Compare commits

..

1 Commits

Author SHA1 Message Date
51f9f9c1e3 WIP 2024-08-16 17:20:12 +08:00
155 changed files with 9775 additions and 16697 deletions

View File

@ -1,32 +0,0 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

View File

@ -1,24 +1,24 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
default_stages: [pre-commit]
default_stages: [commit]
repos:
- repo: local
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: nix
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [develop, -c, cargo, fmt, --all]
args: [fmt]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: nix
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [develop, -c, cargo, clippy, --tests]
args: [clippy, --tests]

565
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,6 @@ members = [
"nac3ast",
"nac3parser",
"nac3core",
"nac3core/nac3core_derive",
"nac3standalone",
"nac3artiq",
"runkernel",

6
flake.lock generated
View File

@ -2,11 +2,11 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1735834308,
"narHash": "sha256-dklw3AXr3OGO4/XT1Tu3Xz9n/we8GctZZ75ZWVqAVhk=",
"lastModified": 1721924956,
"narHash": "sha256-Sb1jlyRO+N8jBXEX9Pg9Z1Qb8Bw9QyOgLDNMEpmjZ2M=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "6df24922a1400241dae323af55f30e4318a6ca65",
"rev": "5ad6a14c6bf098e98800b091668718c336effc95",
"type": "github"
},
"original": {

View File

@ -107,18 +107,18 @@
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "sipyco";
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e";
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc=";
})
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "artiq";
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
rev = "923ca3377d42c815f979983134ec549dc39d3ca0";
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw=";
})
];
buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out
];
phases = [ "buildPhase" "installPhase" ];

View File

@ -12,10 +12,16 @@ crate-type = ["cdylib"]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12"
tempfile = "3.13"
tempfile = "3.10"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -7,6 +7,33 @@ class EmbeddingMap:
self.function_map = {}
self.attributes_writeback = []
# preallocate exception names
self.preallocate_runtime_exception_names(["RuntimeError",
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"0:ZeroDivisionError",
"0:IndexError",
"0:ValueError",
"0:RuntimeError",
"0:AssertionError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:IOError",
"0:UnwrapNoneError"])
def preallocate_runtime_exception_names(self, names):
for i, name in enumerate(names):
if ":" not in name:
name = "0:artiq.coredevice.exceptions." + name
exn_id = self.store_str(name)
assert exn_id == i
def store_function(self, key, fun):
self.function_map[key] = fun
return key

View File

@ -112,15 +112,10 @@ def extern(function):
register_function(function)
return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def rpc(function):
"""Decorates a function declaration defined by the core device runtime."""
register_function(function)
return function
def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device."""
@ -206,7 +201,7 @@ class Core:
embedding = EmbeddingMap()
if allow_registration:
compiler.analyze(registered_functions, registered_classes, set())
compiler.analyze(registered_functions, registered_classes)
allow_registration = False
if hasattr(method, "__self__"):

View File

@ -1,29 +0,0 @@
from min_artiq import *
import numpy
from numpy import int32
@nac3
class NumpyBoolDecay:
core: KernelInvariant[Core]
np_true: KernelInvariant[bool]
np_false: KernelInvariant[bool]
np_int: KernelInvariant[int32]
np_float: KernelInvariant[float]
np_str: KernelInvariant[str]
def __init__(self):
self.core = Core()
self.np_true = numpy.True_
self.np_false = numpy.False_
self.np_int = numpy.int32(0)
self.np_float = numpy.float64(0.0)
self.np_str = numpy.str_("")
@kernel
def run(self):
pass
if __name__ == "__main__":
NumpyBoolDecay().run()

View File

@ -1,3 +1,38 @@
use nac3core::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
NDArrayValue, RangeValue, UntypedArrayLikeAccessor,
},
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
use inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate,
};
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use itertools::Itertools;
use std::{
collections::{hash_map::DefaultHasher, HashMap},
hash::{Hash, Hasher},
@ -6,43 +41,6 @@ use std::{
sync::Arc,
};
use itertools::Itertools;
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
use nac3core::{
codegen::{
expr::{destructure_range, gen_call},
llvm_intrinsics::{call_int_smax, call_memcpy, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
type_aligned_alloca,
types::ndarray::NDArrayType,
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue, RangeValue,
UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
},
inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
},
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
symbol_resolver::ValueEnum,
toplevel::{
helper::{extract_ndims, PrimDef},
numpy::unpack_ndarray_var_tys,
DefinitionId, GenCall,
},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
/// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode {
@ -132,7 +130,7 @@ impl<'a> ArtiqCodeGenerator<'a> {
/// (possibly indirect) `parallel` block.
///
/// * `store_name` - The LLVM value name for the pointer to `end`. `.addr` will be appended to
/// the end of the provided value name.
/// the end of the provided value name.
fn timeline_update_end_max(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
@ -162,7 +160,7 @@ impl<'a> ArtiqCodeGenerator<'a> {
}
}
impl CodeGenerator for ArtiqCodeGenerator<'_> {
impl<'b> CodeGenerator for ArtiqCodeGenerator<'b> {
fn get_name(&self) -> &str {
&self.name
}
@ -461,49 +459,56 @@ fn format_rpc_arg<'ctx>(
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
let dtype = ctx.get_llvm_type(generator, elem_ty);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, ndims)
.map_value(arg.into_pointer_value(), None);
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let llvm_arg_ty =
NDArrayType::new(generator, ctx.ctx, ctx.get_llvm_type(generator, elem_ty));
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
let ndims = llvm_usize.const_int(ndims, false);
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_arg_ty.element_type().ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
// `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
// the reader.
// Turning it into a ContiguousNDArray to get a `data` that is contiguous.
let carray = ndarray.make_contiguous_ndarray(generator, ctx);
let dims_buf_sz =
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let sizeof_usize = llvm_usize.size_of();
let sizeof_usize =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
let buffer_size =
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
let sizeof_pdata = dtype.ptr_type(AddressSpace::default()).size_of();
let sizeof_pdata =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_pdata, llvm_usize, "").unwrap();
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
let sizeof_buf_shape = ctx.builder.build_int_mul(sizeof_usize, ndims, "").unwrap();
let sizeof_buf = ctx.builder.build_int_add(sizeof_buf_shape, sizeof_pdata, "").unwrap();
let ppdata =
generator.gen_var_alloc(ctx, llvm_arg_ty.element_type(), None).unwrap();
ctx.builder.build_store(ppdata, llvm_arg.data().base_ptr(ctx, generator)).unwrap();
// buf = { data: void*, shape: [size_t; ndims]; }
let buf = ctx.builder.build_array_alloca(llvm_i8, sizeof_buf, "rpc.arg").unwrap();
let buf = ArraySliceValue::from_ptr_val(buf, sizeof_buf, Some("rpc.arg"));
let buf_data = buf.base_ptr(ctx, generator);
let buf_shape =
unsafe { buf.ptr_offset_unchecked(ctx, generator, &sizeof_pdata, None) };
call_memcpy_generic(
ctx,
buffer.base_ptr(ctx, generator),
ppdata,
llvm_pdata_sizeof,
llvm_i1.const_zero(),
);
// Write to `buf->data`
let carray_data = carray.load_data(ctx);
let carray_data = ctx.builder.build_pointer_cast(carray_data, llvm_pi8, "").unwrap();
call_memcpy(ctx, buf_data, carray_data, sizeof_pdata, llvm_i1.const_zero());
let pbuffer_dims_begin =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
pbuffer_dims_begin,
llvm_arg.dim_sizes().base_ptr(ctx, generator),
dims_buf_sz,
llvm_i1.const_zero(),
);
// Write to `buf->shape`
let carray_shape = ndarray.shape().base_ptr(ctx, generator);
let carray_shape_i8 =
ctx.builder.build_pointer_cast(carray_shape, llvm_pi8, "").unwrap();
call_memcpy(ctx, buf_shape, carray_shape_i8, sizeof_buf_shape, llvm_i1.const_zero());
buf.base_ptr(ctx, generator)
buffer.base_ptr(ctx, generator)
}
_ => {
@ -513,7 +518,7 @@ fn format_rpc_arg<'ctx>(
ctx.builder.build_store(arg_slot, arg).unwrap();
ctx.builder
.build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
.build_bitcast(arg_slot, llvm_pi8, "rpc.arg")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
@ -524,276 +529,12 @@ fn format_rpc_arg<'ctx>(
arg_slot
}
/// Formats an RPC return value to conform to the expected format required by NAC3.
fn format_rpc_ret<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let llvm_i8 = ctx.ctx.i8_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
});
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
return None;
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let num_0 = llvm_usize.const_zero();
// Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>| {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width()
);
let llvm_val_t = val.get_type();
let max_rem = ctx
.builder
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
.unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
};
// Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off.
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&ctx.unifier, ndims);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, ndims)
.construct_uninitialized(generator, ctx, None);
// NOTE: Current content of `ndarray`:
// - * `data` - **NOT YET** allocated.
// - * `itemsize` - initialized to be size_of(dtype).
// - * `ndims` - initialized.
// - * `shape` - allocated; has uninitialized values.
// - * `strides` - allocated; has uninitialized values.
let itemsize = ndarray.load_itemsize(ctx); // Same as doing a `ctx.get_llvm_type` on `dtype` and get its `size_of()`.
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_usize = llvm_usize.size_of();
let sizeof_usize =
ctx.builder.build_int_truncate_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
let sizeof_ptr = llvm_i8.ptr_type(AddressSpace::default()).size_of();
let sizeof_ptr =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_ptr, llvm_usize, "").unwrap();
let sizeof_shape =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), sizeof_usize, "").unwrap();
// Size of the buffer for the initial `rpc_recv()`.
let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_ptr, sizeof_shape, "").unwrap();
let stackptr = call_stacksave(ctx, None);
let buffer = type_aligned_alloca(
generator,
ctx,
llvm_i8_8,
unaligned_buffer_size,
Some("rpc.buffer"),
);
let buffer = ArraySliceValue::from_ptr_val(buffer, unaligned_buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
//
// The returned value is the number of bytes for `ndarray.data`.
let ndarray_nbytes = ctx
.build_call_or_invoke(
rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]
"rpc.size.next",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
// debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let cmp = ctx
.builder
.build_int_compare(IntPredicate::UGT, ndarray_nbytes, num_0, "")
.unwrap();
ctx.make_assert(
generator,
cmp,
"0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None],
ctx.current_loc,
);
}
// Copy shape from the buffer to `ndarray.shape`.
// We need to skip the first `sizeof(uint8_t*)` bytes to skip the `pdata` in `[pdata, shape]`.
let pbuffer_shape =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &sizeof_ptr, None) };
let pbuffer_shape =
ctx.builder.build_pointer_cast(pbuffer_shape, llvm_pusize, "").unwrap();
// Copy shape from buffer to `ndarray.shape`
ndarray.copy_shape_from_array(generator, ctx, pbuffer_shape);
// Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate)
unsafe { ndarray.create_data(generator, ctx) }; // NOTE: the strides of `ndarray` has also been set to contiguous in `create_data`.
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let num_elements = ndarray.size(generator, ctx);
let expected_ndarray_nbytes =
ctx.builder.build_int_mul(num_elements, itemsize, "").unwrap();
let cmp = ctx
.builder
.build_int_compare(
IntPredicate::UGE,
expected_ndarray_nbytes,
ndarray_nbytes,
"",
)
.unwrap();
ctx.make_assert(
generator,
cmp,
"0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(expected_ndarray_nbytes), Some(ndarray_nbytes), None],
ctx.current_loc,
);
}
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
// NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap();
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.map(BasicValueEnum::into_int_value)
.unwrap();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, itemsize);
// TODO(Derppening): Candidate for refactor into type_aligned_alloca
let alloc_ptr = ctx
.builder
.build_array_alloca(
dtype_llvm,
ctx.builder.build_int_unsigned_div(alloc_size, itemsize, "").unwrap(),
"rpc.alloc",
)
.unwrap();
let alloc_ptr =
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ndarray.as_base_value().into()
}
_ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr =
ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ctx.builder.build_load(slot, "rpc.result").unwrap()
}
};
Some(result)
}
fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator,
is_async: bool,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type();
@ -902,72 +643,91 @@ fn rpc_codegen_callback_fn<'ctx>(
}
// call
if is_async {
let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send_async",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
rpc_send_async,
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
"rpc.send",
)
.unwrap();
} else {
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
}
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
// reclaim stack space used by arguments
call_stackrestore(ctx, stackptr);
if is_async {
// async RPCs do not return any values
Ok(None)
} else {
let result = format_rpc_ret(generator, ctx, fun.0.ret);
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
});
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
// An RPC returning an NDArray would not touch here.
call_stackrestore(ctx, stackptr);
}
Ok(result)
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv");
return Ok(None);
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
if need_load {
call_stackrestore(ctx, stackptr);
}
Ok(Some(result))
}
pub fn attributes_writeback<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
pub fn attributes_writeback(
ctx: &mut CodeGenContext<'_, '_>,
generator: &mut dyn CodeGenerator,
inner_resolver: &InnerResolver,
host_attributes: &PyObject,
return_obj: Option<(Type, ValueEnum<'ctx>)>,
) -> Result<(), String> {
Python::with_gil(|py| -> PyResult<Result<(), String>> {
let host_attributes: &PyList = host_attributes.downcast(py)?;
@ -977,11 +737,6 @@ pub fn attributes_writeback<'ctx>(
let zero = int32.const_zero();
let mut values = Vec::new();
let mut scratch_buffer = Vec::new();
if let Some((ty, obj)) = return_obj {
values.push((ty, obj.to_basic_value_enum(ctx, generator, ty).unwrap()));
}
for val in (*globals).values() {
let val = val.as_ref(py);
let ty = inner_resolver.get_obj_type(
@ -1060,7 +815,7 @@ pub fn attributes_writeback<'ctx>(
let args: Vec<_> =
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
if let Err(e) =
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, true)
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator)
{
return Ok(Err(e));
}
@ -1070,9 +825,9 @@ pub fn attributes_writeback<'ctx>(
Ok(())
}
pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
pub fn rpc_codegen_callback() -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
})))
}
@ -1286,8 +1041,7 @@ fn polymorphic_print<'ctx>(
fmt.push('[');
flush(ctx, generator, &mut fmt, &mut args);
let val =
ListValue::from_pointer_value(value.into_pointer_value(), llvm_usize, None);
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = val.load_size(ctx, None);
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
@ -1338,50 +1092,56 @@ fn polymorphic_print<'ctx>(
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args);
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ty)
.map_value(value.into_pointer_value(), None);
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
let num_0 = llvm_usize.const_zero();
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
let i = hdl.get_index(ctx);
let scalar = hdl.get_scalar(ctx);
polymorphic_print(
ctx,
generator,
&[(elem_ty, elem.into())],
"",
None,
true,
as_rtio,
)?;
// if (i != 0) puts(", ");
gen_if_callback(
generator,
ctx,
|_, ctx| {
let not_first = ctx
.builder
.build_int_compare(IntPredicate::NE, i, num_0, "")
.unwrap();
Ok(not_first)
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
Ok(())
},
|_, _| Ok(()),
)?;
gen_if_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::ULT, i, last, "")
.unwrap())
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
// Print element
polymorphic_print(
ctx,
generator,
&[(dtype, scalar.into())],
"",
None,
true,
as_rtio,
)?;
Ok(())
})?;
Ok(())
},
|_, _| Ok(()),
)?;
Ok(())
},
llvm_usize.const_int(1, false),
)?;
fmt.push_str(")]");
flush(ctx, generator, &mut fmt, &mut args);
@ -1391,7 +1151,7 @@ fn polymorphic_print<'ctx>(
fmt.push_str("range(");
flush(ctx, generator, &mut fmt, &mut args);
let val = RangeValue::from_pointer_value(value.into_pointer_value(), None);
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
let (start, stop, step) = destructure_range(ctx, val);
@ -1505,7 +1265,7 @@ pub fn call_rtio_log_impl<'ctx>(
/// Generates a call to `core_log`.
pub fn gen_core_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<&(Type, ValueEnum<'ctx>)>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
@ -1522,7 +1282,7 @@ pub fn gen_core_log<'ctx>(
/// Generates a call to `rtio_log`.
pub fn gen_rtio_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<&(Type, ValueEnum<'ctx>)>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,

View File

@ -1,4 +1,10 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
unsafe_op_in_unsafe_fn,
@ -10,65 +16,64 @@
clippy::wildcard_imports
)]
use std::{
collections::{HashMap, HashSet},
fs,
io::Write,
process::Command,
rc::Rc,
sync::Arc,
};
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io::Write;
use std::process::Command;
use std::rc::Rc;
use std::sync::Arc;
use itertools::Itertools;
use parking_lot::{Mutex, RwLock};
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PyNone, PySet},
use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
};
use tempfile::{self, TempDir};
use itertools::Itertools;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock};
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{FlagBehavior, Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
},
nac3parser::{
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
parser::parse_program,
},
codegen::irrt::load_irrt,
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver,
toplevel::{
builtins::get_exn_constructor,
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
typecheck::typedef::{FunSignature, FuncArg},
typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
};
use nac3ld::Linker;
use codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
use crate::{
codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
};
use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
use tempfile::{self, TempDir};
mod codegen;
mod symbol_resolver;
mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)]
enum Isa {
Host,
@ -142,32 +147,14 @@ impl Nac3 {
module: &PyObject,
registered_class_ids: &HashSet<u64>,
) -> PyResult<()> {
let (module_name, source_file, source) =
Python::with_gil(|py| -> PyResult<(String, String, String)> {
let module: &PyAny = module.extract(py)?;
let source_file = module.getattr("__file__");
let (source_file, source) = if let Ok(source_file) = source_file {
let source_file = source_file.extract()?;
(
source_file,
fs::read_to_string(source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!(
"failed to read input file: {e}"
))
})?,
)
} else {
// kernels submitted by content have no file
// but still can provide source by StringLoader
let get_src_fn = module
.getattr("__loader__")?
.extract::<PyObject>()?
.getattr(py, "get_source")?;
("<expcontent>", get_src_fn.call1(py, (PyNone::get(py),))?.extract(py)?)
};
Ok((module.getattr("__name__")?.extract()?, source_file.to_string(), source))
})?;
let (module_name, source_file) = Python::with_gil(|py| -> PyResult<(String, String)> {
let module: &PyAny = module.extract(py)?;
Ok((module.getattr("__name__")?.extract()?, module.getattr("__file__")?.extract()?))
})?;
let source = fs::read_to_string(&source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!("failed to read input file: {e}"))
})?;
let parser_result = parse_program(&source, source_file.into())
.map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?;
@ -207,8 +194,10 @@ impl Nac3 {
body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) {
id == "kernel" || id == "portable" || id == "rpc"
if let ExprKind::Name { id, .. } = decorator.node {
id.to_string() == "kernel"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
} else {
false
}
@ -221,8 +210,9 @@ impl Nac3 {
}
StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) {
id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
if let ExprKind::Name { id, .. } = decorator.node {
let id = id.to_string();
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
} else {
false
}
@ -330,7 +320,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, obj.as_ref(), fun, &args, generator)?;
gen_core_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
@ -360,7 +350,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, obj.as_ref(), fun, &args, generator)?;
gen_rtio_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
@ -458,6 +448,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -488,25 +479,9 @@ impl Nac3 {
match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list
.iter()
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
rpc_ids.push((None, def_id));
}
}
StmtKind::ClassDef { name, body, .. } => {
@ -514,26 +489,19 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
if name == &"__init__".into() {
return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location
)));
}
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
}
}
}
}
_ => (),
_ => ()
}
let id = *name_to_pyid.get(&name).unwrap();
@ -572,12 +540,13 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
name_to_pyid,
module: module.to_object(py),
helper: helper.clone(),
helper,
string_store: self.string_store.clone(),
exception_ids: self.exception_ids.clone(),
deferred_eval_store: self.deferred_eval_store.clone(),
@ -588,10 +557,6 @@ impl Nac3 {
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
.unwrap();
// Process IRRT
let context = Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
let mut store = ConcreteTypeStore::new();
@ -629,12 +594,13 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context());
{
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read();
for (class_data, id, is_async) in &rpc_ids {
for (class_data, id) in &rpc_ids {
let mut def = defs[id.0].write();
match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen_callback(*is_async));
*codegen_callback = Some(rpc_codegen.clone());
}
TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap();
@ -645,7 +611,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write()
{
*codegen_callback = Some(rpc_codegen_callback(*is_async));
*codegen_callback = Some(rpc_codegen.clone());
store_fun
.call1(
py,
@ -660,11 +626,6 @@ impl Nac3 {
}
}
}
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
}
}
}
@ -685,12 +646,33 @@ impl Nac3 {
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "__modinit__".to_string(),
body: instance.body,
signature,
resolver: resolver.clone(),
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
id: 0,
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
symbol_name: "attributes_writeback".to_string(),
body: Arc::new(Vec::default()),
signature,
resolver,
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
calls: Arc::new(HashMap::default()),
id: 0,
};
@ -703,7 +685,7 @@ impl Nac3 {
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
})));
let size_t = context
let size_t = Context::create()
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 };
@ -714,27 +696,19 @@ impl Nac3 {
.collect();
let membuffer = membuffers.clone();
let mut has_return = false;
py.allow_threads(|| {
let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let mut generator = ArtiqCodeGenerator::new("main".to_string(), size_t, self.time_fns);
let context = Context::create();
let module = context.create_module("main");
let mut generator =
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
FlagBehavior::Warning,
context.i32_type().const_int(3, false),
);
module.add_basic_value_flag(
"Dwarf Version",
FlagBehavior::Warning,
context.i32_type().const_int(4, false),
);
let builder = context.create_builder();
let (_, module, _) = gen_func_impl(
&context,
@ -742,27 +716,9 @@ impl Nac3 {
&registry,
builder,
module,
task,
attributes_writeback_task,
|generator, ctx| {
assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement");
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
unreachable!("toplevel statement must be an expression")
};
let ExprKind::Call { .. } = expr.node else {
unreachable!("toplevel expression must be a function call")
};
let return_obj =
generator.gen_expr(ctx, expr)?.map(|value| (expr.custom.unwrap(), value));
has_return = return_obj.is_some();
registry.wait_tasks_complete(handles);
attributes_writeback(
ctx,
generator,
inner_resolver.as_ref(),
&host_attributes,
return_obj,
)
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes)
},
)
.unwrap();
@ -771,24 +727,37 @@ impl Nac3 {
membuffer.lock().push(buffer);
});
embedding_map.setattr("expects_return", has_return).unwrap();
// Link all modules into `main`.
let context = inkwell::context::Context::create();
let buffers = membuffers.lock();
let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(
buffers.last().unwrap(),
"main",
))
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
.unwrap();
for buffer in buffers.iter().rev().skip(1) {
for buffer in buffers.iter().skip(1) {
let other = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
}
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
main.link_in_module(load_irrt(&context))
.map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function();
while let Some(func) = function_iter {
@ -822,20 +791,6 @@ impl Nac3 {
panic!("Failed to run optimization for module `main`: {}", err.to_string());
}
Python::with_gil(|py| {
let string_store = self.string_store.read();
let mut string_store_vec = string_store.iter().collect::<Vec<_>>();
string_store_vec.sort_by(|(_s1, key1), (_s2, key2)| key1.cmp(key2));
for (s, key) in string_store_vec {
let embed_key: i32 = helper.store_str.call1(py, (s,)).unwrap().extract(py).unwrap();
assert_eq!(
embed_key, *key,
"string {s} is out of sync between embedding map (key={embed_key}) and \
the internal string store (key={key})"
);
}
});
link_fn(&main)
}
@ -888,41 +843,6 @@ impl Nac3 {
}
}
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![
"-shared".to_string(),
@ -1085,48 +1005,6 @@ impl Nac3 {
let working_directory = tempfile::Builder::new().prefix("nac3-").tempdir().unwrap();
fs::write(working_directory.path().join("kernel.ld"), include_bytes!("kernel.ld")).unwrap();
let mut string_store: HashMap<String, i32> = HashMap::default();
// Keep this list of exceptions in sync with `EXCEPTION_ID_LOOKUP` in `artiq::firmware::ksupport::eh_artiq`
// The exceptions declared here must be defined in `artiq.coredevice.exceptions`
// Verify synchronization by running the test cases in `artiq.test.coredevice.test_exceptions`
let runtime_exception_names = [
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"SubkernelError",
"0:AssertionError",
"0:AttributeError",
"0:IndexError",
"0:IOError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:RuntimeError",
"0:TimeoutError",
"0:TypeError",
"0:ValueError",
"0:ZeroDivisionError",
"0:LinAlgError",
"UnwrapNoneError",
];
// Preallocate runtime exception names
for (i, name) in runtime_exception_names.iter().enumerate() {
let exn_name = if name.find(':').is_none() {
format!("0:artiq.coredevice.exceptions.{name}")
} else {
(*name).to_string()
};
let id = i32::try_from(i).unwrap();
string_store.insert(exn_name, id);
}
Ok(Nac3 {
isa,
time_fns,
@ -1136,7 +1014,7 @@ impl Nac3 {
top_levels: Vec::default(),
pyid_to_def: Arc::default(),
working_directory,
string_store: Arc::new(string_store.into()),
string_store: Arc::default(),
exception_ids: Arc::default(),
deferred_eval_store: DeferredEvaluationStore::new(),
llvm_options: CodeGenLLVMOptions {
@ -1146,12 +1024,7 @@ impl Nac3 {
})
}
fn analyze(
&mut self,
functions: &PySet,
classes: &PySet,
content_modules: &PySet,
) -> PyResult<()> {
fn analyze(&mut self, functions: &PySet, classes: &PySet) -> PyResult<()> {
let (modules, class_ids) =
Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> {
let mut modules: HashMap<u64, PyObject> = HashMap::new();
@ -1161,21 +1034,13 @@ impl Nac3 {
let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?;
for function in functions {
let module: PyObject = getmodule_fn.call1((function,))?.extract()?;
if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
let module = getmodule_fn.call1((function,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
for class in classes {
let module: PyObject = getmodule_fn.call1((class,))?.extract()?;
if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
class_ids.insert(id_fn.call1((class,))?.extract()?);
}
for module in content_modules {
let module: PyObject = module.extract()?;
let module = getmodule_fn.call1((class,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
class_ids.insert(id_fn.call1((class,))?.extract()?);
}
Ok((modules, class_ids))
})?;

View File

@ -1,32 +1,14 @@
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
use inkwell::{
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
};
use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyErr, PyObject, PyResult, Python,
};
use super::PrimitivePythonId;
use nac3core::{
codegen::{
types::{ndarray::NDArrayType, ProxyType},
values::ndarray::make_contiguous_strides,
classes::{NDArrayType, ProxyType},
CodeGenContext, CodeGenerator,
},
inkwell::{
module::Linkage,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
@ -38,6 +20,21 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use crate::PrimitivePythonId;
pub enum PrimitiveValue {
I32(i32),
@ -82,6 +79,7 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
@ -135,8 +133,6 @@ impl StaticValue for PythonValue {
format!("{}_const", self.id).as_str(),
);
global.set_constant(true);
// Set linkage of global to private to avoid name collisions
global.set_linkage(Linkage::Private);
global.set_initializer(&ctx.ctx.const_struct(
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
false,
@ -931,13 +927,10 @@ impl InnerResolver {
|_| Ok(Ok(extracted_ty)),
)
} else if unifier.unioned(extracted_ty, primitives.bool) {
if obj.extract::<bool>().is_ok()
|| obj.call_method("__bool__", (), None)?.extract::<bool>().is_ok()
{
Ok(Ok(extracted_ty))
} else {
Ok(Err(format!("{obj} is not in the range of bool")))
}
obj.extract::<bool>().map_or_else(
|_| Ok(Err(format!("{obj} is not in the range of bool"))),
|_| Ok(Ok(extracted_ty)),
)
} else if unifier.unioned(extracted_ty, primitives.float) {
obj.extract::<f64>().map_or_else(
|_| Ok(Err(format!("{obj} is not in the range of float64"))),
@ -977,14 +970,10 @@ impl InnerResolver {
let val: u64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val, false).into()))
} else if ty_id == self.primitive_ids.bool {
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
@ -1092,19 +1081,18 @@ impl InnerResolver {
} else {
unreachable!("must be ndarray")
};
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let (ndarray_dtype, ndarray_ndims) =
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty);
let dtype = llvm_ndarray.element_type();
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
{
if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(
llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
ndarray_llvm_ty.as_underlying_type(),
Some(AddressSpace::default()),
&id_str,
)
@ -1114,44 +1102,40 @@ impl InnerResolver {
self.global_value_ids.write().insert(id, obj.into());
}
let ndims = llvm_ndarray.ndims();
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndarray_ndims)
else {
unreachable!("Expected Literal for ndarray_ndims")
};
let ndarray_ndims = if values.len() == 1 {
values[0].clone()
} else {
todo!("Unpacking literal of more than one element unimplemented")
};
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
unreachable!("Expected u64 value for ndarray_ndims")
};
// Obtain the shape of the ndarray
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
assert_eq!(shape_tuple.len(), ndims as usize);
// The Rust type inferencer cannot figure this out
let shape_values = shape_tuple
assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
.iter()
.enumerate()
.map(|(i, elem)| {
let value = self
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
.map_err(|e| {
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})?
.unwrap();
let value = ctx
.builder
.build_int_z_extend(value.into_int_value(), llvm_usize, "")
.unwrap();
Ok(value)
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err(
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")),
)
})
.collect::<Result<Vec<_>, PyErr>>()?;
// Also use this opportunity to get the constant values of `shape_values` for calculating strides.
let shape_u64s = shape_values
.iter()
.map(|dim| {
assert!(dim.is_const());
dim.get_zero_extended_constant().unwrap()
})
.collect_vec();
let shape_values = llvm_usize.const_array(&shape_values);
.collect();
let shape_values = shape_values?.unwrap();
let shape_values = llvm_usize.const_array(
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
);
// create a global for ndarray.shape and initialize it using the shape
let shape_global = ctx.module.add_global(
llvm_usize.array_type(ndims as u32),
llvm_usize.array_type(ndarray_ndims as u32),
Some(AddressSpace::default()),
&(id_str.clone() + ".shape"),
);
@ -1159,25 +1143,17 @@ impl InnerResolver {
// Obtain the (flattened) elements of the ndarray
let sz: usize = obj.getattr("size")?.extract()?;
let data: Vec<_> = (0..sz)
let data: Result<Option<Vec<_>>, _> = (0..sz)
.map(|i| {
obj.getattr("flat")?.get_item(i).and_then(|elem| {
let value = self
.get_obj_value(py, elem, ctx, generator, ndarray_dtype)
.map_err(|e| {
super::CompileError::new_err(format!(
"Error getting element {i}: {e}"
))
})?
.unwrap();
assert_eq!(value.get_type(), dtype);
Ok(value)
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| {
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})
})
})
.try_collect()?;
let data = data.into_iter();
let data = match dtype {
.collect();
let data = data?.unwrap().into_iter();
let data = match ndarray_dtype_llvm_ty {
BasicTypeEnum::ArrayType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
}
@ -1202,97 +1178,34 @@ impl InnerResolver {
};
// create a global for ndarray.data and initialize it using the elements
//
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
// We will have to cast it to an `u8*` later.
let data_global = ctx.module.add_global(
dtype.array_type(sz as u32),
ndarray_dtype_llvm_ty.array_type(sz as u32),
Some(AddressSpace::default()),
&(id_str.clone() + ".data"),
);
data_global.set_initializer(&data);
// Get the constant itemsize.
//
// NOTE: dtype.size_of() may return a non-constant, where `TargetData::get_store_size`
// will always return a constant size.
let itemsize = ctx
.registry
.llvm_options
.create_target_machine()
.map(|tm| tm.get_target_data().get_store_size(&dtype))
.unwrap();
assert_ne!(itemsize, 0);
// Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
let strides =
strides.into_iter().map(|stride| llvm_usize.const_int(stride, false)).collect_vec();
let strides = llvm_usize.const_array(&strides);
// create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global(
llvm_usize.array_type(ndims as u32),
Some(AddressSpace::default()),
&format!("${id_str}.strides"),
);
strides_global.set_initializer(&strides);
// create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
llvm_usize.const_int(ndarray_ndims, false).into(),
shape_global
.as_pointer_value()
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
.into(),
data_global
.as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
.into(),
]);
// NOTE: data_global is an array of dtype, we want a `u8*`.
let ndarray_data = data_global.as_pointer_value();
let ndarray_data = ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
let ndarray_itemsize = llvm_usize.const_int(itemsize, false);
let ndarray_ndims = llvm_usize.const_int(ndims, false);
// calling as_pointer_value on shape and strides returns [i64 x ndims]*
// convert into i64* to conform with expected layout of ndarray
let ndarray_shape = shape_global.as_pointer_value();
let ndarray_shape = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_shape,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray_strides = strides_global.as_pointer_value();
let ndarray_strides = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_strides,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray = llvm_ndarray
.as_base_type()
.get_element_type()
.into_struct_type()
.const_named_struct(&[
ndarray_itemsize.into(),
ndarray_ndims.into(),
ndarray_shape.into(),
ndarray_strides.into(),
ndarray_data.into(),
]);
let ndarray_global = ctx.module.add_global(
llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
let ndarray = ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(),
Some(AddressSpace::default()),
&id_str,
);
ndarray_global.set_initializer(&ndarray);
ndarray.set_initializer(&value);
Ok(Some(ndarray_global.as_pointer_value().into()))
Ok(Some(ndarray.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
@ -1452,12 +1365,9 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.uint64 {
let val: u64 = obj.extract()?;
Ok(SymbolValue::U64(val))
} else if ty_id == self.primitive_ids.bool {
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract()?;
Ok(SymbolValue::Str(val))
@ -1556,7 +1466,6 @@ impl SymbolResolver for Resolver {
&self,
id: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
let sym_value = {
let id_to_val = self.0.id_to_pyval.read();
@ -1618,7 +1527,10 @@ impl SymbolResolver for Resolver {
if let Some(id) = string_store.get(s) {
*id
} else {
let id = i32::try_from(string_store.len()).unwrap();
let id = Python::with_gil(|py| -> PyResult<i32> {
self.0.helper.store_str.call1(py, (s,))?.extract(py)
})
.unwrap();
string_store.insert(s.into(), id);
id
}

View File

@ -1,12 +1,9 @@
use itertools::Either;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
};
use itertools::Either;
use nac3core::codegen::CodeGenContext;
/// Functions for manipulating the timeline.
pub trait TimeFns {
@ -34,7 +31,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -83,7 +80,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -112,7 +109,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -210,7 +207,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -261,7 +258,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();

View File

@ -10,6 +10,7 @@ constant-optimization = ["fold"]
fold = []
[dependencies]
lazy_static = "1.5"
parking_lot = "0.12"
string-interner = "0.17"
fxhash = "0.2"

View File

@ -5,12 +5,14 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
use std::{cell::RefCell, collections::HashMap, fmt};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
static INTERNER: LazyLock<Mutex<Interner>> =
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
lazy_static! {
static ref INTERNER: Mutex<Interner> =
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -1,4 +1,10 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
@ -8,6 +14,9 @@
clippy::wildcard_imports
)]
#[macro_use]
extern crate lazy_static;
mod ast_gen;
mod constant;
#[cfg(feature = "fold")]

View File

@ -5,25 +5,22 @@ authors = ["M-Labs"]
edition = "2021"
[features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = []
[dependencies]
itertools = "0.13"
crossbeam = "0.8"
indexmap = "2.6"
indexmap = "2.2"
parking_lot = "0.12"
rayon = "1.10"
nac3core_derive = { path = "nac3core_derive", optional = true }
rayon = "1.8"
nac3parser = { path = "../nac3parser" }
strum = "0.26"
strum_macros = "0.26"
strum = "0.26.2"
strum_macros = "0.26.4"
[dependencies.inkwell]
version = "0.5"
version = "0.4"
default-features = false
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies]
test-case = "1.2.0"

View File

@ -1,3 +1,4 @@
use regex::Regex;
use std::{
env,
fs::File,
@ -6,58 +7,44 @@ use std::{
process::{Command, Stdio},
};
use regex::Regex;
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
const FILE: &str = "src/codegen/irrt/irrt.cpp";
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let mut flags: Vec<&str> = vec![
let flags: &[&str] = &[
"--target=wasm32",
FILE,
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
match env::var("PROFILE").as_deref() {
Ok("debug") => "-O0",
Ok("release") => "-O3",
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
},
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
println!("cargo:rerun-if-changed={FILE}");
let out_dir = env::var("OUT_DIR").unwrap();
let out_path = Path::new(&out_dir);
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt")
.args(flags)
.output()
.inspect(|o| {
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
@ -65,17 +52,7 @@ fn main() {
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len());
// Filter out irrelevant IR
//
// Regex:
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]);
@ -86,22 +63,18 @@ fn main() {
.unwrap()
.replace_all(&filtered_output, "");
// For debugging
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
if env::var("DEBUG_DUMP_IRRT").is_ok() {
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")
.arg(out_dir.join("irrt.bc"))
.arg(out_path.join("irrt.bc"))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();

View File

@ -1,15 +0,0 @@
#include "irrt/exception.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
#include "irrt/string.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"

View File

@ -1,9 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
void* base;
SizeT len;
};

View File

@ -1,25 +0,0 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,85 +0,0 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
using ExceptionId = int32_t;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
} // namespace
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)

View File

@ -1,25 +0,0 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,96 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template<typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -1,95 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -1,13 +0,0 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -1,132 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::array {
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
/**
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
*
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
*
* # Notes on `ndarray`
* The caller is responsible for allocating space for `ndarray`.
* Here is what this function expects from `ndarray` when called:
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
* - `ndarray->itemsize` has to be initialized.
* - `ndarray->ndims` has to be initialized.
* - `ndarray->shape` has to be initialized.
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
/**
* @brief See `write_list_to_array_helper`.
*/
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace ndarray::array
} // namespace
extern "C" {
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -1,340 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
if (ndarray->ndims != 0) {
return ndarray->shape[0];
}
// numpy prohibits `__len__` on unsized objects
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
__builtin_unreachable();
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
void* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
void* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace ndarray::basic
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -1,165 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
namespace {
template<typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace {
namespace ndarray::broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace ndarray::broadcast
} // namespace
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -1,51 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
*
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
* `data`. There are also minor differences in the struct layout.
*/
template<typename SizeT>
struct NDArray {
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
void* data;
};
} // namespace

View File

@ -1,219 +0,0 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
namespace {
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `int32_t`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `Slice<int32_t>`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*
* That is:
* ```
* my_ndarray[::-1, 3, ..., np.newaxis]
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/
struct NDIndex {
/**
* @brief Enum tag to specify the type of index.
*
* Please see the comment of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see the comment of each enum constant.
*/
uint8_t* data;
};
} // namespace
namespace {
namespace ndarray::indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
*
* This function also does proper assertions on `indices` to check for out of bounds access and more.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data`.
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template<typename SizeT>
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1) {
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) {
const NDIndex* index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis];
src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data =
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
} else {
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace ndarray::indexing
} // namespace
extern "C" {
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices,
NDIndex* indices,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices,
NDIndex* indices,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -1,146 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*
* Initially this points to first element of the ndarray.
*/
void* element;
/**
* @brief Cache for the product of shape.
*
* Could be 0 if `shape` has 0s in it.
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
} else {
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -1,98 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray::matmul {
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace ndarray::matmul
} // namespace
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -1,97 +0,0 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::reshape {
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template<typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
SizeT dim = new_shape[axis_i];
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
} else {
neg1_exists = true;
neg1_axis_i = axis_i;
}
} else {
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
} else {
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists) {
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions
can_reshape = false;
} else if (new_size == 0 && size != 0) {
// `x` has no solutions
can_reshape = false;
} else if (size % new_size != 0) {
// `x` has no integer solutions
can_reshape = false;
} else {
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
} else {
can_reshape = (new_size == size);
}
if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
}
} // namespace ndarray::reshape
} // namespace
extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -1,143 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace {
namespace ndarray::transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace ndarray::transpose
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -1,47 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
}
} // namespace range
/**
* @brief A Python range.
*/
template<typename T>
struct Range {
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template<typename SizeT>
T len() {
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,156 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/range.hpp"
namespace {
namespace slice {
/**
* @brief Resolve a possibly negative index in a list of a known length.
*
* Returns -1 if the resolved index is out of the list's bounds.
*/
template<typename T>
T resolve_index_in_length(T length, T index) {
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) {
return resolved;
} else {
return -1;
}
}
/**
* @brief Resolve a slice as a range.
*
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/
template<typename T>
void indices(bool start_defined,
T start,
bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative) {
lower = -1;
upper = length - 1;
} else {
lower = 0;
upper = length;
}
if (start_defined) {
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} else {
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined) {
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} else {
*range_stop = step_is_negative ? lower : upper;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template<typename T>
struct Slice {
bool start_defined;
T start;
bool stop_defined;
T stop;
bool step_defined;
T step;
Slice() { this->reset(); }
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start) {
this->start_defined = true;
this->start = start;
}
void set_stop(T stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step) {
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template<typename SizeT>
Range<T> indices(T length) {
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template<typename SizeT>
Range<T> indices_checked(T length) {
// TODO: Switch to `SizeT length`
if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices<SizeT>(length);
}
};
} // namespace
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
}

View File

@ -1,23 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
if (len1 != len2) {
return 0;
}
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
}
} // namespace
extern "C" {
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
}
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
}
}

View File

@ -1,21 +0,0 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -1,320 +0,0 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -1,9 +0,0 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -1,20 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,18 +0,0 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -1,10 +0,0 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,3 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::SymbolValue,
toplevel::DefinitionId,
@ -15,6 +9,10 @@ use crate::{
},
};
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>,
}

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +1,8 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use inkwell::attributes::{Attribute, AttributeLoc};
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
use itertools::Either;
use super::CodeGenContext;
use crate::codegen::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
@ -15,11 +13,11 @@ use super::CodeGenContext;
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly"
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {

View File

@ -1,23 +1,20 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value.
@ -60,7 +57,6 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>(

View File

@ -0,0 +1,414 @@
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace {
template <typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
template <typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(
const SizeT* list_data,
SizeT list_len,
SizeT begin_idx,
SizeT end_idx
) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template <typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(
SizeT index,
const SizeT* dims,
SizeT num_dims,
NDIndex* idxs
) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template <typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(
const SizeT* dims,
SizeT num_dims,
const NDIndex* indices,
SizeT num_indices
) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(
const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims
) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(
const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) {\
return __nac3_int_exp_impl(base, exp);\
}
DEF_nac3_int_exp_(int32_t)
DEF_nac3_int_exp_(int64_t)
DEF_nac3_int_exp_(uint32_t)
DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(
const SliceIndex start,
const SliceIndex end,
const SliceIndex step
) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(
SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size
) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(
dest_arr + dest_start * size,
src_arr + src_start * size,
src_len * size
);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(
dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr)
&& !(
max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end)
);
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (;
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step
) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
uint32_t __nac3_ndarray_calc_size(
const uint32_t* list_data,
uint32_t list_len,
uint32_t begin_idx,
uint32_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t __nac3_ndarray_calc_size64(
const uint64_t* list_data,
uint64_t list_len,
uint64_t begin_idx,
uint64_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(
uint32_t index,
const uint32_t* dims,
uint32_t num_dims,
NDIndex* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(
uint64_t index,
const uint64_t* dims,
uint64_t num_dims,
NDIndex* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t __nac3_ndarray_flatten_index(
const uint32_t* dims,
uint32_t num_dims,
const NDIndex* indices,
uint32_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(
const uint64_t* dims,
uint64_t num_dims,
const NDIndex* indices,
uint64_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(
const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(
const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(
const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(
const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // extern "C"

View File

@ -1,174 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(dest_idx.0.get_type(), llvm_i32);
assert_eq!(dest_idx.1.get_type(), llvm_i32);
assert_eq!(dest_idx.2.get_type(), llvm_i32);
assert_eq!(src_idx.0.get_type(), llvm_i32);
assert_eq!(src_idx.1.get_type(), llvm_i32);
assert_eq!(src_idx.2.get_type(), llvm_i32);
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
let slice_assign_fun = {
let ty_vec = vec![
llvm_i32.into(), // dest start idx
llvm_i32.into(), // dest end idx
llvm_i32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
llvm_i32.into(), // dest arr len
llvm_i32.into(), // src start idx
llvm_i32.into(), // src end idx
llvm_i32.into(), // src step
elem_ptr_type.into(), // src arr ptr
llvm_i32.into(), // src arr len
llvm_i32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len =
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len =
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len =
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -1,168 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,31 +1,28 @@
use crate::typecheck::typedef::Type;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics, CodeGenContext, CodeGenerator,
};
use crate::codegen::classes::TypedArrayLikeAccessor;
use crate::codegen::stmt::gen_for_callback_incrementing;
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
values::{BasicValue, BasicValueEnum, IntValue},
IntPredicate,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use range::*;
pub use slice::*;
pub use string::*;
mod list;
mod math;
pub mod ndarray;
mod range;
mod slice;
mod string;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
pub fn load_irrt(ctx: &Context) -> Module {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
@ -41,47 +38,89 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
///
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
#[must_use]
pub fn get_usize_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => unreachable!(),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
@ -132,11 +171,10 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap();
Ok(Some(match (start, end, step) {
(s, e, None) => (
if let Some(s) = s.as_ref() {
@ -145,7 +183,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
None => return Ok(None),
}
} else {
llvm_i32.const_zero()
int32.const_zero()
},
{
let e = if let Some(s) = e.as_ref() {
@ -250,3 +288,643 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
}
}))
}
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -1,80 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
///
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
/// there is any issue with the resultant `shape`.
///
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
/// initialized to all `-1`s.
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndims: IntValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
assert_eq!(ndims.get_type(), llvm_usize);
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
///
/// Copies the contents stored in `list` into `ndarray`.
///
/// The `ndarray` must fulfill the following preconditions:
///
/// - `ndarray.itemsize`: Must be initialized.
/// - `ndarray.ndims`: Must be initialized.
/// - `ndarray.shape`: Must be initialized.
/// - `ndarray.data`: Must be allocated and contiguous.
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -1,310 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
///
/// Assets that `shape` does not contain negative dimensions.
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), shape.size(ctx, generator).into()),
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
///
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
/// an `ndarray`.
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_size`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
/// `ndarray`, corresponding to the value of `ndarray.size`.
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("size"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_nbytes`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("nbytes"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_len`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
///
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
create_and_call_function(
ctx,
&name,
Some(llvm_i1.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("is_c_contiguous"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
///
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
index: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(index.get_type(), llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
///
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
///
/// Returns a [`PointerValue`] to the element indexed by `indices`.
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[
(llvm_ndarray.into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
///
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) {
let llvm_ndarray = ndarray.get_type().as_base_type();
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
create_and_call_function(
ctx,
&name,
None,
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_copy_data`.
///
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
/// `dst_ndarray`.
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -1,82 +0,0 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
types::{ndarray::ShapeEntryType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_broadcast_to`.
///
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
///
/// `dst_ndarray` must meet the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
///
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
/// writing the result to `dst_shape`.
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
num_shape_entries: IntValue<'ctx>,
shape_entries: ArraySliceValue<'ctx>,
dst_ndims: IntValue<'ctx>,
dst_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(num_shape_entries.get_type(), llvm_usize);
assert!(ShapeEntryType::is_type(
generator,
ctx.ctx,
shape_entries.base_ptr(ctx, generator).get_type()
)
.is_ok());
assert_eq!(dst_ndims.get_type(), llvm_usize);
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
num_shape_entries.into(),
shape_entries.base_ptr(ctx, generator).into(),
dst_ndims.into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -1,34 +0,0 @@
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_index`.
///
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
/// operation `dst_ndarray = src_ndarray[indices]`.
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
indices: ArraySliceValue<'ctx>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
infer_and_call_function(
ctx,
&name,
None,
&[
indices.size(ctx, generator).into(),
indices.base_ptr(ctx, generator).into(),
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
],
None,
None,
);
}

View File

@ -1,86 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{
ndarray::{NDArrayValue, NDIterValue},
ProxyValue, TypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_nditer_initialize`.
///
/// Initializes the `iter` object.
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
create_and_call_function(
ctx,
&name,
None,
&[
(iter.get_type().as_base_type().into(), iter.as_base_value().into()),
(ndarray.get_type().as_base_type().into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_nditer_initialize_has_element`.
///
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
/// object.
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) -> IntValue<'ctx> {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
infer_and_call_function(
ctx,
&name,
Some(ctx.ctx.bool_type().into()),
&[iter.as_base_value().into()],
None,
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_nditer_next`.
///
/// Moves `iter` to point to the next element.
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_next");
infer_and_call_function(ctx, &name, None, &[iter.as_base_value().into()], None, None);
}

View File

@ -1,66 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
///
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
/// `a @ b`.
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
final_ndims: IntValue<'ctx>,
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
a_shape.size(ctx, generator).into(),
a_shape.base_ptr(ctx, generator).into(),
b_shape.size(ctx, generator).into(),
b_shape.base_ptr(ctx, generator).into(),
final_ndims.into(),
new_a_shape.base_ptr(ctx, generator).into(),
new_b_shape.base_ptr(ctx, generator).into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -1,17 +0,0 @@
pub use array::*;
pub use basic::*;
pub use broadcast::*;
pub use indexing::*;
pub use iter::*;
pub use matmul::*;
pub use reshape::*;
pub use transpose::*;
mod array;
mod basic;
mod broadcast;
mod indexing;
mod iter;
mod matmul;
mod reshape;
mod transpose;

View File

@ -1,40 +0,0 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ArrayLikeValue, ArraySliceValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
///
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
/// assertion if multiple dimensions are unknown (`-1`).
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
new_ndims: IntValue<'ctx>,
new_shape: ArraySliceValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(size.get_type(), llvm_usize);
assert_eq!(new_ndims.get_type(), llvm_usize);
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
None,
None,
);
}

View File

@ -1,48 +0,0 @@
use inkwell::{values::IntValue, AddressSpace};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_transpose`.
///
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
///
/// `dst_ndarray` must fulfill the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
infer_and_call_function(
ctx,
&name,
None,
&[
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
axes.base_ptr(ctx, generator)
})
.into(),
],
None,
None,
);
}

View File

@ -1,56 +0,0 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Invokes the `__nac3_range_slice_len` in IRRT.
///
/// - `start`: The `i32` start value for the slice.
/// - `end`: The `i32` end value for the slice.
/// - `step`: The `i32` step value for the slice.
///
/// Returns an `i32` value of the length of the slice.
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(start.get_type(), llvm_i32);
assert_eq!(end.get_type(), llvm_i32);
assert_eq!(step.get_type(), llvm_i32);
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,39 +0,0 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}

View File

@ -1,46 +0,0 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
use itertools::Either;
use super::get_usize_dependent_function_name;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
pub fn call_string_eq<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
str1_ptr: PointerValue<'ctx>,
str1_len: IntValue<'ctx>,
str2_ptr: PointerValue<'ctx>,
str2_len: IntValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let func_name = get_usize_dependent_function_name(generator, ctx, "nac3_str_eq");
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
ctx.module.add_function(
&func_name,
llvm_i1.fn_type(
&[
str1_ptr.get_type().into(),
str1_len.get_type().into(),
str2_ptr.get_type().into(),
str2_len.get_type().into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
func,
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
"str_eq_call",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,12 +1,39 @@
use inkwell::{
intrinsics::Intrinsic,
types::AnyTypeEnum::IntType,
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use inkwell::context::Context;
use inkwell::intrinsics::Intrinsic;
use inkwell::types::AnyTypeEnum::IntType;
use inkwell::types::FloatType;
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
use inkwell::AddressSpace;
use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
// Standard LLVM floating-point types
if ft == ctx.f16_type() {
return "f16";
}
if ft == ctx.f32_type() {
return "f32";
}
if ft == ctx.f64_type() {
return "f64";
}
if ft == ctx.f128_type() {
return "f128";
}
// Non-standard floating-point types
if ft == ctx.x86_f80_type() {
return "f80";
}
if ft == ctx.ppc_f128_type() {
return "ppcf128";
}
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
@ -25,7 +52,7 @@ pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
@ -156,7 +183,7 @@ pub fn call_memcpy_generic<'ctx>(
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.build_bitcast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -164,7 +191,7 @@ pub fn call_memcpy_generic<'ctx>(
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.build_bitcast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -172,58 +199,14 @@ pub fn call_memcpy_generic<'ctx>(
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
/// copy).
pub fn call_memcpy_generic_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
///
/// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type)
/// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
@ -239,8 +222,8 @@ macro_rules! generate_llvm_intrinsic_fn_body {
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {
@ -357,25 +340,3 @@ pub fn call_float_powi<'ctx>(
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
pub fn call_int_ctpop<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.ctpop";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,12 +1,12 @@
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering},
Arc,
use crate::{
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
thread,
};
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -24,27 +24,17 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use parking_lot::{Condvar, Mutex};
use nac3parser::ast::{Location, Stmt, StrRef};
use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{
helper::{extract_ndims, PrimDef},
numpy::unpack_ndarray_var_tys,
TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{ndarray::NDArrayType, ListType, ProxyType, RangeType, TupleType};
use std::thread;
pub mod builtin_fns;
pub mod classes;
pub mod concrete_type;
pub mod expr;
pub mod extern_fns;
@ -53,27 +43,12 @@ pub mod irrt;
pub mod llvm_intrinsics;
pub mod numpy;
pub mod stmt;
pub mod types;
pub mod values;
#[cfg(test)]
mod test;
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
#[derive(Default)]
pub struct StaticValueStore {
@ -228,7 +203,7 @@ pub struct CodeGenContext<'ctx, 'a> {
pub current_loc: Location,
}
impl CodeGenContext<'_, '_> {
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
/// Whether the [current basic block][Builder::get_insert_block] referenced by `builder`
/// contains a [terminator statement][BasicBlock::get_terminator].
pub fn is_terminated(&self) -> bool {
@ -514,13 +489,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, ndims) = unpack_ndarray_var_tys(unifier, ty);
let ndims = extract_ndims(unifier, ndims);
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type, ndims).as_base_type().into()
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
}
_ => unreachable!(
@ -574,7 +548,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty)
})
.collect_vec();
TupleType::new(generator, ctx, &fields).as_base_type().into()
ctx.struct_type(&fields, false).into()
}
TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()),
@ -606,11 +580,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency.
if unifier.unioned(ty, primitives.bool) {
return if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into()
} else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
}
};
}
/// Whether `sret` is needed for a return value with type `ty`.
@ -858,9 +832,10 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret);
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(
@ -1124,106 +1099,3 @@ fn gen_in_range_check<'ctx>(
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into()
}
/// Returns the alignment of the type.
///
/// This is necessary as `get_alignment` is not implemented as part of [`BasicType`].
pub fn get_type_alignment<'ctx>(ty: impl Into<BasicTypeEnum<'ctx>>) -> IntValue<'ctx> {
match ty.into() {
BasicTypeEnum::ArrayType(ty) => ty.get_alignment(),
BasicTypeEnum::FloatType(ty) => ty.get_alignment(),
BasicTypeEnum::IntType(ty) => ty.get_alignment(),
BasicTypeEnum::PointerType(ty) => ty.get_alignment(),
BasicTypeEnum::StructType(ty) => ty.get_alignment(),
BasicTypeEnum::VectorType(ty) => ty.get_alignment(),
}
}
/// Inserts an `alloca` instruction with allocation `size` given in bytes and the alignment of the
/// given type.
///
/// The returned [`PointerValue`] will have a type of `i8*`, a size of at least `size`, and will be
/// aligned with the alignment of `align_ty`.
pub fn type_aligned_alloca<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
align_ty: impl Into<BasicTypeEnum<'ctx>>,
size: IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
/// Round `val` up to its modulo `power_of_two`.
fn round_up<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>,
) -> IntValue<'ctx> {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width(),
"`val` ({}) and `power_of_two` ({}) must be the same type",
val.get_type(),
power_of_two.get_type(),
);
let llvm_val_t = val.get_type();
let max_rem =
ctx.builder.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "").unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
}
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let align_ty = align_ty.into();
let size = ctx.builder.build_int_truncate_or_bit_cast(size, llvm_usize, "").unwrap();
debug_assert_eq!(
size.get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected size_t ({}) for parameter `size` of `aligned_alloca`, got {}",
llvm_usize,
size.get_type(),
);
let alignment = get_type_alignment(align_ty);
let alignment = ctx.builder.build_int_truncate_or_bit_cast(alignment, llvm_usize, "").unwrap();
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let alignment_bitcount = llvm_intrinsics::call_int_ctpop(ctx, alignment, None);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::EQ,
alignment_bitcount,
alignment_bitcount.get_type().const_int(1, false),
"",
)
.unwrap(),
"0:AssertionError",
"Expected power-of-two alignment for aligned_alloca, got {0}",
[Some(alignment), None, None],
ctx.current_loc,
);
}
let buffer_size = round_up(ctx, size, alignment);
let aligned_slices = ctx.builder.build_int_unsigned_div(buffer_size, alignment, "").unwrap();
// Just to be absolutely sure, alloca in [i8 x alignment] slices
let buffer = ctx.builder.build_array_alloca(align_ty, aligned_slices, "").unwrap();
ctx.builder
.build_bit_cast(buffer, llvm_pi8, name.unwrap_or_default())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,21 @@
use super::{
super::symbol_resolver::ValueEnum,
expr::destructure_range,
irrt::{handle_slice_indices, list_slice_assignment},
CodeGenContext, CodeGenerator,
};
use crate::{
codegen::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::gen_binop_expr,
gen_in_range_check,
},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
};
use inkwell::{
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
@ -6,32 +24,10 @@ use inkwell::{
IntPredicate,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
};
use super::{
expr::{destructure_range, gen_binop_expr},
gen_in_range_check,
irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable,
types::ndarray::NDArrayType,
values::{
ndarray::{RustNDIndex, ScalarOrNDArray},
ArrayLikeIndexer, ArraySliceValue, ListValue, ProxyValue, RangeValue,
},
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
};
/// See [`CodeGenerator::gen_var_alloc`].
pub fn gen_var<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
@ -125,7 +121,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
return Ok(None);
};
let BasicValueEnum::PointerValue(ptr) = val else {
codegen_unreachable!(ctx);
unreachable!();
};
unsafe {
ctx.builder.build_in_bounds_gep(
@ -139,7 +135,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
}
.unwrap()
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}))
}
@ -180,14 +176,6 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
}
}
let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?;
// Perform i1 <-> i8 conversion as needed
let val = if ctx.unifier.unioned(target.custom.unwrap(), ctx.primitives.bool) {
generator.bool_to_i8(ctx, val.into_int_value()).into()
} else {
val
};
ctx.builder.build_store(ptr, val).unwrap();
}
};
@ -205,12 +193,12 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Deconstruct the tuple `value`
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
else {
codegen_unreachable!(ctx)
unreachable!()
};
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
codegen_unreachable!(ctx);
unreachable!();
};
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
@ -270,7 +258,7 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Now assign with that sub-tuple to the starred target.
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
} else {
codegen_unreachable!(ctx) // The typechecker ensures this
unreachable!() // The typechecker ensures this
}
// Handle assignment after the starred target
@ -314,13 +302,11 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?
.into_pointer_value();
let target = ListValue::from_pointer_value(target, llvm_usize, None);
let target = ListValue::from_ptr_val(target, llvm_usize, None);
if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice
let ExprKind::Slice { lower, upper, step } = &key.node else {
codegen_unreachable!(ctx)
};
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
@ -335,7 +321,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
let value =
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
let value = ListValue::from_pointer_value(value, llvm_usize, None);
let value = ListValue::from_ptr_val(value, llvm_usize, None);
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
let Some(src_ind) = handle_slice_indices(
@ -415,52 +401,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
// Handle NDArray item assignment
// Process target
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?;
// Process key
let key = RustNDIndex::from_subscript_expr(generator, ctx, key)?;
// Process value
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
// Reference code:
// ```python
// target = target[key]
// value = np.asarray(value)
//
// shape = np.broadcast_shape((target, value))
//
// target = np.broadcast_to(target, shape)
// value = np.broadcast_to(value, shape)
//
// # ...and finally copy 1-1 from value to target.
// ```
let target = NDArrayType::from_unifier_type(generator, ctx, target_ty)
.map_value(target.into_pointer_value(), None);
let target = target.index(generator, ctx, &key);
let value = ScalarOrNDArray::from_value(generator, ctx, (value_ty, value))
.to_ndarray(generator, ctx);
let broadcast_ndims =
[target.get_type().ndims(), value.get_type().ndims()].into_iter().max().unwrap();
let broadcast_result = NDArrayType::new(
generator,
ctx.ctx,
value.get_type().element_type(),
broadcast_ndims,
)
.broadcast(generator, ctx, &[target, value]);
let target = broadcast_result.ndarrays[0];
let value = broadcast_result.ndarrays[1];
target.copy_data_from(generator, ctx, value);
todo!("ndarray subscript assignment is not yet implemented");
}
_ => {
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
@ -475,9 +416,7 @@ pub fn gen_for<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else {
codegen_unreachable!(ctx)
};
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -512,15 +451,14 @@ pub fn gen_for<G: CodeGenerator>(
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
let iter_val =
RangeValue::from_pointer_value(iter_val.into_pointer_value(), Some("range"));
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
codegen_unreachable!(ctx)
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
@ -681,9 +619,9 @@ pub struct BreakContinueHooks<'ctx> {
/// ```
///
/// * `init` - A lambda containing IR statements declaring and initializing loop variables. The
/// return value is a [Clone] value which will be passed to the other lambdas.
/// return value is a [Clone] value which will be passed to the other lambdas.
/// * `cond` - A lambda containing IR statements checking whether the loop should continue
/// executing. The result value must be an `i1` indicating if the loop should continue.
/// executing. The result value must be an `i1` indicating if the loop should continue.
/// * `body` - A lambda containing IR statements within the loop body.
/// * `update` - A lambda containing IR statements updating loop variables.
pub fn gen_for_callback<'ctx, 'a, G, I, InitFn, CondFn, BodyFn, UpdateFn>(
@ -700,12 +638,8 @@ where
I: Clone,
InitFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<I, String>,
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<IntValue<'ctx>, String>,
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
I,
) -> Result<(), String>,
BodyFn:
FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, BreakContinueHooks, I) -> Result<(), String>,
UpdateFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>,
{
let label = label.unwrap_or("for");
@ -766,9 +700,9 @@ where
/// ```
///
/// * `init_val` - The initial value of the loop variable. The type of this value will also be used
/// as the type of the loop variable.
/// as the type of the loop variable.
/// * `max_val` - A tuple containing the maximum value of the loop variable, and whether the maximum
/// value should be treated as inclusive (as opposed to exclusive).
/// value should be treated as inclusive (as opposed to exclusive).
/// * `body` - A lambda containing IR statements within the loop body.
/// * `incr_val` - The value to increment the loop variable on each iteration.
pub fn gen_for_callback_incrementing<'ctx, 'a, G, BodyFn>(
@ -785,7 +719,7 @@ where
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
BreakContinueHooks,
IntValue<'ctx>,
) -> Result<(), String>,
{
@ -839,12 +773,12 @@ where
///
/// - `is_unsigned`: Whether to treat the values of the `range` as unsigned.
/// - `start_fn`: A lambda of IR statements that retrieves the `start` value of the `range`-like
/// iterable.
/// iterable.
/// - `stop_fn`: A lambda of IR statements that retrieves the `stop` value of the `range`-like
/// iterable. This value will be extended to the size of `start`.
/// iterable. This value will be extended to the size of `start`.
/// - `stop_inclusive`: Whether the stop value should be treated as inclusive.
/// - `step_fn`: A lambda of IR statements that retrieves the `step` value of the `range`-like
/// iterable. This value will be extended to the size of `start`.
/// iterable. This value will be extended to the size of `start`.
/// - `body_fn`: A lambda of IR statements within the loop body.
#[allow(clippy::too_many_arguments)]
pub fn gen_for_range_callback<'ctx, 'a, G, StartFn, StopFn, StepFn, BodyFn>(
@ -865,7 +799,7 @@ where
BodyFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
BreakContinueHooks,
IntValue<'ctx>,
) -> Result<(), String>,
{
@ -963,7 +897,7 @@ pub fn gen_while<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -993,7 +927,7 @@ pub fn gen_while<G: CodeGenerator>(
return Ok(());
};
let BasicValueEnum::IntValue(test) = test else { codegen_unreachable!(ctx) };
let BasicValueEnum::IntValue(test) = test else { unreachable!() };
ctx.builder
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
@ -1141,7 +1075,7 @@ pub fn gen_if<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -1264,11 +1198,11 @@ pub fn exn_constructor<'ctx>(
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
obj_id.0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let defs = ctx.top_level.definitions.read();
let def = defs[zelf_id].read();
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { codegen_unreachable!(ctx) };
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
unsafe {
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
@ -1376,7 +1310,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
target: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else {
codegen_unreachable!(ctx)
unreachable!()
};
// if we need to generate anything related to exception, we must have personality defined
@ -1453,7 +1387,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) {
*obj_id
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name);
let exn_id = ctx.resolver.get_string_id(&exception_name);
@ -1725,23 +1659,6 @@ pub fn gen_return<G: CodeGenerator>(
} else {
None
};
// Remap boolean return type into i1
let value = value.map(|ret_val| {
// The "return type" of a sret function is in the first parameter
let expected_ty = if ctx.need_sret {
func.get_type().get_param_types()[0]
} else {
func.get_type().get_return_type().unwrap()
};
if matches!(expected_ty, BasicTypeEnum::IntType(ty) if ty.get_bit_width() == 1) {
generator.bool_to_i1(ctx, ret_val.into_int_value()).into()
} else {
ret_val
}
});
if let Some(return_target) = ctx.return_target {
if let Some(value) = value {
ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap();
@ -1752,6 +1669,25 @@ pub fn gen_return<G: CodeGenerator>(
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap();
ctx.builder.build_return(None).unwrap();
} else {
// Remap boolean return type into i1
let value = value.map(|v| {
let expected_ty = func.get_type().get_return_type().unwrap();
let ret_val = v.as_basic_value_enum();
if expected_ty.is_int_type() && ret_val.is_int_value() {
let ret_type = expected_ty.into_int_type();
let ret_val = ret_val.into_int_value();
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, ret_val)
} else {
ret_val
}
.into()
} else {
ret_val
}
});
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value).unwrap();
}
@ -1820,30 +1756,7 @@ pub fn gen_stmt<G: CodeGenerator>(
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => {
if let Some(exc) = exc {
let exn = if let ExprKind::Name { id, .. } = &exc.node {
// Handle "raise Exception" short form
let def_id = ctx.resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), exc.location)
})?;
let def = ctx.top_level.definitions.read();
let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
let TypeEnum::TFunc(signature) =
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
generator
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
.map(Into::into)
} else {
generator.gen_expr(ctx, exc)?
};
let exc = if let Some(v) = exn {
let exc = if let Some(v) = generator.gen_expr(ctx, exc)? {
v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())?
} else {
return Ok(());
@ -1878,37 +1791,6 @@ pub fn gen_stmt<G: CodeGenerator>(
stmt.location,
);
}
StmtKind::Global { names, .. } => {
let registered_globals = ctx
.top_level
.definitions
.read()
.iter()
.filter_map(|def| {
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
Some((*simple_name, *ty))
} else {
None
}
})
.collect_vec();
for id in names {
let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else {
return Err(format!("{id} is not a global at {}", stmt.location));
};
let resolver = ctx.resolver.clone();
let ptr = resolver
.get_symbol_value(*id, ctx, generator)
.map(|val| val.to_basic_value_enum(ctx, generator, *ty))
.transpose()?
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ctx.var_assignment.insert(*id, (ptr, None, 0));
}
}
_ => unimplemented!(),
};
Ok(())

View File

@ -1,41 +1,39 @@
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::{
ast::{fold::Fold, FileName, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use super::{
concrete_type::ConcreteTypeStore,
types::{ndarray::NDArrayType, ListType, ProxyType, RangeType},
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
codegen::{
classes::{ListType, NDArrayType, ProxyType, RangeType},
concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
},
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::ast::FileName;
use nac3parser::{
ast::{fold::Fold, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
class_names: HashMap<StrRef, Type>,
}
impl Resolver {
@ -66,7 +64,6 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -103,9 +100,11 @@ fn test_primitives() {
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let resolver =
Arc::new(Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) })
as Arc<dyn SymbolResolver + Send + Sync>;
let resolver = Arc::new(Resolver {
id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>;
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature {
@ -139,8 +138,7 @@ fn test_primitives() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -295,7 +293,11 @@ fn test_simple_call() {
loc: None,
})));
let resolver = Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) };
let resolver = Resolver {
id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(),
};
resolver.add_id_def("foo".into(), DefinitionId(foo_id));
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
@ -315,8 +317,7 @@ fn test_simple_call() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -445,7 +446,7 @@ fn test_classes_list_type_new() {
let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
}
#[test]
@ -453,7 +454,7 @@ fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
}
#[test]
@ -464,6 +465,6 @@ fn test_classes_ndarray_type_new() {
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into(), 2);
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -1,357 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType;
use crate::{
codegen::{
types::structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
values::{ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
/// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> {
ty: PointerType<'ctx>,
item: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ListStructFields<'ctx> {
/// Array pointer to content.
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub items: StructField<'ctx, PointerValue<'ctx>>,
/// Number of items in the array.
#[value_type(usize)]
pub len: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> ListStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ListStructFields {
items: StructField::create(
&mut counter,
"items",
item.ptr_type(AddressSpace::default()),
),
len: StructField::create(&mut counter, "len", llvm_usize),
}
}
}
impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
};
let fields = ListStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
llvm_ty,
"list",
&[(fields.items.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `list.items`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
ListStructFields::new_typed(item, llvm_usize)
}
/// See [`ListType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
element_type: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
let element_type = element_type.unwrap_or(llvm_usize.into());
let field_tys =
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ListType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, Some(element_type), llvm_usize);
Self { ty: llvm_list, item: Some(element_type), llvm_usize }
}
/// Creates an instance of [`ListType`] with an unknown element type.
#[must_use]
pub fn new_untyped<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, None, llvm_usize);
Self { ty: llvm_list, item: None, llvm_usize }
}
/// Creates an [`ListType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
// Check unifier type and extract `item_type`
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty
}
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
};
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
None
} else {
Some(ctx.get_llvm_type(generator, elem_type))
};
Self {
ty: Self::llvm_type(ctx.ctx, llvm_elem_type, llvm_usize),
item: llvm_elem_type,
llvm_usize,
}
}
/// Creates an [`ListType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
let ctx = ptr_ty.get_context();
// We are just searching for the index off a field - Slot an arbitrary element type in.
let item_field_idx =
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
let item = unsafe {
ptr_ty
.get_element_type()
.into_struct_type()
.get_field_type_at_index_unchecked(item_field_idx)
.into_pointer_type()
.get_element_type()
};
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
panic!(
"Expected BasicTypeEnum for list element type, got {}",
ptr_ty.get_element_type().print_to_string()
)
});
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
}
/// Returns the type of the `size` field of this `list` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Returns the element type of this `list` type.
#[must_use]
pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
self.item
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
///
/// The returned list will contain:
///
/// - `data`: Allocated with `len` number of elements.
/// - `len`: Initialized to the value of `len` passed to this function.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
// Generate a runtime assertion if allocating a non-empty list with unknown element type
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
let len_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
len_eqz,
"0:AssertionError",
"Cannot allocate a non-empty list with unknown element type",
[None, None, None],
ctx.current_loc,
);
}
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, len);
let item = self.item.unwrap_or(self.llvm_usize.into());
plist.create_data(ctx, item, None);
plist
}
/// Convenience function for creating a list with zero elements.
///
/// This function is preferred over [`ListType::construct`] if the length is known to always be
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
/// list is being allocated.
///
/// The returned list will contain:
///
/// - `data`: Initialized to `(T*) 0`.
/// - `len`: Initialized to `0`.
#[must_use]
pub fn construct_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, self.llvm_usize.const_zero());
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
plist
}
/// Converts an existing value into a [`ListValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ListValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
fn from(value: ListType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,125 +0,0 @@
//! This module contains abstraction over all intrinsic composite types of NAC3.
//!
//! # `raw_alloca` vs `alloca` vs `construct`
//!
//! There are three ways of creating a new object instance using the abstractions provided by this
//! module.
//!
//! - `raw_alloca`: Allocates the object on the stack, returning an instance of
//! [`impl BasicValue`][inkwell::values::BasicValue]. This is similar to a `malloc` expression in
//! C++ but the object is allocated on the stack.
//! - `alloca`: Similar to `raw_alloca`, but also wraps the allocated object with
//! [`<Self as ProxyType<'ctx>>::Value`][ProxyValue], and returns the wrapped object. The returned
//! object will not initialize any value or fields. This is similar to a type-safe `malloc`
//! expression in C++ but the object is allocated on the stack.
//! - `construct`: Similar to `alloca`, but performs some initialization on the value or fields of
//! the returned object. This is similar to a `new` expression in C++ but the object is allocated
//! on the stack.
use inkwell::{
context::Context,
types::BasicType,
values::{IntValue, PointerValue},
};
use super::{
values::{ArraySliceValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
pub use list::*;
pub use range::*;
pub use tuple::*;
mod list;
pub mod ndarray;
mod range;
pub mod structure;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a corresponding type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
/// The LLVM type of which values of this type possess. This is usually a
/// [LLVM pointer type][PointerType] for any non-primitive types.
type Base: BasicType<'ctx>;
/// The type of values represented by this type.
type Value: ProxyValue<'ctx, Type = Self>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String>;
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String>;
/// Returns the type that should be used in `alloca` IR statements.
fn alloca_type(&self) -> impl BasicType<'ctx>;
/// Creates a new value of this type by invoking `alloca` at the current builder location,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_alloca(self.alloca_type().as_basic_type_enum(), name.unwrap_or_default())
.unwrap()
}
/// Creates a new value of this type by invoking `alloca` at the beginning of the function,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
generator.gen_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), name).unwrap()
}
/// Creates a new array value of this type by invoking `alloca` at the current builder location,
/// returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
ctx.builder
.build_array_alloca(
self.alloca_type().as_basic_type_enum(),
size,
name.unwrap_or_default(),
)
.unwrap(),
size,
name,
)
}
/// Creates a new array value of this type by invoking `alloca` at the beginning of the
/// function, returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), size, name)
.unwrap()
}
/// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base;
}

View File

@ -1,243 +0,0 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::{
codegen::{
irrt,
stmt::gen_if_else_expr_callback,
types::{ndarray::NDArrayType, ListType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
list_ty: Type,
) -> (BasicTypeEnum<'ctx>, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
(ctx.get_llvm_type(generator, dtype), ndims)
}
impl<'ctx> NDArrayType<'ctx> {
/// Implementation of `np_array(<list>, copy=True)`
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
assert!(self.ndims >= ndims_int);
assert_eq!(dtype, self.dtype);
let list_value = list.as_i8_list(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = self.llvm_usize.const_int(ndims_int, false);
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
let shape = TypedArrayLikeAdapter::from(
shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, &shape,
);
let ndarray = Self::new(generator, ctx.ctx, dtype, ndims_int)
.construct_uninitialized(generator, ctx, name);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
// Copy all contents from the list.
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(
generator, ctx, list_value, ndarray,
);
ndarray
}
/// Implementation of `np_array(<list>, copy=None)`
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
if ndims == 1 {
// `list` is not nested
assert_eq!(ndims, 1);
assert!(self.ndims >= ndims);
assert_eq!(dtype, self.dtype);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let ndarray = Self::new(generator, ctx.ctx, dtype, 1)
.construct_uninitialized(generator, ctx, name);
// Set data
let data = ctx
.builder
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
.unwrap();
ndarray.store_data(ctx, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.shape();
let list_len = list.load_size(ctx, None);
unsafe {
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
}
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
)
}
}
/// Implementation of `np_array(<list>, copy=copy)`
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
NDArrayType::new(generator, ctx.ctx, dtype, ndims).map_value(ndarray, None)
}
/// Implementation of `np_array(<ndarray>, copy=copy)`.
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(ndarray.get_type().dtype, self.dtype);
assert!(self.ndims >= ndarray.get_type().ndims);
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.as_base_value()))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ndarray.get_type().map_value(ndarray_val, name)
}
/// Create a new ndarray like
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
///
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
/// with the exact number of dimensions is needed.
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(object_ty, object): (Type, BasicValueEnum<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
match &*ctx.unifier.get_ty_immutable(object_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
}
}
}

View File

@ -1,176 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{ndarray::ShapeEntryValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ShapeEntryType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ShapeEntryStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ShapeEntryType<'ctx> {
/// Checks whether `llvm_ty` represents a [`ShapeEntryType`], returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!(
"Expected struct type for `ShapeEntry` type, got {llvm_ndarray_ty}"
));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ShapeEntryStructFields<'ctx> {
ShapeEntryStructFields::new(ctx, llvm_usize)
}
/// See [`ShapeEntryStructFields::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> ShapeEntryStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `ShapeEntry`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ShapeEntryType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ty = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ty, llvm_usize }
}
/// Creates a [`ShapeEntryType`] from a [`PointerType`] representing an `ShapeEntry`.
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ShapeEntryValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ShapeEntryType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ShapeEntryValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ShapeEntryType<'ctx>> for PointerType<'ctx> {
fn from(value: ShapeEntryType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,250 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::{
codegen::{
types::{
structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
ProxyType,
},
values::{ndarray::ContiguousNDArrayValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
toplevel::numpy::unpack_ndarray_var_tys,
typecheck::typedef::Type,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ContiguousNDArrayType<'ctx> {
ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ContiguousNDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ContiguousNDArrayStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ContiguousNDArrayStructFields {
ndims: StructField::create(&mut counter, "ndims", llvm_usize),
shape: StructField::create(
&mut counter,
"shape",
llvm_usize.ptr_type(AddressSpace::default()),
),
data: StructField::create(&mut counter, "data", item.ptr_type(AddressSpace::default())),
}
}
}
impl<'ctx> ContiguousNDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = ContiguousNDArrayStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
llvm_ty,
"ContiguousNDArray",
&[(fields.data.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `ContiguousNDArray.data`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ContiguousNDArrayStructFields<'ctx> {
ContiguousNDArrayStructFields::new_typed(item, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self) -> ContiguousNDArrayStructFields<'ctx> {
Self::fields(self.item, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
let field_tys =
Self::fields(item, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ContiguousNDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_cndarray = Self::llvm_type(ctx, item, llvm_usize);
Self { ty: llvm_cndarray, item, llvm_usize }
}
/// Creates an [`ContiguousNDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let llvm_usize = generator.get_size_type(ctx.ctx);
Self { ty: Self::llvm_type(ctx.ctx, llvm_dtype, llvm_usize), item: llvm_dtype, llvm_usize }
}
/// Creates an [`ContiguousNDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, item, llvm_usize }
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ContiguousNDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.item,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for ContiguousNDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ContiguousNDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ContiguousNDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: ContiguousNDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,236 +0,0 @@
use inkwell::{
values::{BasicValueEnum, IntValue},
IntPredicate,
};
use super::NDArrayType;
use crate::{
codegen::{
irrt, types::ProxyType, values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayType<'ctx> {
/// Create an ndarray like
/// [`np.empty`](https://numpy.org/doc/stable/reference/generated/numpy.empty.html).
pub fn construct_numpy_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, name);
// Validate `shape`
irrt::ndarray::call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
ndarray
}
/// Create an ndarray like
/// [`np.full`](https://numpy.org/doc/stable/reference/generated/numpy.full.html).
pub fn construct_numpy_full<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
fill_value: BasicValueEnum<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_numpy_empty(generator, ctx, shape, name);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like
/// [`np.zero`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html).
pub fn construct_numpy_zeros<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_zero_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.ones`](https://numpy.org/doc/stable/reference/generated/numpy.ones.html).
pub fn construct_numpy_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_one_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.eye`](https://numpy.org/doc/stable/reference/generated/numpy.eye.html).
#[allow(clippy::too_many_arguments)]
pub fn construct_numpy_eye<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: IntValue<'ctx>,
ncols: IntValue<'ctx>,
offset: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
assert_eq!(nrows.get_type(), self.llvm_usize);
assert_eq!(ncols.get_type(), self.llvm_usize);
assert_eq!(offset.get_type(), self.llvm_usize);
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = self.construct_dyn_shape(generator, ctx, &[nrows, ncols], name);
// Create data and make the matrix like look np.eye()
unsafe {
ndarray.create_data(generator, ctx);
}
ndarray
.foreach(generator, ctx, |generator, ctx, _, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
let indices = nditer.get_indices();
let row_i = unsafe {
indices.get_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), None)
};
let col_i = unsafe {
indices.get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(1, false),
None,
)
};
let be_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
ctx.builder.build_int_add(row_i, offset, "").unwrap(),
col_i,
"",
)
.unwrap();
let value = ctx.builder.build_select(be_one, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like
/// [`np.identity`](https://numpy.org/doc/stable/reference/generated/numpy.identity.html).
pub fn construct_numpy_identity<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let offset = self.llvm_usize.const_zero();
self.construct_numpy_eye(generator, ctx, dtype, size, size, offset, name)
}
}

View File

@ -1,205 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{
ndarray::{NDIndexValue, RustNDIndex},
ArrayLikeIndexer, ArraySliceValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDIndexType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDIndexStructFields<'ctx> {
#[value_type(i8_type())]
pub type_: StructField<'ctx, IntValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDIndexType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndindex` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = NDIndexStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(fields, llvm_ty, "NDIndex", &[])
}
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDIndexStructFields<'ctx> {
NDIndexStructFields::new(ctx, llvm_usize)
}
#[must_use]
pub fn get_fields(&self) -> NDIndexStructFields<'ctx> {
Self::fields(self.ty.get_context(), self.llvm_usize)
}
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndindex = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ndindex, llvm_usize }
}
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Serialize a list of [`RustNDIndex`] as a newly allocated LLVM array of [`NDIndexValue`].
#[must_use]
pub fn construct_ndindices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> ArraySliceValue<'ctx> {
// Allocate the LLVM ndindices.
let num_ndindices = self.llvm_usize.const_int(in_ndindices.len() as u64, false);
let ndindices = self.array_alloca_var(generator, ctx, num_ndindices, None);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = unsafe {
ndindices.ptr_offset_unchecked(
ctx,
generator,
&ctx.ctx.i64_type().const_int(u64::try_from(i).unwrap(), false),
None,
)
};
in_ndindex.write_to_ndindex(
generator,
ctx,
NDIndexValue::from_pointer_value(pndindex, self.llvm_usize, None),
);
}
ndindices
}
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for NDIndexType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDIndexValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDIndexType<'ctx>> for PointerType<'ctx> {
fn from(value: NDIndexType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,187 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use itertools::Itertools;
use crate::codegen::{
stmt::gen_for_callback,
types::{
ndarray::{NDArrayType, NDIterType},
ProxyType,
},
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ArrayLikeValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayType<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
/// elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
/// result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing
/// ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[NDArrayValue<'ctx>],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray =
NDArrayType::new(generator, ctx.ctx, dtype, broadcast_result.ndims)
.construct_uninitialized(generator, ctx, None);
result_ndarray.copy_shape_from_array(
generator,
ctx,
broadcast_result.shape.base_ptr(ctx, generator),
);
unsafe {
result_ndarray.create_data(generator, ctx);
}
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| {
NDIterType::new(generator, ctx.ctx).construct(generator, ctx, *ndarray)
})
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_element()`.
// `in_nditers`' `has_element()`s should return the same value.
Ok(out_nditer.has_element(generator, ctx))
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars =
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
/// scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
/// or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following
/// behaviors:
///
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
/// converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
/// ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: BasicTypeEnum<'ctx>,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> =
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().copied().collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(value))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayType::new_broadcast(
generator,
ctx.ctx,
ret_dtype,
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
)
.broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
}

View File

@ -1,452 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{BasicValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
};
use crate::{
codegen::{
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeMutator},
{CodeGenContext, CodeGenerator},
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
};
pub use broadcast::*;
pub use contiguous::*;
pub use indexing::*;
pub use nditer::*;
mod array;
mod broadcast;
mod contiguous;
pub mod factory;
mod indexing;
mod map;
mod nditer;
/// Proxy type for a `ndarray` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> {
/// The size of each `NDArray` element in bytes.
#[value_type(usize)]
pub itemsize: StructField<'ctx, IntValue<'ctx>>,
/// Number of dimensions in the array.
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
/// Pointer to an array containing the shape of the `NDArray`.
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array indicating the number of bytes between each element at a dimension
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub strides: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array containing the array data
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`NDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, ndims, llvm_usize }
}
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
/// `ndarray` operands.
#[must_use]
pub fn new_broadcast<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
inputs: &[NDArrayType<'ctx>],
) -> Self {
assert!(!inputs.is_empty());
Self::new(generator, ctx, dtype, inputs.iter().map(NDArrayType::ndims).max().unwrap())
}
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
#[must_use]
pub fn new_unsized<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, ndims: 0, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndims = extract_ndims(&ctx.unifier, ndims);
NDArrayType {
ty: Self::llvm_type(ctx.ctx, llvm_usize),
dtype: llvm_dtype,
ndims,
llvm_usize,
}
}
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
NDArrayType { ty: ptr_ty, dtype, ndims, llvm_usize }
}
/// Returns the type of the `size` field of this `ndarray` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Returns the element type of this `ndarray` type.
#[must_use]
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
self.dtype
}
/// Returns the number of dimensions of this `ndarray` type.
#[must_use]
pub fn ndims(&self) -> u64 {
self.ndims
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an [`NDArrayValue`] on the stack and initializes all fields as follows:
///
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `self.dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
fn construct_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.alloca_var(generator, ctx, name);
let itemsize = ctx
.builder
.build_int_truncate_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
.unwrap();
ndarray.store_itemsize(ctx, generator, itemsize);
ndarray.store_ndims(ctx, generator, ndims);
ndarray.create_shape(ctx, self.llvm_usize, ndims);
ndarray.create_strides(ctx, self.llvm_usize, ndims);
ndarray
}
/// Allocate an [`NDArrayValue`] on the stack using `dtype` and `ndims` of this [`NDArrayType`]
/// instance.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `dtype`.
/// - `ndims`: set to the value of `self.ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
pub fn construct_uninitialized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndims = self.llvm_usize.const_int(self.ndims, false);
self.construct_impl(generator, ctx, ndims, name)
}
/// Convenience function. Allocate an [`NDArrayValue`] with a statically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_const_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[u64],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
let dim = llvm_usize.const_int(*dim, false);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
dim,
);
}
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayValue`] with a dynamically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_dyn_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[IntValue<'ctx>],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
assert_eq!(
dim.get_type(),
llvm_usize,
"Expected {} but got {}",
llvm_usize.print_to_string(),
dim.get_type().print_to_string()
);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
*dim,
);
}
}
ndarray
}
/// Create an unsized ndarray to contain `value`.
#[must_use]
pub fn construct_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: &impl BasicValue<'ctx>,
name: Option<&'ctx str>,
) -> NDArrayValue<'ctx> {
let value = value.as_basic_value_enum();
assert_eq!(value.get_type(), self.dtype);
assert_eq!(self.ndims, 0);
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
ctx.builder.build_store(data, value).unwrap();
let data = ctx
.builder
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap();
let ndarray = Self::new_unsized(generator, ctx.ctx, value.get_type())
.construct_uninitialized(generator, ctx, name);
ctx.builder.build_store(ndarray.ptr_to_data(ctx), data).unwrap();
ndarray
}
/// Converts an existing value into a [`NDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: NDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,237 +0,0 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType;
use crate::codegen::{
irrt,
types::structure::{check_struct_type_matches_fields, StructField, StructFields},
values::{
ndarray::{NDArrayValue, NDIterValue},
ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAdapter,
},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDIterType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDIterStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub strides: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub indices: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
pub nth: StructField<'ctx, IntValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub element: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
pub size: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> NDIterType<'ctx> {
/// Checks whether `llvm_ty` represents a `nditer` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ty else {
return Err(format!("Expected struct type for `NDIter` type, got {llvm_ty}"));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDIter",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> NDIterStructFields<'ctx> {
NDIterStructFields::new(ctx, llvm_usize)
}
/// See [`NDIterType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDIterStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDIter`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`NDIter`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_nditer = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_nditer, llvm_usize }
}
/// Creates an [`NDIterType`] from a [`PointerType`] representing an `NDIter`.
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Returns the type of the `size` field of this `nditer` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
parent,
indices,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
parent,
indices,
self.llvm_usize,
name,
)
}
/// Allocate an [`NDIter`] that iterates through the given `ndarray`.
///
/// Note: This function allocates an array on the stack at the current builder location, which
/// may lead to stack explosion if called in a hot loop. Therefore, callers are recommended to
/// call `llvm.stacksave` before calling this function and call `llvm.stackrestore` after the
/// [`NDIter`] is no longer needed.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> <Self as ProxyType<'ctx>>::Value {
let nditer = self.raw_alloca_var(generator, ctx, None);
let ndims = self.llvm_usize.const_int(ndarray.get_type().ndims(), false);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices =
generator.gen_array_var_alloc(ctx, self.llvm_usize.into(), ndims, None).unwrap();
let indices =
TypedArrayLikeAdapter::from(indices, |_, _, v| v.into_int_value(), |_, _, v| v.into());
let nditer = self.map_value(nditer, ndarray, indices.as_slice_value(ctx, generator), None);
irrt::ndarray::call_nac3_nditer_initialize(generator, ctx, nditer, ndarray, &indices);
nditer
}
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
parent,
indices,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for NDIterType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDIterValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDIterType<'ctx>> for PointerType<'ctx> {
fn from(value: NDIterType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,155 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ProxyValue, RangeValue},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for a `range` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct RangeType<'ctx> {
ty: PointerType<'ctx>,
}
impl<'ctx> RangeType<'ctx> {
/// Checks whether `llvm_ty` represents a `range` type, returning [Err] if it does not.
pub fn is_representable(llvm_ty: PointerType<'ctx>) -> Result<(), String> {
let llvm_range_ty = llvm_ty.get_element_type();
let AnyTypeEnum::ArrayType(llvm_range_ty) = llvm_range_ty else {
return Err(format!("Expected array type for `range` type, got {llvm_range_ty}"));
};
if llvm_range_ty.len() != 3 {
return Err(format!(
"Expected 3 elements for `range` type, got {}",
llvm_range_ty.len()
));
}
let llvm_range_elem_ty = llvm_range_ty.get_element_type();
let Ok(llvm_range_elem_ty) = IntType::try_from(llvm_range_elem_ty) else {
return Err(format!(
"Expected int type for `range` element type, got {llvm_range_elem_ty}"
));
};
if llvm_range_elem_ty.get_bit_width() != 32 {
return Err(format!(
"Expected 32-bit int type for `range` element type, got {}",
llvm_range_elem_ty.get_bit_width()
));
}
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a `Range`.
#[must_use]
fn llvm_type(ctx: &'ctx Context) -> PointerType<'ctx> {
// typedef int32_t Range[3];
let llvm_i32 = ctx.i32_type();
llvm_i32.array_type(3).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`RangeType`].
#[must_use]
pub fn new(ctx: &'ctx Context) -> Self {
let llvm_range = Self::llvm_type(ctx);
RangeType::from_type(llvm_range)
}
/// Creates an [`RangeType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty).is_ok());
RangeType { ty: ptr_ty }
}
/// Returns the type of all fields of this `range` type.
#[must_use]
pub fn value_type(&self) -> IntType<'ctx> {
self.as_base_type().get_element_type().into_array_type().get_element_type().into_int_type()
}
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(self.raw_alloca(ctx, name), name)
}
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
name,
)
}
/// Converts an existing value into a [`RangeValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, name)
}
}
impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
type Base = PointerType<'ctx>;
type Value = RangeValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
_: &G,
_: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty)
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<RangeType<'ctx>> for PointerType<'ctx> {
fn from(value: RangeType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,270 +0,0 @@
use std::marker::PhantomData;
use inkwell::{
context::AsContextRef,
types::{BasicTypeEnum, IntType, StructType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
};
use itertools::Itertools;
use crate::codegen::CodeGenContext;
/// Trait indicating that the structure is a field-wise representation of an LLVM structure.
///
/// # Usage
///
/// For example, for a simple C-slice LLVM structure:
///
/// ```ignore
/// struct CSliceFields<'ctx> {
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
/// len: StructField<'ctx, IntValue<'ctx>>
/// }
/// ```
pub trait StructFields<'ctx>: Eq + Copy {
/// Creates an instance of [`StructFields`] using the given `ctx` and `size_t` types.
fn new(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> Self;
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn to_vec(&self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>;
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn iter(&self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)> {
self.to_vec().into_iter()
}
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn into_vec(self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.to_vec()
}
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn into_iter(self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.into_vec().into_iter()
}
/// Returns the field index of a field in this structure.
fn index_of_field<V>(&self, name: impl FnOnce(&Self) -> StructField<'ctx, V>) -> u32
where
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
let field_name = name(self).name;
self.index_of_field_name(field_name).unwrap()
}
/// Returns the field index of a field with the given name in this structure.
fn index_of_field_name(&self, field_name: &str) -> Option<u32> {
self.iter().find_position(|(name, _)| *name == field_name).map(|(idx, _)| idx as u32)
}
}
/// A single field of an LLVM structure.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// The index of this field within the structure.
index: u32,
/// The name of this field.
name: &'static str,
/// The type of this field.
ty: BasicTypeEnum<'ctx>,
/// Instance of [`PhantomData`] containing [`Value`], used to implement automatic downcasts.
_value_ty: PhantomData<Value>,
}
impl<'ctx, Value> StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// Creates an instance of [`StructField`].
///
/// * `idx_counter` - The instance of [`FieldIndexCounter`] used to track the current field
/// index.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create(
idx_counter: &mut FieldIndexCounter,
name: &'static str,
ty: impl Into<BasicTypeEnum<'ctx>>,
) -> Self {
StructField { index: idx_counter.increment(), name, ty: ty.into(), _value_ty: PhantomData }
}
/// Creates an instance of [`StructField`] with a given index.
///
/// * `index` - The index of this field within its enclosing structure.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create_at(index: u32, name: &'static str, ty: impl Into<BasicTypeEnum<'ctx>>) -> Self {
StructField { index, name, ty: ty.into(), _value_ty: PhantomData }
}
/// Returns the name of this field.
#[must_use]
pub fn name(&self) -> &'static str {
self.name
}
/// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32
/// {idx...}, i32 {self.index}`.
pub fn ptr_by_array_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
idx: &[IntValue<'ctx>],
) -> PointerValue<'ctx> {
unsafe {
ctx.builder.build_in_bounds_gep(
pobj,
&[idx, &[ctx.ctx.i32_type().const_int(u64::from(self.index), false)]].concat(),
"",
)
}
.unwrap()
}
/// Creates a pointer to this field in an arbitrary structure by performing the equivalent of
/// `getelementptr i32 0, i32 {self.index}`.
pub fn ptr_by_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_struct_gep(
pobj,
self.index,
&obj_name.map(|name| format!("{name}.{}.addr", self.name)).unwrap_or_default(),
)
.unwrap()
}
/// Gets the value of this field for a given `obj`.
#[must_use]
pub fn get_from_value(&self, obj: StructValue<'ctx>) -> Value {
obj.get_field_at_index(self.index).and_then(|value| Value::try_from(value).ok()).unwrap()
}
/// Sets the value of this field for a given `obj`.
pub fn set_for_value(&self, obj: StructValue<'ctx>, value: Value) {
obj.set_field_at_index(self.index, value);
}
/// Gets the value of this field for a pointer-to-structure.
pub fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> Value {
ctx.builder
.build_load(
self.ptr_by_gep(ctx, pobj, obj_name),
&obj_name.map(|name| format!("{name}.{}", self.name)).unwrap_or_default(),
)
.map_err(|_| ())
.and_then(|value| Value::try_from(value))
.unwrap()
}
/// Sets the value of this field for a pointer-to-structure.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
value: Value,
obj_name: Option<&'ctx str>,
) {
ctx.builder.build_store(self.ptr_by_gep(ctx, pobj, obj_name), value).unwrap();
}
}
impl<'ctx, Value> From<StructField<'ctx, Value>> for (&'static str, BasicTypeEnum<'ctx>)
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
fn from(value: StructField<'ctx, Value>) -> Self {
(value.name, value.ty)
}
}
/// A counter that tracks the next index of a field using a monotonically increasing counter.
#[derive(Default, Debug, PartialEq, Eq, Clone, Copy)]
pub struct FieldIndexCounter(u32);
impl FieldIndexCounter {
/// Increments the number stored by this counter, returning the previous value.
///
/// Functionally equivalent to `i++` in C-based languages.
pub fn increment(&mut self) -> u32 {
let v = self.0;
self.0 += 1;
v
}
}
type FieldTypeVerifier<'ctx> = dyn Fn(BasicTypeEnum<'ctx>) -> Result<(), String>;
/// Checks whether [`llvm_ty`][StructType] contains the fields described by the given
/// [`StructFields`] instance.
///
/// By default, this function will compare the type of each field in `expected_fields` against
/// `llvm_ty`. To override this behavior for individual fields, pass in overrides to
/// `custom_verifiers`, which will use the specified verifier when a field with the matching field
/// name is being checked.
pub(super) fn check_struct_type_matches_fields<'ctx>(
expected_fields: impl StructFields<'ctx>,
llvm_ty: StructType<'ctx>,
ty_name: &'static str,
custom_verifiers: &[(&str, &FieldTypeVerifier<'ctx>)],
) -> Result<(), String> {
let expected_fields = expected_fields.to_vec();
if llvm_ty.count_fields() != u32::try_from(expected_fields.len()).unwrap() {
return Err(format!(
"Expected {} fields in `{ty_name}`, got {}",
expected_fields.len(),
llvm_ty.count_fields(),
));
}
expected_fields
.into_iter()
.enumerate()
.map(|(i, (field_name, expected_ty))| {
(field_name, expected_ty, llvm_ty.get_field_type_at_index(i as u32).unwrap())
})
.try_for_each(|(field_name, expected_ty, actual_ty)| {
if let Some((_, verifier)) =
custom_verifiers.iter().find(|verifier| verifier.0 == field_name)
{
verifier(actual_ty)
} else if expected_ty == actual_ty {
Ok(())
} else {
Err(format!("Expected {expected_ty} for `{ty_name}.{field_name}`, got {actual_ty}"))
}
})?;
Ok(())
}

View File

@ -1,184 +0,0 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, IntType, StructType},
values::BasicValueEnum,
};
use itertools::Itertools;
use super::ProxyType;
use crate::{
codegen::{
values::{ProxyValue, TupleValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct TupleType<'ctx> {
ty: StructType<'ctx>,
llvm_usize: IntType<'ctx>,
}
impl<'ctx> TupleType<'ctx> {
/// Checks whether `llvm_ty` represents any tuple type, returning [Err] if it does not.
pub fn is_representable(_value: StructType<'ctx>) -> Result<(), String> {
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a tuple.
#[must_use]
fn llvm_type(ctx: &'ctx Context, tys: &[BasicTypeEnum<'ctx>]) -> StructType<'ctx> {
ctx.struct_type(tys, false)
}
/// Creates an instance of [`TupleType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
tys: &[BasicTypeEnum<'ctx>],
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_tuple = Self::llvm_type(ctx, tys);
Self { ty: llvm_tuple, llvm_usize }
}
/// Creates an [`TupleType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let llvm_usize = generator.get_size_type(ctx.ctx);
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty_immutable(ty) else {
panic!("Expected type to be a TypeEnum::TTuple, got {}", ctx.unifier.stringify(ty));
};
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
Self { ty: Self::llvm_type(ctx.ctx, &llvm_tys), llvm_usize }
}
/// Creates an [`TupleType`] from a [`StructType`].
#[must_use]
pub fn from_type(struct_ty: StructType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(struct_ty).is_ok());
TupleType { ty: struct_ty, llvm_usize }
}
/// Returns the number of elements present in this [`TupleType`].
#[must_use]
pub fn num_elements(&self) -> u32 {
self.ty.count_fields()
}
/// Returns the type of the tuple element at the given `index`, or [`None`] if `index` is out of
/// range.
#[must_use]
pub fn type_at_index(&self, index: u32) -> Option<BasicTypeEnum<'ctx>> {
if index < self.num_elements() {
Some(unsafe { self.type_at_index_unchecked(index) })
} else {
None
}
}
/// Returns the type of the tuple element at the given `index`.
///
/// # Safety
///
/// The caller must ensure that the index is valid.
#[must_use]
pub unsafe fn type_at_index_unchecked(&self, index: u32) -> BasicTypeEnum<'ctx> {
self.ty.get_field_type_at_index_unchecked(index)
}
/// Constructs a [`TupleValue`] from this type by zero-initializing the tuple value.
#[must_use]
pub fn construct(
&self,
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
self.map_value(Self::llvm_type(ctx.ctx, &self.ty.get_field_types()).const_zero(), name)
}
/// Constructs a [`TupleValue`] from `objects`. The resulting tuple preserves the order of
/// objects.
#[must_use]
pub fn construct_from_objects<I: IntoIterator<Item = BasicValueEnum<'ctx>>>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
objects: I,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let values = objects.into_iter().collect_vec();
assert_eq!(values.len(), self.num_elements() as usize);
assert!(values
.iter()
.enumerate()
.all(|(i, v)| { v.get_type() == unsafe { self.type_at_index_unchecked(i as u32) } }));
let mut value = self.construct(ctx, name);
for (i, val) in values.into_iter().enumerate() {
value.store_element(ctx, i as u32, val);
}
value
}
/// Converts an existing value into a [`ListValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_struct_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for TupleType<'ctx> {
type Base = StructType<'ctx>;
type Value = TupleValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::StructType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected struct type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
_generator: &G,
_ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty)
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<TupleType<'ctx>> for StructType<'ctx> {
fn from(value: TupleType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,3 +0,0 @@
pub use slice::*;
mod slice;

View File

@ -1,245 +0,0 @@
use inkwell::{
context::{AsContextRef, Context, ContextRef},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
ProxyType,
},
values::{utils::SliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct SliceType<'ctx> {
ty: PointerType<'ctx>,
int_ty: IntType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceFields<'ctx> {
#[value_type(bool_type())]
pub start_defined: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize)]
pub start: StructField<'ctx, IntValue<'ctx>>,
#[value_type(bool_type())]
pub stop_defined: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize)]
pub stop: StructField<'ctx, IntValue<'ctx>>,
#[value_type(bool_type())]
pub step_defined: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize)]
pub step: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> SliceFields<'ctx> {
/// Creates a new instance of [`SliceFields`] with a custom integer type for its range values.
#[must_use]
pub fn new_sized(ctx: &impl AsContextRef<'ctx>, int_ty: IntType<'ctx>) -> Self {
let ctx = unsafe { ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = FieldIndexCounter::default();
SliceFields {
start_defined: StructField::create(&mut counter, "start_defined", ctx.bool_type()),
start: StructField::create(&mut counter, "start", int_ty),
stop_defined: StructField::create(&mut counter, "stop_defined", ctx.bool_type()),
stop: StructField::create(&mut counter, "stop", int_ty),
step_defined: StructField::create(&mut counter, "step_defined", ctx.bool_type()),
step: StructField::create(&mut counter, "step", int_ty),
}
}
}
impl<'ctx> SliceType<'ctx> {
/// Checks whether `llvm_ty` represents a `slice` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let fields = SliceFields::new(ctx, llvm_usize);
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected struct type for `Slice` type, got {llvm_ty}"));
};
check_struct_type_matches_fields(
fields,
llvm_ty,
"Slice",
&[
(fields.start.name(), &|ty| {
if ty.is_int_type() {
Ok(())
} else {
Err(format!("Expected int type for `Slice.start`, got {ty}"))
}
}),
(fields.stop.name(), &|ty| {
if ty.is_int_type() {
Ok(())
} else {
Err(format!("Expected int type for `Slice.stop`, got {ty}"))
}
}),
(fields.step.name(), &|ty| {
if ty.is_int_type() {
Ok(())
} else {
Err(format!("Expected int type for `Slice.step`, got {ty}"))
}
}),
],
)
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self) -> SliceFields<'ctx> {
SliceFields::new_sized(&self.int_ty.get_context(), self.int_ty)
}
/// Creates an LLVM type corresponding to the expected structure of a `Slice`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, int_ty: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys = SliceFields::new_sized(&int_ty.get_context(), int_ty)
.into_iter()
.map(|field| field.1)
.collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`SliceType`] with `int_ty` as its backing integer type.
#[must_use]
pub fn new(ctx: &'ctx Context, int_ty: IntType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let llvm_ty = Self::llvm_type(ctx, int_ty);
Self { ty: llvm_ty, int_ty, llvm_usize }
}
/// Creates an instance of [`SliceType`] with `usize` as its backing integer type.
#[must_use]
pub fn new_usize<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
Self::new(ctx, llvm_usize, llvm_usize)
}
/// Creates an [`SliceType`] from a [`PointerType`] representing a `slice`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
int_ty: IntType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, int_ty).is_ok());
Self { ty: ptr_ty, int_ty, llvm_usize }
}
#[must_use]
pub fn element_type(&self) -> IntType<'ctx> {
self.int_ty
}
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.int_ty,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.int_ty,
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ContiguousNDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.int_ty,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for SliceType<'ctx> {
type Base = PointerType<'ctx>;
type Value = SliceValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<SliceType<'ctx>> for PointerType<'ctx> {
fn from(value: SliceType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,439 +0,0 @@
use inkwell::{
types::AnyTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
/// An LLVM value that is array-like, i.e. it contains a contiguous, sequenced collection of
/// elements.
pub trait ArrayLikeValue<'ctx> {
/// Returns the element type of this array-like value.
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx>;
/// Returns the base pointer to the array.
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> PointerValue<'ctx>;
/// Returns the size of this array-like value.
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx>;
/// Returns a [`ArraySliceValue`] representing this value.
fn as_slice_value<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
self.base_ptr(ctx, generator),
self.size(ctx, generator),
None,
)
}
}
/// An array-like value that can be indexed by memory offset.
pub trait ArrayLikeIndexer<'ctx, Index = IntValue<'ctx>>: ArrayLikeValue<'ctx> {
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
/// Returns the pointer to the data at the `idx`-th index.
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
}
/// An array-like value that can have its array elements accessed as a [`BasicValueEnum`].
pub trait UntypedArrayLikeAccessor<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
/// Returns the data at the `idx`-th index.
fn get<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = self.ptr_offset(ctx, generator, idx, name);
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
}
/// An array-like value that can have its array elements mutated as a [`BasicValueEnum`].
pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, None) };
ctx.builder.build_store(ptr, value).unwrap();
}
/// Sets the data at the `idx`-th index.
fn set<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = self.ptr_offset(ctx, generator, idx, None);
ctx.builder.build_store(ptr, value).unwrap();
}
}
/// An array-like value that can have its array elements accessed as an arbitrary type `T`.
pub trait TypedArrayLikeAccessor<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
UntypedArrayLikeAccessor<'ctx, Index>
{
/// Casts an element from [`BasicValueEnum`] into `T`.
fn downcast_to_type(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: BasicValueEnum<'ctx>,
) -> T;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_typed_unchecked(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = unsafe { self.get_unchecked(ctx, generator, idx, name) };
self.downcast_to_type(ctx, generator, value)
}
/// Returns the data at the `idx`-th index.
fn get_typed(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = self.get(ctx, generator, idx, name);
self.downcast_to_type(ctx, generator, value)
}
}
/// An array-like value that can have its array elements mutated as an arbitrary type `T`.
pub trait TypedArrayLikeMutator<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
UntypedArrayLikeMutator<'ctx, Index>
{
/// Casts an element from T into [`BasicValueEnum`].
fn upcast_from_type(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: T,
) -> BasicValueEnum<'ctx>;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_typed_unchecked(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, generator, value);
unsafe { self.set_unchecked(ctx, generator, idx, value) }
}
/// Sets the data at the `idx`-th index.
fn set_typed(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, generator, value);
self.set(ctx, generator, idx, value);
}
}
/// An adapter for constraining untyped array values as typed values.
#[derive(Copy, Clone)]
pub struct TypedArrayLikeAdapter<
'ctx,
G: CodeGenerator + ?Sized,
T,
Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>,
> {
adapted: Adapted,
downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
}
impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
/// Creates a [`TypedArrayLikeAdapter`].
///
/// * `adapted` - The value to be adapted.
/// * `downcast_fn` - The function converting a [`BasicValueEnum`] into a `T`.
/// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`].
pub fn from(
adapted: Adapted,
downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
) -> Self {
TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn }
}
}
impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> ArrayLikeValue<'ctx>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
fn element_type<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
) -> AnyTypeEnum<'ctx> {
self.adapted.element_type(ctx, generator)
}
fn base_ptr<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
) -> PointerValue<'ctx> {
self.adapted.base_ptr(ctx, generator)
}
fn size<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
) -> IntValue<'ctx> {
self.adapted.size(ctx, generator)
}
fn as_slice_value<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
) -> ArraySliceValue<'ctx> {
self.adapted.as_slice_value(ctx, generator)
}
}
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: ArrayLikeIndexer<'ctx, Index>,
{
unsafe fn ptr_offset_unchecked<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) }
}
fn ptr_offset<CG: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut CG,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
self.adapted.ptr_offset(ctx, generator, idx, name)
}
}
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
}
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
}
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, G, T, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
fn downcast_to_type(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: BasicValueEnum<'ctx>,
) -> T {
(self.downcast_fn)(ctx, generator, value)
}
}
impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeMutator<'ctx, G, T, Index>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
fn upcast_from_type(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: T,
) -> BasicValueEnum<'ctx> {
(self.upcast_fn)(ctx, generator, value)
}
}
/// An LLVM value representing an array slice, consisting of a pointer to the data and the size of
/// the slice.
#[derive(Copy, Clone)]
pub struct ArraySliceValue<'ctx>(PointerValue<'ctx>, IntValue<'ctx>, Option<&'ctx str>);
impl<'ctx> ArraySliceValue<'ctx> {
/// Creates an [`ArraySliceValue`] from a [`PointerValue`] and its size.
#[must_use]
pub fn from_ptr_val(
ptr: PointerValue<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Self {
ArraySliceValue(ptr, size, name)
}
}
impl<'ctx> From<ArraySliceValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ArraySliceValue<'ctx>) -> Self {
value.0
}
}
impl<'ctx> ArrayLikeValue<'ctx> for ArraySliceValue<'ctx> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
self.0
}
fn size<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.1
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.or(self.2).map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ArraySliceValue<'ctx> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ArraySliceValue<'ctx> {}

View File

@ -1,234 +0,0 @@
use inkwell::{
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
types::{structure::StructField, ListType, ProxyType},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for accessing a `list` value in LLVM.
#[derive(Copy, Clone)]
pub struct ListValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ListValue<'ctx> {
/// Checks whether `value` is an instance of `list`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
ListType::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ListValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
ListValue { value: ptr, llvm_usize, name }
}
fn items_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).items
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.items_field(ctx).ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
self.items_field(ctx).set(ctx, self.value, data, self.name);
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
///
/// If `size` is [None], the size stored in the field of this instance is used instead. If
/// `size` is resolved to `0` at runtime, `(T*) 0` will be assigned to `data`.
pub fn create_data(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: Option<IntValue<'ctx>>,
) {
let size = size.unwrap_or_else(|| self.load_size(ctx, None));
let data = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(IntPredicate::NE, size, self.llvm_usize.const_zero(), "")
.unwrap(),
ctx.builder.build_array_alloca(elem_ty, size, "").unwrap(),
elem_ty.ptr_type(AddressSpace::default()).const_zero(),
"",
)
.map(BasicValueEnum::into_pointer_value)
.unwrap();
self.store_data(ctx, data);
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
#[must_use]
pub fn data(&self) -> ListDataProxy<'ctx, '_> {
ListDataProxy(self)
}
fn len_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).len
}
/// Stores the `size` of this `list` into this instance.
pub fn store_size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
size: IntValue<'ctx>,
) {
debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx));
self.len_field(ctx).set(ctx, self.value, size, self.name);
}
/// Returns the size of this `list` as a value.
pub fn load_size(
&self,
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> IntValue<'ctx> {
self.len_field(ctx).get(ctx, self.value, name)
}
/// Returns an instance of [`ListValue`] with the `items` pointer cast to `i8*`.
#[must_use]
pub fn as_i8_list<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> ListValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_list_i8 = <Self as ProxyValue>::Type::new(generator, ctx.ctx, llvm_i8.into());
Self::from_pointer_value(
ctx.builder.build_pointer_cast(self.value, llvm_list_i8.as_base_type(), "").unwrap(),
self.llvm_usize,
self.name,
)
}
}
impl<'ctx> ProxyValue<'ctx> for ListValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ListType<'ctx>;
fn get_type(&self) -> Self::Type {
ListType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ListValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ListValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// Proxy type for accessing the `data` array of an `list` instance in LLVM.
#[derive(Copy, Clone)]
pub struct ListDataProxy<'ctx, 'a>(&'a ListValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for ListDataProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.value.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.pptr_to_data(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_size(ctx, None)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ListDataProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ListDataProxy<'ctx, '_> {}

View File

@ -1,49 +0,0 @@
use inkwell::{context::Context, values::BasicValue};
use super::types::ProxyType;
use crate::codegen::CodeGenerator;
pub use array::*;
pub use list::*;
pub use range::*;
pub use tuple::*;
mod array;
mod list;
pub mod ndarray;
mod range;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a non-primitive value in NAC3.
pub trait ProxyValue<'ctx>: Into<Self::Base> {
/// The type of LLVM values represented by this instance. This is usually the
/// [LLVM pointer type][PointerValue].
type Base: BasicValue<'ctx>;
/// The type of this value.
type Type: ProxyType<'ctx, Value = Self>;
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_instance<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: impl BasicValue<'ctx>,
) -> Result<(), String> {
Self::Type::is_type(generator, ctx, value.as_basic_value_enum().get_type())
}
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: Self::Base,
) -> Result<(), String> {
Self::is_instance(generator, ctx, value.as_basic_value_enum())
}
/// Returns the [type][ProxyType] of this value.
fn get_type(&self) -> Self::Type;
/// Returns the [base value][Self::Base] of this proxy.
fn as_base_value(&self) -> Self::Base;
}

View File

@ -1,243 +0,0 @@
use inkwell::{
types::IntType,
values::{IntValue, PointerValue},
};
use itertools::Itertools;
use crate::codegen::{
irrt,
types::{
ndarray::{NDArrayType, ShapeEntryType},
structure::StructField,
ProxyType,
},
values::{
ndarray::NDArrayValue, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ProxyValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
#[derive(Copy, Clone)]
pub struct ShapeEntryValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ShapeEntryValue<'ctx> {
/// Checks whether `value` is an instance of `ShapeEntry`, returning [Err] if `value` is
/// not an instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ShapeEntryValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, llvm_usize, name }
}
fn ndims_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(self.value.get_type().get_context()).ndims
}
/// Stores the number of dimensions into this value.
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
self.ndims_field().set(ctx, self.value, value, self.name);
}
fn shape_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(self.value.get_type().get_context()).shape
}
/// Stores the shape into this value.
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.shape_field().set(ctx, self.value, value, self.name);
}
}
impl<'ctx> ProxyValue<'ctx> for ShapeEntryValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ShapeEntryType<'ctx>;
fn get_type(&self) -> Self::Type {
Self::Type::from_type(self.value.get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ShapeEntryValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ShapeEntryValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Create a broadcast view on this ndarray with a target shape.
///
/// The input shape will be checked to make sure that it contains no negative values.
///
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
/// The caller has to figure this out for this function.
/// * `target_shape` - An array pointer pointing to the target shape.
#[must_use]
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target_ndims: u64,
target_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> Self {
assert!(self.ndims <= target_ndims);
assert_eq!(target_shape.element_type(ctx, generator), self.llvm_usize.into());
let broadcast_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, target_ndims)
.construct_uninitialized(generator, ctx, None);
broadcast_ndarray.copy_shape_from_array(
generator,
ctx,
target_shape.base_ptr(ctx, generator),
);
irrt::ndarray::call_nac3_ndarray_broadcast_to(generator, ctx, *self, broadcast_ndarray);
broadcast_ndarray
}
}
/// A result produced by [`broadcast_all_ndarrays`]
#[derive(Clone)]
pub struct BroadcastAllResult<'ctx, G: CodeGenerator + ?Sized> {
/// The statically known `ndims` of the broadcast result.
pub ndims: u64,
/// The broadcasting shape.
pub shape: TypedArrayLikeAdapter<'ctx, G, IntValue<'ctx>>,
/// Broadcasted views on the inputs.
///
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
/// is the same as the input.
pub ndarrays: Vec<NDArrayValue<'ctx>>,
}
/// Helper function to call [`irrt::ndarray::call_nac3_ndarray_broadcast_shapes`].
fn broadcast_shapes<'ctx, G, Shape>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_shape_entries: &[(ArraySliceValue<'ctx>, u64)], // (shape, shape's length/ndims)
broadcast_ndims: u64,
broadcast_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_shape_ty = ShapeEntryType::new(generator, ctx.ctx);
assert!(in_shape_entries
.iter()
.all(|entry| entry.0.element_type(ctx, generator) == llvm_usize.into()));
assert_eq!(broadcast_shape.element_type(ctx, generator), llvm_usize.into());
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries =
llvm_usize.const_int(u64::try_from(in_shape_entries.len()).unwrap(), false);
let shape_entries = llvm_shape_ty.array_alloca(ctx, num_shape_entries, None);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = unsafe {
shape_entries.ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
None,
)
};
let shape_entry = llvm_shape_ty.map_value(pshape_entry, None);
let in_ndims = llvm_usize.const_int(*in_ndims, false);
shape_entry.store_ndims(ctx, in_ndims);
shape_entry.store_shape(ctx, in_shape.base_ptr(ctx, generator));
}
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims, false);
irrt::ndarray::call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
num_shape_entries,
shape_entries,
broadcast_ndims,
broadcast_shape,
);
}
impl<'ctx> NDArrayType<'ctx> {
/// Broadcast all ndarrays according to
/// [`np.broadcast()`](https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html)
/// and return a [`BroadcastAllResult`] containing all the information of the result of the
/// broadcast operation.
pub fn broadcast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarrays: &[NDArrayValue<'ctx>],
) -> BroadcastAllResult<'ctx, G> {
assert!(!ndarrays.is_empty());
let llvm_usize = generator.get_size_type(ctx.ctx);
// Infer the broadcast output ndims.
let broadcast_ndims_int =
ndarrays.iter().map(|ndarray| ndarray.get_type().ndims()).max().unwrap();
assert!(self.ndims() >= broadcast_ndims_int);
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims_int, false);
let broadcast_shape = ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, broadcast_ndims, "").unwrap(),
broadcast_ndims,
None,
);
let broadcast_shape = TypedArrayLikeAdapter::from(
broadcast_shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let shape_entries = ndarrays
.iter()
.map(|ndarray| {
(ndarray.shape().as_slice_value(ctx, generator), ndarray.get_type().ndims())
})
.collect_vec();
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, &broadcast_shape);
// Broadcast all the inputs to shape `dst_shape`.
let broadcast_ndarrays = ndarrays
.iter()
.map(|ndarray| {
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, &broadcast_shape)
})
.collect_vec();
BroadcastAllResult {
ndims: broadcast_ndims_int,
shape: broadcast_shape,
ndarrays: broadcast_ndarrays,
}
}
}

View File

@ -1,200 +0,0 @@
use inkwell::{
types::{BasicType, BasicTypeEnum, IntType},
values::{IntValue, PointerValue},
AddressSpace,
};
use super::{ArrayLikeValue, NDArrayValue, ProxyValue};
use crate::codegen::{
stmt::gen_if_callback,
types::{
ndarray::{ContiguousNDArrayType, NDArrayType},
structure::StructField,
},
CodeGenContext, CodeGenerator,
};
#[derive(Copy, Clone)]
pub struct ContiguousNDArrayValue<'ctx> {
value: PointerValue<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ContiguousNDArrayValue<'ctx> {
/// Checks whether `value` is an instance of `ContiguousNDArray`, returning [Err] if `value` is
/// not an instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ContiguousNDArrayValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, item: dtype, llvm_usize, name }
}
fn ndims_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().ndims
}
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
self.ndims_field().set(ctx, self.as_base_value(), value, self.name);
}
fn shape_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields().shape
}
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.shape_field().set(ctx, self.as_base_value(), value, self.name);
}
pub fn load_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.shape_field().get(ctx, self.value, self.name)
}
fn data_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields().data
}
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.data_field().set(ctx, self.as_base_value(), value, self.name);
}
pub fn load_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.data_field().get(ctx, self.value, self.name)
}
}
impl<'ctx> ProxyValue<'ctx> for ContiguousNDArrayValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ContiguousNDArrayType<'ctx>;
fn get_type(&self) -> Self::Type {
<Self as ProxyValue<'ctx>>::Type::from_type(
self.as_base_value().get_type(),
self.item,
self.llvm_usize,
)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ContiguousNDArrayValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ContiguousNDArrayValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Create a [`ContiguousNDArrayValue`] from the contents of this ndarray.
///
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
///
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the
/// `data` field of the returned [`ContiguousNDArrayValue`] and copy contents of this ndarray to
/// there.
///
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created
/// [`ContiguousNDArrayValue`] will share memory with this ndarray.
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ContiguousNDArrayValue<'ctx> {
let result = ContiguousNDArrayType::new(generator, ctx.ctx, self.dtype)
.alloca_var(generator, ctx, self.name);
// Set ndims and shape.
let ndims = self.llvm_usize.const_int(self.ndims, false);
result.store_ndims(ctx, ndims);
let shape = self.shape();
result.store_shape(ctx, shape.base_ptr(ctx, generator));
gen_if_callback(
generator,
ctx,
|generator, ctx| Ok(self.is_c_contiguous(generator, ctx)),
|_, ctx| {
// This ndarray is contiguous.
let data = self.data_field(ctx).get(ctx, self.as_base_value(), self.name);
let data = ctx
.builder
.build_pointer_cast(data, result.item.ptr_type(AddressSpace::default()), "")
.unwrap();
result.store_data(ctx, data);
Ok(())
},
|generator, ctx| {
// This ndarray is not contiguous. Do a full-copy on `data`. `make_copy` produces an
// ndarray with contiguous `data`.
let copied_ndarray = self.make_copy(generator, ctx);
let data = copied_ndarray.data().base_ptr(ctx, generator);
let data = ctx
.builder
.build_pointer_cast(data, result.item.ptr_type(AddressSpace::default()), "")
.unwrap();
result.store_data(ctx, data);
Ok(())
},
)
.unwrap();
result
}
/// Create an [`NDArrayValue`] from a [`ContiguousNDArrayValue`].
///
/// The operation is cheap. The newly created [`NDArrayValue`] will share the same memory as the
/// [`ContiguousNDArrayValue`].
///
/// `ndims` has to be provided as [`NDArrayValue`] requires a statically known `ndims` value,
/// despite the fact that the information should be contained within the
/// [`ContiguousNDArrayValue`].
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
carray: ContiguousNDArrayValue<'ctx>,
ndims: u64,
) -> Self {
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
// Allocate the resulting ndarray.
let ndarray = NDArrayType::new(generator, ctx.ctx, carray.item, ndims)
.construct_uninitialized(generator, ctx, carray.name);
// Copy shape and update strides
let shape = carray.load_shape(ctx);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.set_strides_contiguous(generator, ctx);
// Share data
let data = carray.load_data(ctx);
ndarray.store_data(
ctx,
ctx.builder
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap(),
);
ndarray
}
}

View File

@ -1,260 +0,0 @@
use inkwell::{
types::IntType,
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{
irrt,
types::{
ndarray::{NDArrayType, NDIndexType},
structure::StructField,
utils::SliceType,
},
values::{ndarray::NDArrayValue, utils::RustSlice, ProxyValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// An IRRT representation of an ndarray subscript index.
#[derive(Copy, Clone)]
pub struct NDIndexValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> NDIndexValue<'ctx> {
/// Checks whether `value` is an instance of `ndindex`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`NDIndexValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, llvm_usize, name }
}
fn type_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().type_
}
pub fn load_type(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.type_field().get(ctx, self.value, self.name)
}
pub fn store_type(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
self.type_field().set(ctx, self.value, value, self.name);
}
fn data_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields().data
}
pub fn load_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.data_field().get(ctx, self.value, self.name)
}
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.data_field().set(ctx, self.value, value, self.name);
}
}
impl<'ctx> ProxyValue<'ctx> for NDIndexValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = NDIndexType<'ctx>;
fn get_type(&self) -> Self::Type {
Self::Type::from_type(self.value.get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<NDIndexValue<'ctx>> for PointerValue<'ctx> {
fn from(value: NDIndexValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Get the expected `ndims` after indexing with `indices`.
#[must_use]
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indices {
match index {
RustNDIndex::SingleElement(_) => {
ndims -= 1; // Single elements decrements ndims
}
RustNDIndex::NewAxis => {
ndims += 1; // `np.newaxis` / `none` adds a new axis
}
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
}
}
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
///
/// This function behaves like NumPy's ndarray indexing, but if the indices index
/// into a single element, an unsized ndarray is returned.
#[must_use]
pub fn index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: &[RustNDIndex<'ctx>],
) -> Self {
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, dst_ndims)
.construct_uninitialized(generator, ctx, None);
let indices =
NDIndexType::new(generator, ctx.ctx).construct_ndindices(generator, ctx, indices);
irrt::ndarray::call_nac3_ndarray_index(generator, ctx, indices, *self, dst_ndarray);
dst_ndarray
}
}
/// A convenience enum representing a [`NDIndexValue`].
// TODO: Rename to CTConstNDIndex
#[derive(Debug, Clone)]
pub enum RustNDIndex<'ctx> {
SingleElement(IntValue<'ctx>),
Slice(RustSlice<'ctx>),
NewAxis,
Ellipsis,
}
impl<'ctx> RustNDIndex<'ctx> {
/// Generate LLVM code to transform an ndarray subscript expression to
/// its list of [`RustNDIndex`]
///
/// i.e.,
/// ```python
/// my_ndarray[::3, 1, :2:]
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
/// ```
pub fn from_subscript_expr<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
subscript: &Expr<Option<Type>>,
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// So we first "flatten" out the slice expression
let index_exprs = match &subscript.node {
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
_ => vec![subscript],
};
// Process all index expressions
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
for index_expr in index_exprs {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let slice = RustSlice::from_slice_expr(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(slice)
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
ctx,
generator,
ctx.primitives.int32, // Must be int32, this checks for illegal values
)?;
let index = index.into_int_value();
RustNDIndex::SingleElement(index)
};
rust_ndindices.push(ndindex);
}
Ok(rust_ndindices)
}
/// Get the value to set `NDIndex::type` for this variant.
#[must_use]
pub fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
RustNDIndex::NewAxis => 2,
RustNDIndex::Ellipsis => 3,
}
}
/// Serialize this [`RustNDIndex`] by writing it into an LLVM [`NDIndexValue`].
pub fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_ndindex: NDIndexValue<'ctx>,
) {
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
// Set `dst_ndindex.type`
dst_ndindex.store_type(ctx, ctx.ctx.i8_type().const_int(self.get_type_id(), false));
// Set `dst_ndindex_ptr->data`
match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = ctx.builder.build_alloca(ctx.ctx.i32_type(), "").unwrap();
ctx.builder.build_store(index_ptr, *in_index).unwrap();
dst_ndindex.store_data(
ctx,
ctx.builder.build_pointer_cast(index_ptr, llvm_pi8, "").unwrap(),
);
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr =
SliceType::new(ctx.ctx, ctx.ctx.i32_type(), generator.get_size_type(ctx.ctx))
.alloca_var(generator, ctx, None);
in_rust_slice.write_to_slice(ctx, user_slice_ptr);
dst_ndindex.store_data(
ctx,
ctx.builder.build_pointer_cast(user_slice_ptr.into(), llvm_pi8, "").unwrap(),
);
}
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
}
}
}

View File

@ -1,69 +0,0 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use crate::codegen::{
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayValue<'ctx> {
/// Map through this ndarray with an elementwise function.
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
out: NDArrayOut<'ctx>,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
self.get_type().broadcast_starmap(
generator,
ctx,
&[*self],
out,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
///
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a
/// [`ScalarOrNDArray::Scalar`] of that result.
///
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new
/// ndarray of the results will be created and returned as a [`ScalarOrNDArray::NDArray`].
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_dtype: BasicTypeEnum<'ctx>,
mapping: Mapping,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ScalarOrNDArray::broadcasting_starmap(
generator,
ctx,
&[*self],
ret_dtype,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}

View File

@ -1,323 +0,0 @@
use std::cmp::max;
use nac3parser::ast::Operator;
use super::{NDArrayOut, NDArrayValue, RustNDIndex};
use crate::{
codegen::{
expr::gen_binop_expr_with_values,
irrt,
stmt::gen_for_callback_incrementing,
types::ndarray::NDArrayType,
values::{
ArrayLikeValue, ArraySliceValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::arraylike_flatten_element_type,
typecheck::{magic_methods::Binop, typedef::Type},
};
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_dtype: Type,
(in_a_ty, in_a): (Type, NDArrayValue<'ctx>),
(in_b_ty, in_b): (Type, NDArrayValue<'ctx>),
) -> NDArrayValue<'ctx> {
assert!(in_a.ndims >= 2, "in_a (which is {}) must be >= 2", in_a.ndims);
assert!(in_b.ndims >= 2, "in_b (which is {}) must be >= 2", in_b.ndims);
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_a_ty);
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_b_ty);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_dst_dtype = ctx.get_llvm_type(generator, dst_dtype);
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = llvm_usize.const_int(ndims_int, false);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
let (lhs, rhs, dst) = {
let in_lhs_ndims = llvm_usize.const_int(in_a.ndims, false);
let in_lhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
in_a.shape().base_ptr(ctx, generator),
in_lhs_ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let in_rhs_ndims = llvm_usize.const_int(in_b.ndims, false);
let in_rhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
in_b.shape().base_ptr(ctx, generator),
in_rhs_ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let lhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let rhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let dst_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
// Matmul dimension compatibility is checked here.
irrt::ndarray::call_nac3_ndarray_matmul_calculate_shapes(
generator,
ctx,
&in_lhs_shape,
&in_rhs_shape,
ndims,
&lhs_shape,
&rhs_shape,
&dst_shape,
);
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, &lhs_shape);
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, &rhs_shape);
let dst = NDArrayType::new(generator, ctx.ctx, llvm_dst_dtype, ndims_int)
.construct_uninitialized(generator, ctx, None);
dst.copy_shape_from_array(generator, ctx, dst_shape.base_ptr(ctx, generator));
unsafe {
dst.create_data(generator, ctx);
}
(lhs, rhs, dst)
};
let len = unsafe {
lhs.shape().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(ndims_int - 1, false),
None,
)
};
let at_row = i64::try_from(ndims_int - 2).unwrap();
let at_col = i64::try_from(ndims_int - 1).unwrap();
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
let pdst_ij = hdl.get_pointer(ctx);
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
let indices = hdl.get_indices::<G>();
let i = unsafe {
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_row as u64, true), None)
};
let j = unsafe {
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_col as u64, true), None)
};
let num_0 = llvm_usize.const_int(0, false);
let num_1 = llvm_usize.const_int(1, false);
gen_for_callback_incrementing(
generator,
ctx,
None,
num_0,
(len, false),
|generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
i,
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
k.into(),
);
}
let a_ik = unsafe { lhs.data().get_unchecked(ctx, generator, &indices, None) };
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
k.into(),
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
j,
);
}
let b_kj = unsafe { rhs.data().get_unchecked(ctx, generator, &indices, None) };
// Restore `indices`.
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
i,
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
j,
);
}
// x = a_[...]ik * b_[...]kj
let x = gen_binop_expr_with_values(
generator,
ctx,
(&Some(lhs_dtype), a_ik),
Binop::normal(Operator::Mult),
(&Some(rhs_dtype), b_kj),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
// dst_[...]ij += x
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
let dst_ij = gen_binop_expr_with_values(
generator,
ctx,
(&Some(dst_dtype), dst_ij),
Binop::normal(Operator::Add),
(&Some(dst_dtype), x),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
Ok(())
},
num_1,
)
})
.unwrap();
dst
}
impl<'ctx> NDArrayValue<'ctx> {
/// Perform [`np.matmul`](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
///
/// This function always return an [`NDArrayValue`]. You may want to use
/// [`NDArrayValue::split_unsized`] to handle when the output could be a scalar.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
#[must_use]
pub fn matmul<G: CodeGenerator>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
self_ty: Type,
(other_ty, other): (Type, Self),
(out_dtype, out): (Type, NDArrayOut<'ctx>),
) -> Self {
// Sanity check, but type inference should prevent this.
assert!(self.ndims > 0 && other.ndims > 0, "np.matmul disallows scalar input");
// If both arguments are 2-D they are multiplied like conventional matrices.
//
// If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the
// last two indices and broadcast accordingly.
//
// If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its
// dimensions. After matrix multiplication the prepended 1 is removed.
//
// If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its
// dimensions. After matrix multiplication the appended 1 is removed.
let new_a = if self.ndims == 1 {
// Prepend 1 to its dimensions
self.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
} else {
*self
};
let new_b = if other.ndims == 1 {
// Append 1 to its dimensions
other.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
} else {
other
};
// NOTE: `result` will always be a newly allocated ndarray.
// Current implementation cannot do in-place matrix muliplication.
let mut result =
matmul_at_least_2d(generator, ctx, out_dtype, (self_ty, new_a), (other_ty, new_b));
// Postprocessing on the result to remove prepended/appended axes.
let mut postindices = vec![];
let zero = ctx.ctx.i32_type().const_zero();
if self.ndims == 1 {
// Remove the prepended 1
postindices.push(RustNDIndex::SingleElement(zero));
}
if other.ndims == 1 {
// Remove the appended 1
postindices.push(RustNDIndex::Ellipsis);
postindices.push(RustNDIndex::SingleElement(zero));
}
if !postindices.is_empty() {
result = result.index(generator, ctx, &postindices);
}
match out {
NDArrayOut::NewNDArray { .. } => result,
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
let result_shape = result.shape();
out_ndarray.assert_can_be_written_by_out(generator, ctx, result_shape);
out_ndarray.copy_data_from(generator, ctx, result);
out_ndarray
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,178 +0,0 @@
use inkwell::{
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use super::{NDArrayValue, ProxyValue};
use crate::codegen::{
irrt,
stmt::{gen_for_callback, BreakContinueHooks},
types::{ndarray::NDIterType, structure::StructField},
values::{ArraySliceValue, TypedArrayLikeAdapter},
CodeGenContext, CodeGenerator,
};
#[derive(Copy, Clone)]
pub struct NDIterValue<'ctx> {
value: PointerValue<'ctx>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> NDIterValue<'ctx> {
/// Checks whether `value` is an instance of `NDArray`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`NDArrayValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, parent, indices, llvm_usize, name }
}
/// Is the current iteration valid?
///
/// If true, then `element`, `indices` and `nth` contain details about the current element.
///
/// If `ndarray` is unsized, this returns true only for the first iteration.
/// If `ndarray` is 0-sized, this always returns false.
#[must_use]
pub fn has_element<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_nditer_has_element(generator, ctx, *self)
}
/// Go to the next element. If `has_element()` is false, then this has undefined behavior.
///
/// If `ndarray` is unsized, this can only be called once.
/// If `ndarray` is 0-sized, this can never be called.
pub fn next<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &CodeGenContext<'ctx, '_>) {
irrt::ndarray::call_nac3_nditer_next(generator, ctx, *self);
}
fn element_field(
&self,
ctx: &CodeGenContext<'ctx, '_>,
) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).element
}
/// Get pointer to the current element.
#[must_use]
pub fn get_pointer(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let elem_ty = self.parent.dtype;
let p = self.element_field(ctx).get(ctx, self.as_base_value(), self.name);
ctx.builder
.build_pointer_cast(p, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
/// Get the value of the current element.
#[must_use]
pub fn get_scalar(&self, ctx: &CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let p = self.get_pointer(ctx);
ctx.builder.build_load(p, "value").unwrap()
}
fn nth_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).nth
}
/// Get the index of the current element if this ndarray were a flat ndarray.
#[must_use]
pub fn get_index(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.nth_field(ctx).get(ctx, self.as_base_value(), self.name)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices<G: CodeGenerator + ?Sized>(
&self,
) -> TypedArrayLikeAdapter<'ctx, G, IntValue<'ctx>> {
TypedArrayLikeAdapter::from(
self.indices,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
)
}
}
impl<'ctx> ProxyValue<'ctx> for NDIterValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = NDIterType<'ctx>;
fn get_type(&self) -> Self::Type {
NDIterType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<NDIterValue<'ctx>> for PointerValue<'ctx> {
fn from(value: NDIterValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Iterate through every element in the ndarray.
///
/// `body` has access to [`BreakContinueHooks`] to short-circuit and [`NDIterValue`] to
/// get properties of the current iteration (e.g., the current element, indices, etc.)
///
/// Note: The caller is recommended to call `llvm.stacksave` and `llvm.stackrestore` before and
/// after invoking this function respectively. See [`NDIterType::construct`] for an explanation
/// on why this is suggested.
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterValue<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| {
Ok(NDIterType::new(generator, ctx.ctx).construct(generator, ctx, *self))
},
|generator, ctx, nditer| Ok(nditer.has_element(generator, ctx)),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
}

Some files were not shown because too many files have changed in this diff Show More