_loc,
);
// Position to `end_bb` for continuation
ctx.builder.position_at_end(end_bb);
}
pub fn call_nac3_dummy_raise<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext,
) {
let tyctx = generator.type_context(ctx.ctx);
let errctx = setup_error_context(tyctx, ctx);
CallFunction::begin(tyctx, ctx, "__nac3_error_dummy_raise")
.arg("errctx", errctx)
.returning_void();
check_error_context(generator, ctx, errctx);
}

View File

@ -1,166 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace, IntPredicate,
};
use super::calculate_len_for_slice_range;
use crate::codegen::{
expr::infer_and_call_function,
macros::codegen_unreachable,
stmt::gen_if_callback,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let llvm_usize = ctx.get_size_type();
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(dest_idx.0.get_type(), llvm_i32);
assert_eq!(dest_idx.1.get_type(), llvm_i32);
assert_eq!(dest_idx.2.get_type(), llvm_i32);
assert_eq!(src_idx.0.get_type(), llvm_i32);
assert_eq!(src_idx.1.get_type(), llvm_i32);
assert_eq!(src_idx.2.get_type(), llvm_i32);
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len =
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len =
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = [
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
}
.into(),
];
infer_and_call_function(
ctx,
fun_symbol,
Some(llvm_i32.into()),
&args,
Some("slice_assign"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
};
// update length
gen_if_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update")
.unwrap())
},
|_, ctx| {
let new_len =
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
dest_arr.store_size(ctx, new_len);
Ok(())
},
|_, _| Ok(()),
)
.unwrap();
}

View File

@ -1,155 +0,0 @@
use inkwell::{
values::{BasicValueEnum, FloatValue, IntValue},
IntPredicate,
};
use crate::codegen::{
expr::infer_and_call_function,
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let base_type = base.get_type();
let symbol = match (base_type.get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
infer_and_call_function(
ctx,
symbol,
Some(base_type.into()),
&[base.into(), exp.into()],
Some("call_int_pow"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
infer_and_call_function(
ctx,
"__nac3_isinf",
Some(llvm_i32.into()),
&[v.into()],
Some("isinf"),
None,
)
.map(BasicValueEnum::into_int_value)
.map(|ret| generator.bool_to_i1(ctx, ret))
.unwrap()
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
infer_and_call_function(
ctx,
"__nac3_isnan",
Some(llvm_i32.into()),
&[v.into()],
Some("isnan"),
None,
)
.map(BasicValueEnum::into_int_value)
.map(|ret| generator.bool_to_i1(ctx, ret))
.unwrap()
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
infer_and_call_function(
ctx,
"__nac3_gamma",
Some(llvm_f64.into()),
&[v.into()],
Some("gamma"),
None,
)
.map(BasicValueEnum::into_float_value)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
infer_and_call_function(
ctx,
"__nac3_gammaln",
Some(llvm_f64.into()),
&[v.into()],
Some("gammaln"),
None,
)
.map(BasicValueEnum::into_float_value)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
infer_and_call_function(ctx, "__nac3_j0", Some(llvm_f64.into()), &[v.into()], Some("j0"), None)
.map(BasicValueEnum::into_float_value)
.unwrap()
}

View File

@ -1,31 +1,35 @@
use crate::typecheck::typedef::Type;
pub mod error_context;
pub mod ndarray;
pub mod slice;
mod test;
mod util;
use super::model::*;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics, CodeGenContext, CodeGenerator,
};
use crate::codegen::classes::TypedArrayLikeAccessor;
use crate::codegen::stmt::gen_for_callback_incrementing;
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
context::Context, context::Context,
memory_buffer::MemoryBuffer, memory_buffer::MemoryBuffer,
module::Module, module::Module,
values::{BasicValue, BasicValueEnum, IntValue}, types::{BasicTypeEnum, IntType},
IntPredicate, values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
AddressSpace, IntPredicate,
}; };
use itertools::Either;
use nac3parser::ast::Expr; use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use range::*;
pub use slice::*;
pub use string::*;
mod list;
mod math;
pub mod ndarray;
mod range;
mod slice;
mod string;
#[must_use] #[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> { pub fn load_irrt(ctx: &Context) -> Module {
let bitcode_buf = MemoryBuffer::create_from_memory_range( let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")), include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer", "irrt_bitcode_buffer",
@ -41,43 +45,89 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
let function = irrt_mod.get_function(symbol).unwrap(); let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0)); function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
} }
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod irrt_mod
} }
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`. // repeated squaring method adapted from GNU Scientific Library:
/// // https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`. pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`. generator: &mut G,
#[must_use] ctx: &mut CodeGenContext<'ctx, '_>,
pub fn get_usize_dependent_function_name(ctx: &CodeGenContext<'_, '_>, name: &str) -> String { base: IntValue<'ctx>,
let mut name = name.to_owned(); exp: IntValue<'ctx>,
match ctx.get_size_type().get_bit_width() { signed: bool,
32 => {} ) -> IntValue<'ctx> {
64 => name.push_str("64"), let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
bit_width => { (32, 32, true) => "__nac3_int_exp_int32_t",
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits") (64, 64, true) => "__nac3_int_exp_int64_t",
} (32, 32, false) => "__nac3_int_exp_uint32_t",
} (64, 64, false) => "__nac3_int_exp_uint64_t",
name _ => unreachable!(),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
} }
/// NOTE: the output value of the end index of this function should be compared ***inclusively***, /// NOTE: the output value of the end index of this function should be compared ***inclusively***,
@ -128,11 +178,10 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
generator: &mut G, generator: &mut G,
length: IntValue<'ctx>, length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> { ) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let llvm_i32 = ctx.ctx.i32_type(); let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let zero = llvm_i32.const_zero(); let one = int32.const_int(1, false);
let one = llvm_i32.const_int(1, false); let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap();
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
Ok(Some(match (start, end, step) { Ok(Some(match (start, end, step) {
(s, e, None) => ( (s, e, None) => (
if let Some(s) = s.as_ref() { if let Some(s) = s.as_ref() {
@ -141,7 +190,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
None => return Ok(None), None => return Ok(None),
} }
} else { } else {
llvm_i32.const_zero() int32.const_zero()
}, },
{ {
let e = if let Some(s) = e.as_ref() { let e = if let Some(s) = e.as_ref() {
@ -246,3 +295,658 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
} }
})) }))
} }
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
// TODO: Temporary fix. Rewrite `list_slice_assignment` later
// Exception params should have been i64
{
let type_context = generator.type_context(ctx.ctx);
let param_model = IntModel(Int64);
let src_slice_len =
param_model.s_extend_or_bit_cast(type_context, ctx, src_slice_len, "src_slice_len");
let dest_slice_len =
param_model.s_extend_or_bit_cast(type_context, ctx, dest_slice_len, "dest_slice_len");
let dest_idx_2 =
param_model.s_extend_or_bit_cast(type_context, ctx, dest_idx.2, "dest_idx_2");
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len.value), Some(dest_slice_len.value), Some(dest_idx_2.value)],
ctx.current_loc,
);
}
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -1,72 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
///
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
/// there is any issue with the resultant `shape`.
///
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
/// initialized to all `-1`s.
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndims: IntValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
assert_eq!(ndims.get_type(), llvm_usize);
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_set_and_validate_list_shape");
infer_and_call_function(
ctx,
&name,
None,
&[list.as_abi_value(ctx).into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
///
/// Copies the contents stored in `list` into `ndarray`.
///
/// The `ndarray` must fulfill the following preconditions:
///
/// - `ndarray.itemsize`: Must be initialized.
/// - `ndarray.ndims`: Must be initialized.
/// - `ndarray.shape`: Must be initialized.
/// - `ndarray.data`: Must be allocated and contiguous.
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_write_list_to_array");
infer_and_call_function(
ctx,
&name,
None,
&[list.as_abi_value(ctx).into(), ndarray.as_abi_value(ctx).into()],
None,
None,
);
}

View File

@ -1,257 +1,153 @@
use inkwell::{ use crate::codegen::irrt::error_context::{check_error_context, setup_error_context};
values::{BasicValueEnum, IntValue, PointerValue}, use crate::codegen::irrt::slice::SliceIndex;
AddressSpace, use crate::codegen::irrt::util::function::CallFunction;
}; use crate::codegen::irrt::util::get_sizet_dependent_function_name;
use crate::codegen::model::*;
use crate::codegen::structure::ndarray::NpArray;
use crate::codegen::{CodeGenContext, CodeGenerator};
use crate::codegen::{ pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
expr::infer_and_call_function, generator: &mut G,
irrt::get_usize_dependent_function_name, ctx: &mut CodeGenContext<'ctx, '_>,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor}, ndarray_ptr: Ptr<'ctx, StructModel<NpArray>>,
CodeGenContext, CodeGenerator, ) -> Int<'ctx, SizeT> {
}; let tyctx = generator.type_context(ctx.ctx);
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_size"),
)
.arg("ndarray", ndarray_ptr)
.returning("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: Ptr<'ctx, StructModel<NpArray>>,
) -> Int<'ctx, SizeT> {
let tyctx = generator.type_context(ctx.ctx);
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_nbytes"),
)
.arg("ndarray", ndarray_ptr)
.returning("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: Ptr<'ctx, StructModel<NpArray>>,
) -> Int<'ctx, SliceIndex> {
let tyctx = generator.type_context(ctx.ctx);
let slice_index_model = IntModel(SliceIndex::default());
let dst_len = slice_index_model.alloca(tyctx, ctx, "dst_len");
let errctx = setup_error_context(tyctx, ctx);
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_len"),
)
.arg("errctx", errctx)
.arg("ndarray", ndarray_ptr)
.arg("dst_len", dst_len)
.returning_void();
check_error_context(generator, ctx, errctx);
dst_len.load(tyctx, ctx, "len")
}
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
///
/// Assets that `shape` does not contain negative dimensions.
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>( pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &G, generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>, ndims: Int<'ctx, SizeT>,
shape: Ptr<'ctx, IntModel<SizeT>>,
) { ) {
let llvm_usize = ctx.get_size_type(); let tyctx = generator.type_context(ctx.ctx);
assert_eq!(shape.element_type(ctx, generator), llvm_usize.into()); let errctx = setup_error_context(tyctx, ctx);
CallFunction::begin(
let name = tyctx,
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_shape_no_negative");
infer_and_call_function(
ctx, ctx,
&name, &get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_util_assert_shape_no_negative"),
Some(llvm_usize.into()), )
&[shape.size(ctx, generator).into(), shape.base_ptr(ctx, generator).into()], .arg("errctx", errctx)
None, .arg("ndims", ndims)
None, .arg("shape", shape)
); .returning_void();
check_error_context(generator, ctx, errctx);
} }
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`. pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
/// generator: &mut G,
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to ctx: &mut CodeGenContext<'ctx, '_>,
/// an `ndarray`. ndarray_ptr: Ptr<'ctx, StructModel<NpArray>>,
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) { ) {
let llvm_usize = ctx.get_size_type(); let tyctx = generator.type_context(ctx.ctx);
assert_eq!(ndarray_shape.element_type(ctx, generator), llvm_usize.into()); CallFunction::begin(
assert_eq!(output_shape.element_type(ctx, generator), llvm_usize.into()); tyctx,
let name =
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_output_shape_same");
infer_and_call_function(
ctx, ctx,
&name, &get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_set_strides_by_shape"),
Some(llvm_usize.into()),
&[
ndarray_shape.size(ctx, generator).into(),
ndarray_shape.base_ptr(ctx, generator).into(),
output_shape.size(ctx, generator).into(),
output_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_size`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
/// `ndarray`, corresponding to the value of `ndarray.size`.
pub fn call_nac3_ndarray_size<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = ctx.get_size_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_size");
infer_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[ndarray.as_abi_value(ctx).into()],
Some("size"),
None,
) )
.map(BasicValueEnum::into_int_value) .arg("ndarray", ndarray_ptr)
.unwrap() .returning_void();
} }
/// Generates a call to `__nac3_ndarray_nbytes`. pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
/// generator: &mut G,
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the ctx: &mut CodeGenContext<'ctx, '_>,
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`. ndarray_ptr: Ptr<'ctx, StructModel<NpArray>>,
pub fn call_nac3_ndarray_nbytes<'ctx>( ) -> Int<'ctx, Bool> {
ctx: &CodeGenContext<'ctx, '_>, let tyctx = generator.type_context(ctx.ctx);
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = ctx.get_size_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_nbytes"); CallFunction::begin(
tyctx,
infer_and_call_function(
ctx, ctx,
&name, &get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_is_c_contiguous"),
Some(llvm_usize.into()),
&[ndarray.as_abi_value(ctx).into()],
Some("nbytes"),
None,
) )
.map(BasicValueEnum::into_int_value) .arg("ndarray", ndarray_ptr)
.unwrap() .returning("is_c_contiguous")
} }
/// Generates a call to `__nac3_ndarray_len`. pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
/// generator: &mut G,
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of ctx: &mut CodeGenContext<'ctx, '_>,
/// the `ndarray`, corresponding to the value of `ndarray.__len__`. src_ndarray: Ptr<'ctx, StructModel<NpArray>>,
pub fn call_nac3_ndarray_len<'ctx>( dst_ndarray: Ptr<'ctx, StructModel<NpArray>>,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = ctx.get_size_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_len");
infer_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[ndarray.as_abi_value(ctx).into()],
Some("len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
///
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
pub fn call_nac3_ndarray_is_c_contiguous<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_is_c_contiguous");
infer_and_call_function(
ctx,
&name,
Some(llvm_i1.into()),
&[ndarray.as_abi_value(ctx).into()],
Some("is_c_contiguous"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
///
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
pub fn call_nac3_ndarray_get_nth_pelement<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
index: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = ctx.get_size_type();
assert_eq!(index.get_type(), llvm_usize);
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_nth_pelement");
infer_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[ndarray.as_abi_value(ctx).into(), index.into()],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
///
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
///
/// Returns a [`PointerValue`] to the element indexed by `indices`.
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = ctx.get_size_type();
assert_eq!(indices.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_pelement_by_indices");
infer_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[ndarray.as_abi_value(ctx).into(), indices.base_ptr(ctx, generator).into()],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
///
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) { ) {
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_set_strides_by_shape"); let tyctx = generator.type_context(ctx.ctx);
infer_and_call_function(ctx, &name, None, &[ndarray.as_abi_value(ctx).into()], None, None); CallFunction::begin(
} tyctx,
/// Generates a call to `__nac3_ndarray_copy_data`.
///
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
/// `dst_ndarray`.
pub fn call_nac3_ndarray_copy_data<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_copy_data");
infer_and_call_function(
ctx, ctx,
&name, &get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_copy_data"),
None, )
&[src_ndarray.as_abi_value(ctx).into(), dst_ndarray.as_abi_value(ctx).into()], .arg("src_ndarray", src_ndarray)
None, .arg("dst_ndarray", dst_ndarray)
None, .returning_void();
); }
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
pndarray: Ptr<'ctx, StructModel<NpArray>>,
index: Int<'ctx, SizeT>,
) -> Ptr<'ctx, IntModel<Byte>> {
let tyctx = generator.type_context(ctx.ctx);
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_get_nth_pelement"),
)
.arg("ndarray", pndarray)
.arg("index", index)
.returning("pelement")
} }

View File

@ -1,80 +1,74 @@
use inkwell::values::IntValue;
use crate::codegen::{ use crate::codegen::{
expr::infer_and_call_function, irrt::{
irrt::get_usize_dependent_function_name, error_context::{check_error_context, setup_error_context},
types::{ndarray::ShapeEntryType, ProxyType}, util::{function::CallFunction, get_sizet_dependent_function_name},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
TypedArrayLikeMutator,
}, },
model::*,
structure::ndarray::NpArray,
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}; };
/// Generates a call to `__nac3_ndarray_broadcast_to`. pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
/// generator: &mut G,
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`. ctx: &mut CodeGenContext<'ctx, '_>,
/// src_ndarray: Ptr<'ctx, StructModel<NpArray>>,
/// `dst_ndarray` must meet the following preconditions: dst_ndarray: Ptr<'ctx, StructModel<NpArray>>,
///
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_broadcast_to<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) { ) {
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_to"); let tyctx = generator.type_context(ctx.ctx);
infer_and_call_function(
let perrctx = setup_error_context(tyctx, ctx);
CallFunction::begin(
tyctx,
ctx, ctx,
&name, &get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_broadcast_to"),
None,
&[src_ndarray.as_abi_value(ctx).into(), dst_ndarray.as_abi_value(ctx).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
///
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
/// writing the result to `dst_shape`.
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
num_shape_entries: IntValue<'ctx>,
shape_entries: ArraySliceValue<'ctx>,
dst_ndims: IntValue<'ctx>,
dst_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = ctx.get_size_type();
assert_eq!(num_shape_entries.get_type(), llvm_usize);
assert!(ShapeEntryType::is_representable(
shape_entries.base_ptr(ctx, generator).get_type(),
llvm_usize,
) )
.is_ok()); .arg("errctx", perrctx)
assert_eq!(dst_ndims.get_type(), llvm_usize); .arg("src_ndarray", src_ndarray)
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into()); .arg("dst_ndarray", dst_ndarray)
.returning_void();
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_shapes"); check_error_context(generator, ctx, perrctx);
infer_and_call_function( }
ctx,
&name, /// Fields of [`ShapeEntry`]
None, pub struct ShapeEntryFields<F: FieldVisitor> {
&[ pub ndims: F::Field<IntModel<SizeT>>,
num_shape_entries.into(), pub shape: F::Field<PtrModel<IntModel<SizeT>>>,
shape_entries.base_ptr(ctx, generator).into(), }
dst_ndims.into(),
dst_shape.base_ptr(ctx, generator).into(), #[derive(Debug, Clone, Copy, Default)]
], pub struct ShapeEntry;
None,
None, impl StructKind for ShapeEntry {
); type Fields<F: FieldVisitor> = ShapeEntryFields<F>;
fn visit_fields<F: FieldVisitor>(&self, visitor: &mut F) -> Self::Fields<F> {
Self::Fields { ndims: visitor.add("ndims"), shape: visitor.add("shape") }
}
}
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_shape_entries: Int<'ctx, SizeT>,
shape_entries: Ptr<'ctx, StructModel<ShapeEntry>>,
dst_ndims: Int<'ctx, SizeT>,
dst_shape: Ptr<'ctx, IntModel<SizeT>>,
) {
let tyctx = generator.type_context(ctx.ctx);
let perrctx = setup_error_context(tyctx, ctx);
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_broadcast_shapes"),
)
.arg("errctx", perrctx)
.arg("num_shapes", num_shape_entries)
.arg("shapes", shape_entries)
.arg("dst_ndims", dst_ndims)
.arg("dst_shape", dst_shape)
.returning_void();
check_error_context(generator, ctx, perrctx);
} }

View File

@ -1,34 +1,170 @@
use crate::codegen::{ use crate::codegen::{
expr::infer_and_call_function, irrt::{
irrt::get_usize_dependent_function_name, error_context::{check_error_context, setup_error_context},
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue}, slice::{RustUserSlice, SliceIndex, UserSlice},
util::{function::CallFunction, get_sizet_dependent_function_name},
},
model::*,
structure::ndarray::NpArray,
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}; };
/// Generates a call to `__nac3_ndarray_index`. pub type NDIndexType = Byte;
///
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing) #[derive(Debug, Clone, Copy)]
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the pub struct NDIndexFields<F: FieldVisitor> {
/// operation `dst_ndarray = src_ndarray[indices]`. pub type_: F::Field<IntModel<NDIndexType>>, // Defined to be uint8_t in IRRT
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>( pub data: F::Field<PtrModel<IntModel<Byte>>>,
generator: &G, }
ctx: &CodeGenContext<'ctx, '_>,
indices: ArraySliceValue<'ctx>, #[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
src_ndarray: NDArrayValue<'ctx>, pub struct NDIndex;
dst_ndarray: NDArrayValue<'ctx>,
) { impl StructKind for NDIndex {
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_index"); type Fields<F: FieldVisitor> = NDIndexFields<F>;
infer_and_call_function(
ctx, fn visit_fields<F: FieldVisitor>(&self, visitor: &mut F) -> Self::Fields<F> {
&name, Self::Fields { type_: visitor.add("type"), data: visitor.add("data") }
None, }
&[ }
indices.size(ctx, generator).into(),
indices.base_ptr(ctx, generator).into(), // An enum variant to store the content
src_ndarray.as_abi_value(ctx).into(), // and type of an NDIndex in high level.
dst_ndarray.as_abi_value(ctx).into(), #[derive(Debug, Clone)]
], pub enum RustNDIndex<'ctx> {
None, SingleElement(Int<'ctx, SliceIndex>),
None, Slice(RustUserSlice<'ctx>),
); }
impl<'ctx> RustNDIndex<'ctx> {
fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
}
}
fn write_to_ndindex(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
dst_ndindex_ptr: Ptr<'ctx, StructModel<NDIndex>>,
) {
let ndindex_type_model = IntModel(NDIndexType::default());
let slice_index_model = IntModel(SliceIndex::default());
let user_slice_model = StructModel(UserSlice);
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr
.gep(ctx, |f| f.type_)
.store(ctx, ndindex_type_model.constant(tyctx, ctx.ctx, self.get_type_id()));
// Set `dst_ndindex_ptr->data`
let data = match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = slice_index_model.alloca(tyctx, ctx, "index");
index_ptr.store(ctx, *in_index);
index_ptr.transmute(tyctx, ctx, IntModel(Byte), "")
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr = user_slice_model.alloca(tyctx, ctx, "user_slice");
in_rust_slice.write_to_user_slice(tyctx, ctx, user_slice_ptr);
user_slice_ptr.transmute(tyctx, ctx, IntModel(Byte), "")
}
};
dst_ndindex_ptr.gep(ctx, |f| f.data).store(ctx, data);
}
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
pub fn alloca_ndindexes(
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
in_ndindexes: &[RustNDIndex<'ctx>],
) -> (Int<'ctx, SizeT>, Ptr<'ctx, StructModel<NDIndex>>) {
let sizet_model = IntModel(SizeT);
let ndindex_model = StructModel(NDIndex);
let num_ndindexes = sizet_model.constant(tyctx, ctx.ctx, in_ndindexes.len() as u64);
let ndindexes = ndindex_model.array_alloca(tyctx, ctx, num_ndindexes.value, "ndindexes");
for (i, in_ndindex) in in_ndindexes.iter().enumerate() {
let i = sizet_model.constant(tyctx, ctx.ctx, i as u64);
let pndindex = ndindexes.offset(tyctx, ctx, i.value, "");
in_ndindex.write_to_ndindex(tyctx, ctx, pndindex);
}
(num_ndindexes, ndindexes)
}
#[must_use]
pub fn deduce_ndims_after_indexing(indices: &[RustNDIndex], original_ndims: u64) -> u64 {
let mut final_ndims = original_ndims;
for index in indices {
match index {
RustNDIndex::SingleElement(_) => {
final_ndims -= 1;
}
RustNDIndex::Slice(_) => {}
}
}
final_ndims
}
}
pub fn call_nac3_ndarray_indexing_deduce_ndims_after_indexing<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: Int<'ctx, SizeT>,
num_ndindexes: Int<'ctx, SizeT>,
ndindexs: Ptr<'ctx, StructModel<NDIndex>>,
) -> Int<'ctx, SizeT> {
let tyctx = generator.type_context(ctx.ctx);
let sizet_model = IntModel(SizeT);
let pfinal_ndims = sizet_model.alloca(tyctx, ctx, "pfinal_ndims");
let errctx_ptr = setup_error_context(tyctx, ctx);
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(
tyctx,
"__nac3_ndarray_indexing_deduce_ndims_after_indexing",
),
)
.arg("errctx", errctx_ptr)
.arg("result", pfinal_ndims)
.arg("ndims", ndims)
.arg("num_ndindexs", num_ndindexes)
.arg("ndindexs", ndindexs)
.returning_void();
check_error_context(generator, ctx, errctx_ptr);
pfinal_ndims.load(tyctx, ctx, "final_ndims")
}
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_indexes: Int<'ctx, SizeT>,
indexes: Ptr<'ctx, StructModel<NDIndex>>,
src_ndarray: Ptr<'ctx, StructModel<NpArray>>,
dst_ndarray: Ptr<'ctx, StructModel<NpArray>>,
) {
let tyctx = generator.type_context(ctx.ctx);
let perrctx = setup_error_context(tyctx, ctx);
CallFunction::begin(
tyctx,
ctx,
&get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_index"),
)
.arg("errctx", perrctx)
.arg("num_indexes", num_indexes)
.arg("indexes", indexes)
.arg("src_ndarray", src_ndarray)
.arg("dst_ndarray", dst_ndarray)
.returning_void();
check_error_context(generator, ctx, perrctx);
} }

View File

@ -1,72 +0,0 @@
use inkwell::values::{BasicValueEnum, IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{
ndarray::{NDArrayValue, NDIterValue},
ProxyValue, TypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_nditer_initialize`.
///
/// Initializes the `iter` object.
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
assert_eq!(indices.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_initialize");
infer_and_call_function(
ctx,
&name,
None,
&[
iter.as_abi_value(ctx).into(),
ndarray.as_abi_value(ctx).into(),
indices.base_ptr(ctx, generator).into(),
],
None,
None,
);
}
/// Generates a call to `__nac3_nditer_initialize_has_element`.
///
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
/// object.
pub fn call_nac3_nditer_has_element<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) -> IntValue<'ctx> {
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_has_element");
infer_and_call_function(
ctx,
&name,
Some(ctx.ctx.bool_type().into()),
&[iter.as_abi_value(ctx).into()],
None,
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_nditer_next`.
///
/// Moves `iter` to point to the next element.
pub fn call_nac3_nditer_next<'ctx>(ctx: &CodeGenContext<'ctx, '_>, iter: NDIterValue<'ctx>) {
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_next");
infer_and_call_function(ctx, &name, None, &[iter.as_abi_value(ctx).into()], None, None);
}

View File

@ -1,51 +0,0 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
///
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
/// `a @ b`.
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
final_ndims: IntValue<'ctx>,
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = ctx.get_size_type();
assert_eq!(a_shape.element_type(ctx, generator), llvm_usize.into());
assert_eq!(b_shape.element_type(ctx, generator), llvm_usize.into());
assert_eq!(final_ndims.get_type(), llvm_usize);
assert_eq!(new_a_shape.element_type(ctx, generator), llvm_usize.into());
assert_eq!(new_b_shape.element_type(ctx, generator), llvm_usize.into());
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_matmul_calculate_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
a_shape.size(ctx, generator).into(),
a_shape.base_ptr(ctx, generator).into(),
b_shape.size(ctx, generator).into(),
b_shape.base_ptr(ctx, generator).into(),
final_ndims.into(),
new_a_shape.base_ptr(ctx, generator).into(),
new_b_shape.base_ptr(ctx, generator).into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -1,17 +1,4 @@
pub use array::*; pub mod basic;
pub use basic::*; pub mod broadcast;
pub use broadcast::*; pub mod indexing;
pub use indexing::*; pub mod reshape;
pub use iter::*;
pub use matmul::*;
pub use reshape::*;
pub use transpose::*;
mod array;
mod basic;
mod broadcast;
mod indexing;
mod iter;
mod matmul;
mod reshape;
mod transpose;

View File

@ -1,39 +1,31 @@
use inkwell::values::IntValue;
use crate::codegen::{ use crate::codegen::{
expr::infer_and_call_function, irrt::{
irrt::get_usize_dependent_function_name, error_context::{check_error_context, setup_error_context},
values::{ArrayLikeValue, ArraySliceValue}, util::{function::CallFunction, get_sizet_dependent_function_name},
},
model::*,
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}; };
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`. pub fn call_nac3_ndarray_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
/// generator: &mut G,
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an ctx: &mut CodeGenContext<'ctx, '_>,
/// assertion if multiple dimensions are unknown (`-1`). size: Int<'ctx, SizeT>,
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>( new_ndims: Int<'ctx, SizeT>,
generator: &G, new_shape: Ptr<'ctx, IntModel<SizeT>>,
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
new_ndims: IntValue<'ctx>,
new_shape: ArraySliceValue<'ctx>,
) { ) {
let llvm_usize = ctx.get_size_type(); let tyctx = generator.type_context(ctx.ctx);
assert_eq!(size.get_type(), llvm_usize); let perrctx = setup_error_context(tyctx, ctx);
assert_eq!(new_ndims.get_type(), llvm_usize); CallFunction::begin(
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into()); tyctx,
let name = get_usize_dependent_function_name(
ctx, ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape", &get_sizet_dependent_function_name(tyctx, "__nac3_ndarray_resolve_and_check_new_shape"),
); )
infer_and_call_function( .arg("errctx", perrctx)
ctx, .arg("size", size)
&name, .arg("new_ndims", new_ndims)
None, .arg("new_shape", new_shape)
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()], .returning_void();
None, check_error_context(generator, ctx, perrctx);
None,
);
} }

View File

@ -1,48 +0,0 @@
use inkwell::{values::IntValue, AddressSpace};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_transpose`.
///
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
///
/// `dst_ndarray` must fulfill the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
) {
let llvm_usize = ctx.get_size_type();
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_transpose");
infer_and_call_function(
ctx,
&name,
None,
&[
src_ndarray.as_abi_value(ctx).into(),
dst_ndarray.as_abi_value(ctx).into(),
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
axes.base_ptr(ctx, generator)
})
.into(),
],
None,
None,
);
}

View File

@ -1,53 +0,0 @@
use inkwell::{
values::{BasicValueEnum, IntValue},
IntPredicate,
};
use crate::codegen::{expr::infer_and_call_function, CodeGenContext, CodeGenerator};
/// Invokes the `__nac3_range_slice_len` in IRRT.
///
/// - `start`: The `i32` start value for the slice.
/// - `end`: The `i32` end value for the slice.
/// - `step`: The `i32` step value for the slice.
///
/// Returns an `i32` value of the length of the slice.
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(start.get_type(), llvm_i32);
assert_eq!(end.get_type(), llvm_i32);
assert_eq!(step.get_type(), llvm_i32);
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
infer_and_call_function(
ctx,
SYMBOL,
Some(llvm_i32.into()),
&[start.into(), end.into(), step.into()],
Some("calc_len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}

View File

@ -1,41 +1,81 @@
use inkwell::values::{BasicValueEnum, IntValue}; use crate::codegen::{model::*, CodeGenContext};
use nac3parser::ast::Expr; // nac3core's slicing index/length values are always int32_t
pub type SliceIndex = Int32;
use crate::{ #[derive(Debug, Clone)]
codegen::{expr::infer_and_call_function, CodeGenContext, CodeGenerator}, pub struct UserSliceFields<F: FieldVisitor> {
typecheck::typedef::Type, pub start_defined: F::Field<IntModel<Bool>>,
}; pub start: F::Field<IntModel<SliceIndex>>,
pub stop_defined: F::Field<IntModel<Bool>>,
/// this function allows index out of range, since python pub stop: F::Field<IntModel<SliceIndex>>,
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`). pub step_defined: F::Field<IntModel<Bool>>,
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>( pub step: F::Field<IntModel<SliceIndex>>,
i: &Expr<Option<Type>>, }
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G, #[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
length: IntValue<'ctx>, pub struct UserSlice;
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound"; impl StructKind for UserSlice {
type Fields<F: FieldVisitor> = UserSliceFields<F>;
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(length.get_type(), llvm_i32); fn visit_fields<F: FieldVisitor>(&self, visitor: &mut F) -> Self::Fields<F> {
Self::Fields {
let i = if let Some(v) = generator.gen_expr(ctx, i)? { start_defined: visitor.add("start_defined"),
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())? start: visitor.add("start"),
} else { stop_defined: visitor.add("stop_defined"),
return Ok(None); stop: visitor.add("stop"),
}; step_defined: visitor.add("step_defined"),
step: visitor.add("step"),
Ok(Some( }
infer_and_call_function( }
ctx, }
SYMBOL,
Some(llvm_i32.into()), #[derive(Debug, Clone)]
&[i, length.into()], pub struct RustUserSlice<'ctx> {
Some("bounded_ind"), pub start: Option<Int<'ctx, SliceIndex>>,
None, pub stop: Option<Int<'ctx, SliceIndex>>,
) pub step: Option<Int<'ctx, SliceIndex>>,
.map(BasicValueEnum::into_int_value) }
.unwrap(),
)) impl<'ctx> RustUserSlice<'ctx> {
// Set the values of an LLVM UserSlice
// in the format of Python's `slice()`
pub fn write_to_user_slice(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
dst_slice_ptr: Ptr<'ctx, StructModel<UserSlice>>,
) {
let bool_model = IntModel(Bool);
let false_ = bool_model.constant(tyctx, ctx.ctx, 0);
let true_ = bool_model.constant(tyctx, ctx.ctx, 1);
// TODO: Code duplication. Probably okay...?
match self.start {
Some(start) => {
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
}
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
}
match self.stop {
Some(stop) => {
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
}
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
}
match self.step {
Some(step) => {
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
}
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
}
}
} }

View File

@ -1,31 +0,0 @@
use inkwell::values::{BasicValueEnum, IntValue};
use super::get_usize_dependent_function_name;
use crate::codegen::{expr::infer_and_call_function, values::StringValue, CodeGenContext};
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
pub fn call_string_eq<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
str1: StringValue<'ctx>,
str2: StringValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let func_name = get_usize_dependent_function_name(ctx, "nac3_str_eq");
infer_and_call_function(
ctx,
&func_name,
Some(llvm_i1.into()),
&[
str1.extract_ptr(ctx).into(),
str1.extract_len(ctx).into(),
str2.extract_ptr(ctx).into(),
str2.extract_len(ctx).into(),
],
Some("str_eq_call"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}

View File

@ -0,0 +1,26 @@
#[cfg(test)]
mod tests {
use std::{path::Path, process::Command};
#[test]
fn run_irrt_test() {
assert!(
cfg!(feature = "test"),
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
);
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
if !output.status.success() {
eprintln!("irrt_test failed with status {}:", output.status);
eprintln!("====== stdout ======");
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
eprintln!("====== stderr ======");
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
eprintln!("====================");
panic!("irrt_test failed");
}
}
}

View File

@ -0,0 +1,103 @@
use crate::codegen::model::*;
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
pub fn get_sizet_dependent_function_name(tyctx: TypeContext<'_>, name: &str) -> String {
let mut name = name.to_owned();
match tyctx.size_type.get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
pub mod function {
use crate::codegen::{model::*, CodeGenContext};
use inkwell::{
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
};
use itertools::Itertools;
#[derive(Debug, Clone, Copy)]
struct Arg<'ctx> {
ty: BasicMetadataTypeEnum<'ctx>,
val: BasicMetadataValueEnum<'ctx>,
}
/// Helper structure to reduce IRRT Inkwell function call boilerplate
/// TODO: Optimize
pub struct CallFunction<'ctx, 'a, 'b, 'c> {
tyctx: TypeContext<'ctx>,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
name: &'c str,
/// Call arguments
args: Vec<Arg<'ctx>>,
}
impl<'ctx, 'a, 'b, 'c> CallFunction<'ctx, 'a, 'b, 'c> {
pub fn begin(
tyctx: TypeContext<'ctx>,
ctx: &'b CodeGenContext<'ctx, 'a>,
name: &'c str,
) -> Self {
CallFunction { tyctx, ctx, name, args: Vec::new() }
}
/// Push a call argument to the function call.
///
/// The `_name` parameter is there for self-documentation purposes.
#[allow(clippy::needless_pass_by_value)]
pub fn arg<M: Model>(mut self, _name: &str, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.get_type(self.tyctx, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
self
}
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
pub fn returning<M: Model>(self, name: &str) -> Instance<'ctx, M> {
self.returning_(name, M::default())
}
/// Call the function and expect the function to return a value of type of `return_model`.
pub fn returning_<M: Model>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.get_type(self.tyctx, self.ctx.ctx);
let ret = self.get_function(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
let ret = return_model.check_value(self.tyctx, self.ctx.ctx, ret).unwrap(); // Must work
ret
}
/// Call the function and expect the function to return a void-type.
pub fn returning_void(self) {
let ret_ty = self.ctx.ctx.void_type();
let _ = self.get_function(|tys| ret_ty.fn_type(tys, false), "");
}
fn get_function<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
where
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
{
// Get the LLVM function, declare the function if it doesn't exist - it will be defined by other
// components of NAC3.
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
let fn_type = make_fn_type(&tys);
self.ctx.module.add_function(self.name, fn_type, None)
});
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
}
}
}

View File

@ -1,45 +1,38 @@
use inkwell::{ use crate::codegen::CodeGenContext;
intrinsics::Intrinsic, use inkwell::context::Context;
types::AnyTypeEnum::IntType, use inkwell::intrinsics::Intrinsic;
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue}, use inkwell::types::AnyTypeEnum::IntType;
AddressSpace, use inkwell::types::FloatType;
}; use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
use inkwell::AddressSpace;
use itertools::Either; use itertools::Either;
use super::CodeGenContext; /// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
// Standard LLVM floating-point types
if ft == ctx.f16_type() {
return "f16";
}
if ft == ctx.f32_type() {
return "f32";
}
if ft == ctx.f64_type() {
return "f64";
}
if ft == ctx.f128_type() {
return "f128";
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic) // Non-standard floating-point types
/// intrinsic. if ft == ctx.x86_f80_type() {
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) { return "f80";
const FN_NAME: &str = "llvm.va_start"; }
if ft == ctx.ppc_f128_type() {
return "ppcf128";
}
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| { unreachable!()
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
} }
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic) /// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
@ -156,7 +149,7 @@ pub fn call_memcpy_generic<'ctx>(
dest dest
} else { } else {
ctx.builder ctx.builder
.build_bit_cast(dest, llvm_p0i8, "") .build_bitcast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
}; };
@ -164,7 +157,7 @@ pub fn call_memcpy_generic<'ctx>(
src src
} else { } else {
ctx.builder ctx.builder
.build_bit_cast(src, llvm_p0i8, "") .build_bitcast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
}; };
@ -172,58 +165,14 @@ pub fn call_memcpy_generic<'ctx>(
call_memcpy(ctx, dest, src, len, is_volatile); call_memcpy(ctx, dest, src, len, is_volatile);
} }
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
/// copy).
pub fn call_memcpy_generic_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function) /// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
/// ///
/// Arguments: /// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context /// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>) /// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function /// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type). /// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type)
/// Use `BasicValueEnum::into_int_value` for Integer return type and /// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand /// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands /// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body { macro_rules! generate_llvm_intrinsic_fn_body {
@ -239,7 +188,7 @@ macro_rules! generate_llvm_intrinsic_fn_body {
/// Arguments: /// Arguments:
/// * `float/int`: Indicates the return and argument type of the function /// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated /// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function. /// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil" /// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations /// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations /// * `$val1:ident`, `$val2:ident`: The operands for binary operations
@ -357,25 +306,3 @@ pub fn call_float_powi<'ctx>(
.map(Either::unwrap_left) .map(Either::unwrap_left)
.unwrap() .unwrap()
} }
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
pub fn call_int_ctpop<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.ctpop";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,13 +1,12 @@
use std::{ use crate::{
cell::OnceCell, codegen::classes::{ListType, ProxyType, RangeType},
collections::{HashMap, HashSet}, symbol_resolver::{StaticValue, SymbolResolver},
sync::{ toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
atomic::{AtomicBool, Ordering}, typecheck::{
Arc, type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
}, },
thread,
}; };
use crossbeam::channel::{unbounded, Receiver, Sender}; use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
@ -20,63 +19,42 @@ use inkwell::{
module::Module, module::Module,
passes::PassBuilderOptions, passes::PassBuilderOptions,
targets::{CodeModel, RelocMode, Target, TargetMachine, TargetTriple}, targets::{CodeModel, RelocMode, Target, TargetMachine, TargetTriple},
types::{AnyType, BasicType, BasicTypeEnum, IntType}, types::{AnyType, BasicType, BasicTypeEnum},
values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue}, values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel, AddressSpace, IntPredicate, OptimizationLevel,
}; };
use itertools::Itertools; use itertools::Itertools;
use parking_lot::{Condvar, Mutex}; use model::*;
use nac3parser::ast::{Location, Stmt, StrRef}; use nac3parser::ast::{Location, Stmt, StrRef};
use parking_lot::{Condvar, Mutex};
use crate::{ use std::collections::{HashMap, HashSet};
symbol_resolver::{StaticValue, SymbolResolver}, use std::sync::{
toplevel::{ atomic::{AtomicBool, Ordering},
helper::{extract_ndims, PrimDef}, Arc,
numpy::unpack_ndarray_var_tys,
TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
};
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{
ndarray::NDArrayType, ListType, OptionType, ProxyType, RangeType, StringType, TupleType,
}; };
use std::thread;
use structure::{cslice::CSlice, exception::Exception, ndarray::NpArray};
pub mod builtin_fns; pub mod builtin_fns;
pub mod classes;
pub mod concrete_type; pub mod concrete_type;
pub mod expr; pub mod expr;
pub mod extern_fns; pub mod extern_fns;
mod generator; mod generator;
pub mod irrt; pub mod irrt;
pub mod llvm_intrinsics; pub mod llvm_intrinsics;
pub mod model;
pub mod numpy; pub mod numpy;
pub mod numpy_new;
pub mod stmt; pub mod stmt;
pub mod types; pub mod structure;
pub mod values; pub mod util;
#[cfg(test)] #[cfg(test)]
mod test; mod test;
mod macros { use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as pub use generator::{CodeGenerator, DefaultCodeGenerator};
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
#[derive(Default)] #[derive(Default)]
pub struct StaticValueStore { pub struct StaticValueStore {
@ -196,11 +174,11 @@ pub struct CodeGenContext<'ctx, 'a> {
pub registry: &'a WorkerRegistry, pub registry: &'a WorkerRegistry,
/// Cache for constant strings. /// Cache for constant strings.
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>, pub const_strings: HashMap<String, Struct<'ctx, CSlice>>,
/// [`BasicBlock`] containing all `alloca` statements for the current function. /// [`BasicBlock`] containing all `alloca` statements for the current function.
pub init_bb: BasicBlock<'ctx>, pub init_bb: BasicBlock<'ctx>,
pub exception_val: Option<PointerValue<'ctx>>, pub exception_val: Option<Ptr<'ctx, StructModel<Exception>>>,
/// The header and exit basic blocks of a loop in this context. See /// The header and exit basic blocks of a loop in this context. See
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology. /// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
@ -229,33 +207,14 @@ pub struct CodeGenContext<'ctx, 'a> {
/// The current source location. /// The current source location.
pub current_loc: Location, pub current_loc: Location,
/// The cached type of `size_t`.
llvm_usize: OnceCell<IntType<'ctx>>,
} }
impl<'ctx> CodeGenContext<'ctx, '_> { impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
/// Whether the [current basic block][Builder::get_insert_block] referenced by `builder` /// Whether the [current basic block][Builder::get_insert_block] referenced by `builder`
/// contains a [terminator statement][BasicBlock::get_terminator]. /// contains a [terminator statement][BasicBlock::get_terminator].
pub fn is_terminated(&self) -> bool { pub fn is_terminated(&self) -> bool {
self.builder.get_insert_block().and_then(BasicBlock::get_terminator).is_some() self.builder.get_insert_block().and_then(BasicBlock::get_terminator).is_some()
} }
/// Returns a [`IntType`] representing `size_t` for the compilation target as specified by
/// [`self.registry`][WorkerRegistry].
pub fn get_size_type(&self) -> IntType<'ctx> {
*self.llvm_usize.get_or_init(|| {
self.ctx.ptr_sized_int_type(
&self
.registry
.llvm_options
.create_target_machine()
.map(|tm| tm.get_target_data())
.unwrap(),
None,
)
})
}
} }
type Fp = Box<dyn Fn(&Module) + Send + Sync>; type Fp = Box<dyn Fn(&Module) + Send + Sync>;
@ -491,7 +450,7 @@ pub struct CodeGenTask {
fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>( fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context, ctx: &'ctx Context,
module: &Module<'ctx>, module: &Module<'ctx>,
generator: &G, generator: &mut G,
unifier: &mut Unifier, unifier: &mut Unifier,
top_level: &TopLevelContext, top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>, type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -503,44 +462,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
type_cache.get(&unifier.get_representative(ty)).copied().unwrap_or_else(|| { type_cache.get(&unifier.get_representative(ty)).copied().unwrap_or_else(|| {
let ty_enum = unifier.get_ty(ty); let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum { let result = match &*ty_enum {
TModule {module_id, attributes} => { TObj { obj_id, fields, .. } => {
let top_level_defs = top_level.definitions.read(); // check to avoid treating non-class primitives as classes
let definition = top_level_defs.get(module_id.0).unwrap(); if PrimDef::contains_id(*obj_id) {
let TopLevelDef::Module { name, attributes: attribute_fields, .. } = &*definition.read() else { return match &*unifier.get_ty_immutable(ty) {
unreachable!() TObj { obj_id, params, .. } if *obj_id == PrimDef::Option.id() => {
};
let ty: BasicTypeEnum<'_> = if let Some(t) = module.get_struct_type(&name.to_string()) {
t.ptr_type(AddressSpace::default()).into()
} else {
let struct_type = ctx.opaque_struct_type(&name.to_string());
type_cache.insert(
unifier.get_representative(ty),
struct_type.ptr_type(AddressSpace::default()).into(),
);
let module_fields: Vec<BasicTypeEnum<'_>> = attribute_fields.iter()
.map(|f| {
get_llvm_type( get_llvm_type(
ctx,
module,
generator,
unifier,
top_level,
type_cache,
attributes[&f.0].0,
)
})
.collect_vec();
struct_type.set_body(&module_fields, false);
struct_type.ptr_type(AddressSpace::default()).into()
};
return ty;
},
TObj { obj_id, fields, .. } => {
// check to avoid treating non-class primitives as classes
if PrimDef::contains_id(*obj_id) {
return match &*unifier.get_ty_immutable(ty) {
TObj { obj_id, params, .. } if *obj_id == PrimDef::Option.id() => {
let element_type = get_llvm_type(
ctx, ctx,
module, module,
generator, generator,
@ -548,9 +475,9 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
top_level, top_level,
type_cache, type_cache,
*params.iter().next().unwrap().1, *params.iter().next().unwrap().1,
); )
.ptr_type(AddressSpace::default())
OptionType::new_with_generator(generator, ctx, &element_type).as_abi_type().into() .into()
} }
TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => { TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
@ -564,17 +491,13 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
*params.iter().next().unwrap().1, *params.iter().next().unwrap().1,
); );
ListType::new_with_generator(generator, ctx, element_type).as_abi_type().into() ListType::new(generator, ctx, element_type).as_base_type().into()
} }
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, ndims) = unpack_ndarray_var_tys(unifier, ty); let tyctx = generator.type_context(ctx);
let ndims = extract_ndims(unifier, ndims); let pndarray_model = PtrModel(StructModel(NpArray));
let element_type = get_llvm_type( pndarray_model.get_type(tyctx, ctx).into()
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new_with_generator(generator, ctx, element_type, ndims).as_abi_type().into()
} }
_ => unreachable!( _ => unreachable!(
@ -618,17 +541,15 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}; };
return ty; return ty;
} }
TTuple { ty, is_vararg_ctx } => { TTuple { ty } => {
// a struct with fields in the order present in the tuple // a struct with fields in the order present in the tuple
assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type");
let fields = ty let fields = ty
.iter() .iter()
.map(|ty| { .map(|ty| {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty) get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty)
}) })
.collect_vec(); .collect_vec();
TupleType::new_with_generator(generator, ctx, &fields).as_abi_type().into() ctx.struct_type(&fields, false).into()
} }
TVirtual { .. } => unimplemented!(), TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()), _ => unreachable!("{}", ty_enum.get_type_name()),
@ -651,7 +572,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>( fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context, ctx: &'ctx Context,
module: &Module<'ctx>, module: &Module<'ctx>,
generator: &G, generator: &mut G,
unifier: &mut Unifier, unifier: &mut Unifier,
top_level: &TopLevelContext, top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>, type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -660,11 +581,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
) -> BasicTypeEnum<'ctx> { ) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI // If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency. // consistency.
if unifier.unioned(ty, primitives.bool) { return if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into() ctx.bool_type().into()
} else { } else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty) get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
} };
} }
/// Whether `sret` is needed for a return value with type `ty`. /// Whether `sret` is needed for a return value with type `ty`.
@ -689,40 +610,6 @@ fn need_sret(ty: BasicTypeEnum) -> bool {
need_sret_impl(ty, true) need_sret_impl(ty, true)
} }
/// Returns the [`BasicTypeEnum`] representing a `va_list` struct for variadic arguments.
fn get_llvm_valist_type<'ctx>(ctx: &'ctx Context, triple: &TargetTriple) -> BasicTypeEnum<'ctx> {
let triple = TargetMachine::normalize_triple(triple);
let triple = triple.as_str().to_str().unwrap();
let arch = triple.split('-').next().unwrap();
let llvm_pi8 = ctx.i8_type().ptr_type(AddressSpace::default());
// Referenced from parseArch() in llvm/lib/Support/Triple.cpp
match arch {
"i386" | "i486" | "i586" | "i686" | "riscv32" => {
ctx.i8_type().ptr_type(AddressSpace::default()).into()
}
"amd64" | "x86_64" | "x86_64h" => {
let llvm_i32 = ctx.i32_type();
let va_list_tag = ctx.opaque_struct_type("struct.__va_list_tag");
va_list_tag.set_body(
&[llvm_i32.into(), llvm_i32.into(), llvm_pi8.into(), llvm_pi8.into()],
false,
);
va_list_tag.into()
}
"armv7" => {
let va_list = ctx.opaque_struct_type("struct.__va_list");
va_list.set_body(&[llvm_pi8.into()], false);
va_list.into()
}
triple => {
todo!("Unsupported platform for varargs: {triple}")
}
}
}
/// Implementation for generating LLVM IR for a function. /// Implementation for generating LLVM IR for a function.
pub fn gen_func_impl< pub fn gen_func_impl<
'ctx, 'ctx,
@ -780,31 +667,20 @@ pub fn gen_func_impl<
..primitives ..primitives
}; };
let mut type_cache: HashMap<_, _> = [ let type_context = generator.type_context(context);
let cslice_model = StructModel(CSlice);
let pexn_model = PtrModel(StructModel(Exception));
let mut type_cache: HashMap<_, BasicTypeEnum<'ctx>> = [
(primitives.int32, context.i32_type().into()), (primitives.int32, context.i32_type().into()),
(primitives.int64, context.i64_type().into()), (primitives.int64, context.i64_type().into()),
(primitives.uint32, context.i32_type().into()), (primitives.uint32, context.i32_type().into()),
(primitives.uint64, context.i64_type().into()), (primitives.uint64, context.i64_type().into()),
(primitives.float, context.f64_type().into()), (primitives.float, context.f64_type().into()),
(primitives.bool, context.i8_type().into()), (primitives.bool, context.i8_type().into()),
(primitives.str, { (primitives.str, cslice_model.get_type(type_context, context).into()),
StringType::new_with_generator(generator, context).as_abi_type().into() (primitives.range, RangeType::new(context).as_base_type().into()),
}), (primitives.exception, pexn_model.get_type(type_context, context).into()),
(primitives.range, RangeType::new_with_generator(generator, context).as_abi_type().into()),
(primitives.exception, {
let name = "Exception";
if let Some(t) = module.get_struct_type(name) {
t.ptr_type(AddressSpace::default()).as_basic_type_enum()
} else {
let exception = context.opaque_struct_type("Exception");
let int32 = context.i32_type().into();
let int64 = context.i64_type().into();
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
exception.set_body(&fields, false);
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
}
}),
] ]
.iter() .iter()
.copied() .copied()
@ -822,7 +698,6 @@ pub fn gen_func_impl<
name: arg.name, name: arg.name,
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache), ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
}) })
.collect_vec(), .collect_vec(),
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache), task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
@ -845,10 +720,7 @@ pub fn gen_func_impl<
let has_sret = ret_type.map_or(false, |ty| need_sret(ty)); let has_sret = ret_type.map_or(false, |ty| need_sret(ty));
let mut params = args let mut params = args
.iter() .iter()
.filter(|arg| !arg.is_vararg)
.map(|arg| { .map(|arg| {
debug_assert!(!arg.is_vararg);
get_llvm_abi_type( get_llvm_abi_type(
context, context,
&module, &module,
@ -867,12 +739,9 @@ pub fn gen_func_impl<
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into()); params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
} }
debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1));
let vararg_arg = args.iter().find(|arg| arg.is_vararg);
let fn_type = match ret_type { let fn_type = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, vararg_arg.is_some()), Some(ret_type) if !has_sret => ret_type.fn_type(&params, false),
_ => context.void_type().fn_type(&params, vararg_arg.is_some()), _ => context.void_type().fn_type(&params, false),
}; };
let symbol = &task.symbol_name; let symbol = &task.symbol_name;
@ -900,10 +769,9 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb); builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body"); let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new(); let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret); let offset = u32::from(has_sret);
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) { for (n, arg) in args.iter().enumerate() {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap(); let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type( let local_type = get_llvm_type(
context, context,
@ -923,7 +791,7 @@ pub fn gen_func_impl<
let param_val = param.into_int_value(); let param_val = param.into_int_value();
if expected_ty.get_bit_width() == 8 && param_val.get_type().get_bit_width() == 1 { if expected_ty.get_bit_width() == 8 && param_val.get_type().get_bit_width() == 1 {
bool_to_int_type(&builder, param_val, context.i8_type()) bool_to_i8(&builder, context, param_val)
} else { } else {
param_val param_val
} }
@ -936,8 +804,6 @@ pub fn gen_func_impl<
var_assignment.insert(arg.name, (alloca, None, 0)); var_assignment.insert(arg.name, (alloca, None, 0));
} }
// TODO: Save vararg parameters as list
let return_buffer = if has_sret { let return_buffer = if has_sret {
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value()) Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
} else { } else {
@ -1029,20 +895,8 @@ pub fn gen_func_impl<
need_sret: has_sret, need_sret: has_sret,
current_loc: Location::default(), current_loc: Location::default(),
debug_info: (dibuilder, compile_unit, func_scope.as_debug_info_scope()), debug_info: (dibuilder, compile_unit, func_scope.as_debug_info_scope()),
llvm_usize: OnceCell::default(),
}; };
let target_llvm_usize = context.ptr_sized_int_type(
&registry.llvm_options.create_target_machine().map(|tm| tm.get_target_data()).unwrap(),
None,
);
let generator_llvm_usize = generator.get_size_type(context);
assert_eq!(
generator_llvm_usize,
target_llvm_usize,
"CodeGenerator (size_t = {generator_llvm_usize}) is not compatible with CodeGen Target (size_t = {target_llvm_usize})",
);
let loc = code_gen_context.debug_info.0.create_debug_location( let loc = code_gen_context.debug_info.0.create_debug_location(
context, context,
row as u32, row as u32,
@ -1093,29 +947,43 @@ pub fn gen_func<'ctx, G: CodeGenerator>(
}) })
} }
/// Converts the value of a boolean-like value `value` into an arbitrary [`IntType`]. /// Converts the value of a boolean-like value `bool_value` into an `i1`.
/// fn bool_to_i1<'ctx>(builder: &Builder<'ctx>, bool_value: IntValue<'ctx>) -> IntValue<'ctx> {
/// This has the same semantics as `(ty)(value != 0)` in C. if bool_value.get_type().get_bit_width() == 1 {
/// bool_value
/// The returned value is guaranteed to either be `0` or `1`, except for `ty == i1` where only the } else {
/// least-significant bit would be guaranteed to be `0` or `1`.
fn bool_to_int_type<'ctx>(
builder: &Builder<'ctx>,
value: IntValue<'ctx>,
ty: IntType<'ctx>,
) -> IntValue<'ctx> {
// i1 -> i1 : %value ; no-op
// i1 -> i<N> : zext i1 %value to i<N> ; guaranteed to be 0 or 1 - see docs
// i<M> -> i<N>: zext i1 (icmp eq i<M> %value, 0) to i<N> ; same as i<M> -> i1 -> i<N>
match (value.get_type().get_bit_width(), ty.get_bit_width()) {
(1, 1) => value,
(1, _) => builder.build_int_z_extend(value, ty, "frombool").unwrap(),
_ => bool_to_int_type(
builder,
builder builder
.build_int_compare(IntPredicate::NE, value, value.get_type().const_zero(), "tobool") .build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
"tobool",
)
.unwrap()
}
}
/// Converts the value of a boolean-like value `bool_value` into an `i8`.
fn bool_to_i8<'ctx>(
builder: &Builder<'ctx>,
ctx: &'ctx Context,
bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> {
let value_bits = bool_value.get_type().get_bit_width();
match value_bits {
8 => bool_value,
1 => builder.build_int_z_extend(bool_value, ctx.i8_type(), "frombool").unwrap(),
_ => bool_to_i8(
builder,
ctx,
builder
.build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
"",
)
.unwrap(), .unwrap(),
ty,
), ),
} }
} }
@ -1158,112 +1026,3 @@ fn gen_in_range_check<'ctx>(
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap() ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap()
} }
/// Returns the internal name for the `va_count` argument, used to indicate the number of arguments
/// passed to the variadic function.
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into()
}
/// Returns the alignment of the type.
///
/// This is necessary as `get_alignment` is not implemented as part of [`BasicType`].
pub fn get_type_alignment<'ctx>(ty: impl Into<BasicTypeEnum<'ctx>>) -> IntValue<'ctx> {
match ty.into() {
BasicTypeEnum::ArrayType(ty) => ty.get_alignment(),
BasicTypeEnum::FloatType(ty) => ty.get_alignment(),
BasicTypeEnum::IntType(ty) => ty.get_alignment(),
BasicTypeEnum::PointerType(ty) => ty.get_alignment(),
BasicTypeEnum::StructType(ty) => ty.get_alignment(),
BasicTypeEnum::VectorType(ty) => ty.get_alignment(),
}
}
/// Inserts an `alloca` instruction with allocation `size` given in bytes and the alignment of the
/// given type.
///
/// The returned [`PointerValue`] will have a type of `i8*`, a size of at least `size`, and will be
/// aligned with the alignment of `align_ty`.
pub fn type_aligned_alloca<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
align_ty: impl Into<BasicTypeEnum<'ctx>>,
size: IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
/// Round `val` up to its modulo `power_of_two`.
fn round_up<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>,
) -> IntValue<'ctx> {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width(),
"`val` ({}) and `power_of_two` ({}) must be the same type",
val.get_type(),
power_of_two.get_type(),
);
let llvm_val_t = val.get_type();
let max_rem =
ctx.builder.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "").unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
}
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = ctx.get_size_type();
let align_ty = align_ty.into();
let size = ctx.builder.build_int_truncate_or_bit_cast(size, llvm_usize, "").unwrap();
debug_assert_eq!(
size.get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected size_t ({}) for parameter `size` of `aligned_alloca`, got {}",
llvm_usize,
size.get_type(),
);
let alignment = get_type_alignment(align_ty);
let alignment = ctx.builder.build_int_truncate_or_bit_cast(alignment, llvm_usize, "").unwrap();
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let alignment_bitcount = llvm_intrinsics::call_int_ctpop(ctx, alignment, None);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::EQ,
alignment_bitcount,
alignment_bitcount.get_type().const_int(1, false),
"",
)
.unwrap(),
"0:AssertionError",
"Expected power-of-two alignment for aligned_alloca, got {0}",
[Some(alignment), None, None],
ctx.current_loc,
);
}
let buffer_size = round_up(ctx, size, alignment);
let aligned_slices = ctx.builder.build_int_unsigned_div(buffer_size, alignment, "").unwrap();
// Just to be absolutely sure, alloca in [i8 x alignment] slices
let buffer = ctx.builder.build_array_alloca(align_ty, aligned_slices, "").unwrap();
ctx.builder
.build_bit_cast(buffer, llvm_pi8, name.unwrap_or_default())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}

View File

@ -0,0 +1,161 @@
use std::fmt;
use inkwell::{context::Context, types::*, values::*};
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
#[derive(Clone, Copy)]
pub struct TypeContext<'ctx> {
pub size_type: IntType<'ctx>,
}
pub trait HasTypeContext {
fn type_context<'ctx>(&self, ctx: &'ctx Context) -> TypeContext<'ctx>;
}
impl<T: CodeGenerator + ?Sized> HasTypeContext for T {
fn type_context<'ctx>(&self, ctx: &'ctx Context) -> TypeContext<'ctx> {
TypeContext { size_type: self.get_size_type(ctx) }
}
}
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
impl ModelError {
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
self
}
}
/// A [`Model`] is a singleton object that uniquely identifies a [`BasicType`]
/// solely from a [`CodeGenerator`] and a [`Context`].
pub trait Model: CheckType + fmt::Debug + Clone + Copy + Default {
type Value<'ctx>: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
type Type<'ctx>: BasicType<'ctx>;
/// Return the [`BasicType`] of this model.
fn get_type<'ctx>(&self, tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> Self::Type<'ctx>;
/// Check if a [`BasicType`] is the same type of this model.
fn check_type<'ctx, T: BasicType<'ctx>>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
self.check_type_impl(tyctx, ctx, ty.as_basic_type_enum())
}
/// Create an instance from a value with [`Instance::model`] being this model.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
fn believe_value<'ctx>(&self, value: Self::Value<'ctx>) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
/// Wrap it into an [`Instance`] if it is.
fn check_value<'ctx, V: BasicValue<'ctx>>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(tyctx, ctx, value.get_type())
.map_err(|err| err.under_context("the value {value:?}"))?;
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
Ok(self.believe_value(value))
}
// Allocate a value on the stack and return its pointer.
fn alloca<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
name: &str,
) -> Ptr<'ctx, Self> {
let pmodel = PtrModel(*self);
let p = ctx.builder.build_alloca(self.get_type(tyctx, ctx.ctx), name).unwrap();
pmodel.believe_value(p)
}
// Allocate an array on the stack and return its pointer.
fn array_alloca<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: &str,
) -> Ptr<'ctx, Self> {
let pmodel = PtrModel(*self);
let p = ctx.builder.build_array_alloca(self.get_type(tyctx, ctx.ctx), len, name).unwrap();
pmodel.believe_value(p)
}
fn var_alloca<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Ptr<'ctx, Self>, String> {
let tyctx = generator.type_context(ctx.ctx);
let pmodel = PtrModel(*self);
let p = generator.gen_var_alloc(
ctx,
self.get_type(tyctx, ctx.ctx).as_basic_type_enum(),
name,
)?;
Ok(pmodel.believe_value(p))
}
fn array_var_alloca<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<Ptr<'ctx, Self>, String> {
let tyctx = generator.type_context(ctx.ctx);
// TODO: Remove ArraySliceValue
let pmodel = PtrModel(*self);
let p = generator.gen_array_var_alloc(
ctx,
self.get_type(tyctx, ctx.ctx).as_basic_type_enum(),
len,
name,
)?;
Ok(pmodel.believe_value(PointerValue::from(p)))
}
}
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
pub value: M::Value<'ctx>,
}
// NOTE: Must be Rust object-safe - This must be typeable for a Rust trait object.
pub trait CheckType {
fn check_type_impl<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError>;
}

View File

@ -0,0 +1,228 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::IntValue,
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
pub trait IntKind: fmt::Debug + Clone + Copy + Default {
fn get_int_type<'ctx>(&self, tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> IntType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
#[derive(Debug, Clone, Copy, Default)]
pub struct SizeT;
impl IntKind for Bool {
fn get_int_type<'ctx>(&self, _tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> IntType<'ctx> {
ctx.bool_type()
}
}
impl IntKind for Byte {
fn get_int_type<'ctx>(&self, _tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> IntType<'ctx> {
ctx.i8_type()
}
}
impl IntKind for Int32 {
fn get_int_type<'ctx>(&self, _tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> IntType<'ctx> {
ctx.i32_type()
}
}
impl IntKind for Int64 {
fn get_int_type<'ctx>(&self, _tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> IntType<'ctx> {
ctx.i64_type()
}
}
impl IntKind for SizeT {
fn get_int_type<'ctx>(&self, tyctx: TypeContext<'ctx>, _ctx: &'ctx Context) -> IntType<'ctx> {
tyctx.size_type
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct IntModel<N: IntKind>(pub N);
pub type Int<'ctx, N> = Instance<'ctx, IntModel<N>>;
impl<N: IntKind> CheckType for IntModel<N> {
fn check_type_impl<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError> {
let Ok(ty) = IntType::try_from(ty) else {
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
};
let exp_ty = self.0.get_int_type(tyctx, ctx);
if ty.get_bit_width() != exp_ty.get_bit_width() {
return Err(ModelError(format!(
"Expecting IntType to have {} bit(s), but got {} bit(s)",
exp_ty.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
}
impl<N: IntKind> Model for IntModel<N> {
type Value<'ctx> = IntValue<'ctx>;
type Type<'ctx> = IntType<'ctx>;
#[must_use]
fn get_type<'ctx>(&self, tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> Self::Type<'ctx> {
self.0.get_int_type(tyctx, ctx)
}
}
impl<N: IntKind> IntModel<N> {
pub fn constant<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
value: u64,
) -> Int<'ctx, N> {
let value = self.get_type(tyctx, ctx).const_int(value, false);
self.believe_value(value)
}
pub fn const_0<'ctx>(&self, tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> Int<'ctx, N> {
self.constant(tyctx, ctx, 0)
}
pub fn const_1<'ctx>(&self, tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> Int<'ctx, N> {
self.constant(tyctx, ctx, 1)
}
pub fn s_extend_or_bit_cast<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.get_type(tyctx, ctx.ctx), name)
.unwrap();
self.believe_value(value)
}
pub fn truncate<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
name: &str,
) -> Int<'ctx, N> {
let value =
ctx.builder.build_int_truncate(value, self.get_type(tyctx, ctx.ctx), name).unwrap();
self.believe_value(value)
}
}
impl IntModel<Bool> {
#[must_use]
pub fn const_false<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
) -> Int<'ctx, Bool> {
self.constant(tyctx, ctx, 0)
}
#[must_use]
pub fn const_true<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
) -> Int<'ctx, Bool> {
self.constant(tyctx, ctx, 1)
}
}
impl<'ctx, N: IntKind> Int<'ctx, N> {
pub fn s_extend_or_bit_cast<NewN: IntKind, G: CodeGenerator + ?Sized>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
name: &str,
) -> Int<'ctx, NewN> {
IntModel(to_int_kind).s_extend_or_bit_cast(tyctx, ctx, self.value, name)
}
pub fn truncate<NewN: IntKind, G: CodeGenerator + ?Sized>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
name: &str,
) -> Int<'ctx, NewN> {
IntModel(to_int_kind).truncate(tyctx, ctx, self.value, name)
}
#[must_use]
pub fn add<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx.builder.build_int_add(self.value, other.value, name).unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn sub<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx.builder.build_int_sub(self.value, other.value, name).unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn mul<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, N> {
let value = ctx.builder.build_int_mul(self.value, other.value, name).unwrap();
self.model.believe_value(value)
}
pub fn compare<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
op: IntPredicate,
other: Int<'ctx, N>,
name: &str,
) -> Int<'ctx, Bool> {
let bool_model = IntModel(Bool);
let value = ctx.builder.build_int_compare(op, self.value, other.value, name).unwrap();
bool_model.believe_value(value)
}
}

View File

@ -0,0 +1,12 @@
mod core;
mod int;
mod ptr;
mod slice;
mod structure;
pub mod util;
pub use core::*;
pub use int::*;
pub use ptr::*;
pub use slice::*;
pub use structure::*;

View File

@ -0,0 +1,142 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use super::*;
#[derive(Debug, Clone, Copy, Default)]
pub struct PtrModel<Element>(pub Element);
pub type Ptr<'ctx, Element> = Instance<'ctx, PtrModel<Element>>;
impl<Element: CheckType> CheckType for PtrModel<Element> {
fn check_type_impl<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), super::ModelError> {
let Ok(ty) = PointerType::try_from(ty) else {
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
};
let elem_ty = ty.get_element_type();
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
return Err(ModelError(format!(
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
)));
};
// TODO: inkwell `get_element_type()` will be deprecated.
// Remove the check for `get_element_type()` when the time comes.
self.0
.check_type_impl(tyctx, ctx, elem_ty)
.map_err(|err| err.under_context("a PointerType"))?;
Ok(())
}
}
impl<Element: Model> Model for PtrModel<Element> {
type Value<'ctx> = PointerValue<'ctx>;
type Type<'ctx> = PointerType<'ctx>;
fn get_type<'ctx>(&self, tyctx: TypeContext<'ctx>, ctx: &'ctx Context) -> Self::Type<'ctx> {
self.0.get_type(tyctx, ctx).ptr_type(AddressSpace::default())
}
}
impl<Element: Model> PtrModel<Element> {
/// Return a ***constant*** nullptr.
pub fn nullptr<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &'ctx Context,
) -> Ptr<'ctx, Element> {
let ptr = self.get_type(tyctx, ctx).const_null();
self.believe_value(ptr)
}
pub fn transmute<'ctx>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
ptr: PointerValue<'ctx>,
name: &str,
) -> Ptr<'ctx, Element> {
let ptr = ctx.builder.build_pointer_cast(ptr, self.get_type(tyctx, ctx.ctx), name).unwrap();
self.believe_value(ptr)
}
}
impl<'ctx, Element: Model> Ptr<'ctx, Element> {
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
#[must_use]
pub fn offset(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
offset: IntValue<'ctx>,
name: &str,
) -> Ptr<'ctx, Element> {
let new_ptr =
unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], name).unwrap() };
self.model.check_value(tyctx, ctx.ctx, new_ptr).unwrap()
}
// Load the `i`-th element (0-based) on the array with [`inkwell::builder::Builder::build_in_bounds_gep`].
pub fn ix(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
name: &str,
) -> Instance<'ctx, Element> {
self.offset(tyctx, ctx, i, name).load(tyctx, ctx, name)
}
/// Load the value with [`inkwell::builder::Builder::build_load`].
pub fn load(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
name: &str,
) -> Instance<'ctx, Element> {
let value = ctx.builder.build_load(self.value, name).unwrap();
self.model.0.check_value(tyctx, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
}
/// Store a value with [`inkwell::builder::Builder::build_store`].
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Element>) {
ctx.builder.build_store(self.value, value.value).unwrap();
}
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
pub fn transmute<NewElement: Model>(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
new_model: NewElement,
name: &str,
) -> Ptr<'ctx, NewElement> {
PtrModel(new_model).transmute(tyctx, ctx, self.value, name)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
let bool_model = IntModel(Bool);
let value = ctx.builder.build_is_null(self.value, name).unwrap();
bool_model.believe_value(value)
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
let bool_model = IntModel(Bool);
let value = ctx.builder.build_is_not_null(self.value, name).unwrap();
bool_model.believe_value(value)
}
}

View File

@ -0,0 +1,72 @@
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// A slice - literally just a pointer and a length value.
///
/// NOTE: This is NOT a [`Model`].
pub struct ArraySlice<'ctx, Len: IntKind, Item: Model> {
pub base: Ptr<'ctx, Item>,
pub len: Int<'ctx, Len>,
}
impl<'ctx, Len: IntKind, Item: Model> ArraySlice<'ctx, Len, Item> {
/// Get the `idx`-nth element of this [`ArraySlice`], but doesn't do an assertion to see if `idx` is out of bounds or not.
///
/// Also see [`ArraySlice::ix`].
pub fn ix_unchecked(
&self,
tyctx: TypeContext<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
idx: Int<'ctx, Len>,
name: &str,
) -> Ptr<'ctx, Item> {
let element_ptr = unsafe {
ctx.builder.build_in_bounds_gep(self.base.value, &[idx.value], name).unwrap()
};
self.base.model.check_value(tyctx, ctx.ctx, element_ptr).unwrap()
}
/// Call [`ArraySlice::ix_unchecked`], but checks if `idx` is in bounds, otherwise a runtime `IndexError` will be thrown.
pub fn ix<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
idx: Int<'ctx, Len>,
name: &str,
) -> Ptr<'ctx, Item> {
let tyctx = generator.type_context(ctx.ctx);
let len_model = IntModel(Len::default());
// Assert `0 <= idx < length` and throw an Exception if `idx` is out of bounds
let lower_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLE,
len_model.constant(tyctx, ctx.ctx, 0).value,
idx.value,
"lower_bounded",
)
.unwrap();
let upper_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLT,
idx.value,
self.len.value,
"upper_bounded",
)
.unwrap();
let bounded = ctx.builder.build_and(lower_bounded, upper_bounded, "bounded").unwrap();
ctx.make_assert(
generator,
bounded,
"0:IndexError",
"nac3core LLVM codegen attempting to access out of bounds array index {0}. Must satisfy 0 <= index < {2}",
[ Some(idx.value), Some(self.len.value), None],
ctx.current_loc
);
self.ix_unchecked(tyctx, ctx, idx, name)
}
}

Some files were not shown because too many files have changed in this diff Show More